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Abstract 

A special technique that measures the uncertainties embedded in model selection processes is Bayesian Model 

Averaging (BMA) which depends on the appropriate choices of model and parameter priors. Inspite the importance 

of the parameter priors' specification in BMA, the existing parameter priors give exitremely low Posterior Model 

Probability (PMP). Therefore, this paper elicits modified g-parameter priors to improve the performance of the 

PMP and predictive ability of the model with an application to the Water Pollution of Asejire in Ibadan.  The 

modified g-parameter priors gj =  j

a

k

n
, 3,4,5a  established the consistency conditions and asymptotic 

properties using the models in the literature. The results show that the PMP with the best prior (gj=
5/jk n ) had 

the least standard deviations (0.0411 at n=100,000 and 0:000 at n=1000) for models 1 & 2 respectively; and had 

the highest posterior means (0.9577 at n=100,000 and 1.000 at n=1000) for models 1 & 2 respectively. The point 

and overall predictive performances for the best prior were 2.357 at n=50 and 2.335 at n=100,000 when compared 

with the BMA Log Predictive Score threshold of 2.335. Applying this best g-parameter prior in modeling the 

Asejire river, it indicates that the dissolved solids (mg/l) and total solids (mg/l) are the most important pollutants 

in the river model with their PIP of 6.14% and 6.1% respectively.  
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1.Introduction 

Over the years in Nigeria, environmental problem is a great issue especially in the Southern part of the country 

where oil is spilled into water to cause water pollution. The people of the area are adversely affected with one 

environmental issue or the other. Previous researches on environment in Nigeria involve the classical approach. 

To this end, there is prior knowledge about challenges facing the community. I am now motivated to apply 

Bayesian Analysis through prior elicitation so as to form likelihood in such a way to give a compromise and update 

of knowledge in pattern of the Posterior using Bayesian Model Averaging (BMA). Bayesian Model Averaging 

(BMA) is a method that measures the uncertainties embedded in the model selection processes which depends on 

the appropriate choices of model and parameter priors. By averaging over many different competing models, BMA 

incorporates model uncertainty into conclusions about parameters and prediction. BMA approach allows the 

assessment of the predictive skill of a model. Akanbi, (2016) contributed that a composite inference that takes 

account of model uncertainty can be made in a simple and formally justifiable way. BMA is the method that has 

been proposed for handling some applications that are very large numbers of models. In BMA, elicitation of priors 

can be of two forms which are: model and parameter priors. Model priors can be fixed, random, uniform or even 

custom prior inclusion probability while the parameter priors also knowns as Zellner can also be fixed, empirical 

Bayes (local) or hyper g prior. 

The Zellner g- structure in the parameter prior is expected to be as small as possible such that consistency of 

the true posterior model probability holds, Zellner, (1986). Fernandez, Ley and Steel (2001a) improved this work 

based on the priors, Akanbi, (2016) gave an extension in eliciting additional five g-parameter priors. Therefore 

this research is being undertaken so as to serve as an extension to the literatures on g-parameter prior elicitation in 

the BMA approach to normal linear regression model based on the increment in prior information with the number 

of regressors in the model. Hence, the modified parameter prior, gj = kj/na (a=3, 4 and 5) combined with the uniform 

model prior is elicited for this study. 

 

2.Bayesian Model Averaging Framework 

Suppose a linear model structure of n-independent random samples from a normal regression, with y being the 

dependent variable, X is the independent variable, 0 y  a constant, y the coefficients and  a normal iid error term 

with variance 
1

jh
 

1(0, )jN h   �  with Model j (Mj); j=1,2,3,…,M.  

:j j jM y X     (1) 
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If X contains K potential variables, this means estimating 2K variable combinations and thus 2K is given thus; 
K1, 2,..., M(M 2 );0 jj k K      (2) 

Where kj is the number of regressors for model j and K is the total number of regressors in the model. 

The model weights for this averaging stem from posterior model probabilities (PMP) that arise from Bayes; 

theorem: 

( / , ) ( )
( / , )

( / )

j j

j

P y M X P M
P M y X

P y X
    (3) 

The integrated likelihood of the model is given thus; 
K2

1

( / ) ( / , ) ( )b b

b

P y X P y M X P M


   (4) 

The marginal likelihood of the model is given thus; 

0 0 0
0

( / , ) ( / , , , ) ( , , / ) d d dhj j j j j jP y M X P y h M P h M     


    (5) 

Thus, the model weighted posterior distribution for any statistic  . 

K2

1

( / , ) ( / , y, ) ( / X, y)j j j j

b

P y X P M X P M 


   (6) 

BMA gets the Posterior Inclusion Probability (PIP) of an explanatory variable by summing the Posterior Model 

Probabilities across those models that contain the explanatory variable. By comparing two models (js) using Bayes 

Factor, then we have: 
( 1)/2

/2 /2
1

( ) ( )
1 1

; 1
11 1

( ) ( )
1 1

j s
n n

n n

n

s
k k s i i

j s s s
js j s

jj s
j i i

j j

g
y RX y y y y y

g g g g
B ifk k

gg g
y RX y y y y y

g g


 

                           

 (7) 

 

2.1Priors in BMA 

The model prior P(Mj) is specified by the researcher which should reflect the prior belief about the model. Though 

there are other model priors such as binomial, beta-binomial and custom prior inclusion probabilities but for this 

research, the uniform model prior was used such that ( ) 1jP M   in the below expression: 

K

1
( ) ; ( ) 0

2
j jP M P M    (8) 

And 

1

( ) 1
M

j

j

P M


   (9) 

Following the rule of thumb as Zellner, (1986) assumed that covariance of the prior should be proportional to 

covariance expression 
* * 1( )j jX X
 

 of the posterior derived from the data, we have: 

0( ) 1P     (10) 

The probability for precision is  

1
( )P h

h
   (11) 

Thus, the parameter prior is; 
1 * * 1( / ) (0 , [ ] )j K j j jP h N h g X X  

�   (12) 
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Table 1: Summary of all existing Elicited g-Parameter Priors 

Prior Specification Description Source 

I UIP Similar to the Unit Information Prior but with mean zero 

instead of MLE. 

FLS, (2001a) 

Ii gj = 1/n The prior contains information approximately equal to that 

contained in a single typical observation. The resulting 

PMP are closely approximated by the Schwarz Criterion, 

BIC 

Raftey, (1995) 

Iii gj = kj/n They assign more information to the prior as regressors 

increases in the model, i.e. they induce more shrinkage in 

φj (to the prior mean of zero) as the number of regressors 

grows 

FLS, (2001a) 

Iv 
gj = 

1/
/jk

K n  
The prior information decreases with the number of 

regressors in the model 

FLS, (2001a) 

V 
gj = 1/ n  

They chose a smaller asymptotic penalty term for large 

models than in Schwarz criterion 

FLS, (2001a) 

vi 
gj = j /k n  

They induced more shrinkage as the number of regressors 

grows. 

FLS, (2001a) 

vii gj = 
2

1/ (max[n,K ])  

They preferred prior of Fernandez, Ley an Steel (2001), a 

mix of Priors 

FLS, (2001a) 

viii gj = 
31/ (ln )n  They choose this to mimic the Hannan-Quinn criterion 

with  

CHQ = 3 as n becomes large. 

Hannan-

Quinn, (1979) 

Ix gj = jln( 1) / lnk n  This decreases slower with sample size to have asymptotic 

convergence of InBjs to the Hannan-Quinn criterion with 

CHQ = 1 

Hannan-

Quinn, (1979) 

X 

gj = 

 
1/

1/
1

j

j

k

k








 

This was suggested by Laud and Ibrahim (1996) by using 

a natural conjugate prior structure, subjectively elicited 

through predictive implications. 

Laud and 

Ibrahim, 

(1996) 

xi gj = 
21/ k  This prior was suggested by the Risk Inflation Criterion 

(RIC) of Foster and George (1994) 

Foster and 

George, 

(1994) 

xii 2

( , )N V  �  
Data dependent prior,  φ = 2.85, V =2.58, λ = 0.28; if the 

R2 of the full model is less than 0.9,  

and φ=9.2, V =0.2, λ=0.1684 if the R2 if the full model is 

greater than 0.9. 

Raftey et al., 

(1997) 

xiii gj = 
21/ n  Prior to capture information for fast increasing sample 

sizes. 

Olubusoye & 

Akanbi (2015) 

Xiv 
gj = j /k n  

Prior to capture information for reducing number of 

regressors in a model compared to the sample size. 

Akanbi (2016)  

Xv gj = 
2/jk n  Prior to capture information for fast increasing sample 

sizes compared to the number of regressors in a model. 

Akanbi (2016) 

Xvi gj = 
2 /jk n  Prior to capture information for fast increasing number of 

regressors in a model compared to the sample size. 

Akanbi (2016) 

Xvii gj = 
33 / (ln )n  Prior to capture reduction of information by reducing the 

sample sizes but with a higher value of the numerator 

compared with the FLS. Its asymptotic convergence is 

Hannan-Quinn Criterion with level CHQ = 3 

Akanbi (2016) 

Source: Akanbi (2016) 

 

3.A Modified g-Parameter Prior 

g-class priors elicitation in BMA needs some basic conditions to follow such as non-negativity, Consistency and 

Asymptotic properties. The g specification should as well meet certain criteria for consistency of posterior model 

probabilities and the convergence of the Bayes factor as stated in Fernandez et al (2001a) (FLS). Though, this 

research is to improve the modified g- parameter priors (g = kj/n and kj/n2) by FLS, (2001a) and Akanbi, (2016) 

respectively. The model Ms ∈ M generates the sample ‘y’, the data throughout this section.  
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1

s 0y ; (0, )
ni s s s s sX N h       �   (13) 

Thus: 

lim ( / , ) 1s
n

P p M y X


  and lim ( / , ) 0j
n

P p M y X


 ; j sM M    (14) 

Nothing that, the first probability limit is with the respect to the true model Ms. 

The g-parameter prior takes the functional form of: 

gj = 
1

2

( )

( )

jt k

t n
 with 2lim ( )

n
t n


    (15) 

Where, t1(kj) is the numerator function, in most cases a constant or number of regressors in the model, t2(n) is the 

denominator function, usually the sample size used for simulation procedure and 2t (n) is the first order derivative 

of the function t2(n) 

Given, the assumption that Ms generates the Data, then if the following conditions 

(a) 
2

2

( )
lim 0

( )n

t n

t n


  

(b) 

2

lim [0, )
( )n

n

t n
   

(c) 1( )t  is an increasing function 

Now, we examine the conditions mentioned above with regard to our modified 

gj prior; 

gj =
1

2

( )
3, 4,5

( )

j j

a

t k k
a

t n n
     (16) 

Then, the conditions are satisfied as established below. 

(a) 

1 1

2

2

( )
lim lim lim lim 0

( )

a a

a an n n n

t n an an n a

t n n n n

 

   


     

(b) 

2

lim lim 0 [0, )
( ) an n

n n

t n n 
     

 (c) t1 (−) = kj (constant) is a non decreasing function. 

Thus, the seven Asymptotic properties of the modified g- parameter prior are now derived as follows: 

Case i: Distribution of the Modified Parameter Prior 
1

1 * *( / ) 0, ]jk j

j j ja

k
P h f N h X X

n





  
     

�   (17) 

Case ii: Posterior Probability of the Parameter using the Modified gj 

 3j 3 3( / y,M ) , , ( / , )jk

jj j jP f a V y M  �   (18) 

where 
1

* * *

3 1 ;3 a 5
j

j j j ja

k
Mean X X X y

n




   
      

  
  (19) 

and  
11

* *

3 3

3

1 ( ) ( ) 1

( / , ) ; 2
2

n n

j j j

j j ji ia a a

j

j j

k k k
y RX y y y y y X X

n n k n
V y M a

a





      

          
         


  (20) 
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Case iii: Marginal Likelihood of Model j using the Modified gj 

( 1)/2/2 1

1

1 ( ) ( )

( / y,X)

( ,X/ )

j

n n

nk

j j j

j i ia a a

j j

j M

j

j

k k k
y RX y y y y y

n k n n k
P M

P y M

 



    
               


  (21) 

Case iv: Bayes Factor for Models (j,s) using the Modified gj  
( 1) / 2

1

/ 2 / 2

1

1 ( ) ( )

1 ( ) ( )

j s
n n

n n

n

s s
k k s i ia a

j s s
js a a

j s j j

j i ia a

j

k k
y RX y y y y y

k k n n k
B

n k n k k k
y RX y y y y y

n n k






                                    

 (22) 

Case v: Posterior Model Probability 

The Mean and Variance-covariance Matrix are given thus; 

Mean 
*( / , ) jjj j j

E y M V X y      (23) 

Covariance  
2

( / , ) ; 2
2

j
jj j

d s
V y M V d

d
  


  (24) 

Where 
1

* *1
j

j j ja

k
V X X

n



  
   

  
  (25) 

And  
1

2

/
1 ( ) ( )

/ 1 n n

a

j j

j i ia a

j
j

k k n
y RX y y y y y

n k n
s

d


 

          (26) 

Where 
* * * 1 *( )j n j j j jRX I X X X X

    

Case vi: Relationship of the Modified gj to Information Criteria 

Since t2(n) = na, then we have: 

ln
lim

ln ln( )
2 2

js

s j as

j

B
P

k ky RX yn
n

y RX y

  
   

  (27) 

ln
lim

js

js

B
P

S
  (28) 

 

Case vii:Predictive Distribution for Model using the Modified gj 

 
* *( / , , )E

w w jP y X D X = 

1 1

* * * * * 1 *

, , ,*
1

1 1
/ 1, 1 , 1 1 ( ) ( / ,

M
j j E

s w w j j w j j j w j ja a
j j

k kn
f y n y X X X X X P M D X

n q n n


 

   



                      
 ) (29) 

Thus, the Log predictive score (LPS) is 

* * * *

1

1
LPS( , , ) ln ( / , , );

u
Q Q E

w j wj w j

j

X D X P y X D X D u
u 

      (30) 
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4.Simulation and Analysis 

The concept of simulation experiment here are borrowed from the literature of Bayesian Model Averaging like 

Raftery, Madigan and Hoeting (1997); Fernadez et al., (2001a); Lee and Steel (2007a); Eicher et al., (2009) and 

Akanbi, (2016). According to their performed simulations, a design matrix Z for the regressors is an n×K, K = 15 

is a fixed number of regressors for a sample size n, such that (z(1), z (2), · · · , z (10)) are drawn from N(0,1) and 

the subsequent five columns (z(11), · · · , z (15)) are built standard from;  

1 5( ,..., )z z (0.3 0.5 0.7 0.9 1.1 ) (1 1 1 1 1) +  ; (0,1)N �  (31) 

Leading to matrix 
* * *

1 15X ( ,..., )X X which fulfills 
* 0I X  using the models: 

Model 1 
* * * * *

(1) (5) (7) (11) (13)4 2 1.5 0.5y X X X X X          (32) 

Model 2 (Null Model) 
21 , (0, 6.25)y N    �   (33) 

It is indicated that Model 1 is explained by a more or less realistic situation where one third of the regressors 

intervene, while Model 2 is an extreme case without any relationship between regressors and response.  In this 

analysis, a uniform prior is used over the model space M using MCMC of 50,000 recorded drawings after a burn-

in 20,000 drawings and sample sizes of n=50,100,1000,10000,100000 with the model prior; 

1
( ) ; 1,2,3,...,

2
j K

P M j K    (34) 

 

5.Results and Discussions 

5.1Convergence and Implementation 

To examine the convergence of the chain, the empirical (MCMC) and the exact (Bayes factor) are compared. 

Though, the results are reported based on Bayes factors, the chain is run long enough to have PMP almost equal 

to those exact results. An important tool to assess this convergence is the correlation coefficient between these two 

components (Bayes Factors and Empirical relative frequencies of model visited). 

 

5.2Posterior Model Inference (PMI) 

The Posterior Probability assigned to the model that generated the data is one of the main indicators of performance 

of the Bayesian Methodology. It is expected that the true model should be high for small or moderate values of n 

that are likely to occur in practice. Generally, the posterior probability of this true model converges to 1 for large 

samples. The motive of any model used is to visit the only the true model which is one (1), meaning that; the 

smaller the visited model, the better it is. The Quartiles of the ratio between the posterior probability of the correct 

model and the highest posterior probability of the next model, in most cases this ratio tends to be far above unity 

to confirm the certainty of the true model.  

Table 2: Posterior Probability for Model 1 using the Modified g-Parameter Priors 
  n=50 n=100 n=1000 n=10000 n=100000 

PMI (1) Priors Mean SD Mean SD Mean SD Mean SD Mean SD 

PMP 3

j / nk  
0.5378 0.1994 0.7309 0.1985 0.8206 0.1645 0.8089 0.2002 0.9343 0.0631 

4

j / nk  
0.6095 0.2167 0.8205 0.1733 0.7958 0.1994 0.7432 0.1984 0.9460 0.0521 

5

j / nk  
0.6819 0.2150 0.8145 0.1836 0.7678 0.2116 0.8734 0.1657 0.9577 0.0411 

Model 

Visited 

3

j / nk  
4658.2 2214.7 2480.8 1840.8 1119.6 1289.1 1432.53 1634.8 321.61 524.14 

4

j / nk  
3420.6 2150.8 1388.5 1544.9 1618.7 1674.9 2060.61 1787.3 201.14 182.42 

5

j / nk  
2804.5 2130.0 1424.7 1499.1 2017.0 1874.0 1186.93 1595.9 46.31 132.18 

  Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 

Quartile 

Models 

Ratio 

3

j / nk  
0.45 0.87 0.61 0.96 0.74 0.95 0.7 0.98 0.75 0.99 

4

j / nk  
0.45 0.81 0.67 0.97 0.63 0.97 0.57 0.93 0.77 1.00 

5

j / nk  
0.49 0.89 0.65 0.97 0.57 0.96 0.77 0.99 0.8 6.3 

It can be affirmed from the table above that as sample size n increases, posterior probability of this true model 
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converges to 1 whereby the best modified g-parameter prior (gj =
5/jk n ) was concluded to be the best for the 

Model 1 with the estimated value of 0.9577  1. From the records means and standard deviations of the number 

of visited models in the model 1 with 50 ≤ n ≤ 100, 000 of sample sizes, it can be deduced that the g-parameter 

prior (gj =
5/jk n ) gives the best result for the Model 1 with the least value of 46.31 when n = 100, 000 (large). 

The Quartiles of ratio of the true model 1 posterior probability established the best prior with Q3 value of 6.3. 

Table 3: Posterior Probability for Model 2 using the Modified g-Parameter Priors 
  n=50 n=100 n=1000 n=10000 n=100000 

PMI (1) Priors Mean SD Mean SD Mean SD Mean SD Mean SD 

PMP 3

j / nk  
0.8342 0.1086 0.9331 0.0467 0.9988 0.0016 0.9999 0.0003 1.000 0.000 

4

j / nk  
0.9688 0.0438 0.9896 0.0363 0.9999 0.000 1.000 0.000 1.000 0.000 

5

j / nk  
0.9963 0.0081 0.9991 0.0048 1.000 0.000 1.000 0.000 1.000 0.000 

Model 

Visited 

3

j / nk  
1720.8 1149.1 671.58 471.43 32.93 15.37 13.69 3.94 12.68 2.93 

4

j / nk  
316.58 419.85 121.01 340.47 13.43 1.99 12.73 1.48 11.28 1.62 

5

j / nk  
60.01 83.1 24.72 43.97 12.81 1.52 12.71 1.46 10.41 1.32 

  Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 

Quartile 

Models 

Ratio 

3

j / nk  
2.23 8.50 2.9 19.1 1.4 23.2 12.5 236.2 13.1 235.8 

4

j / nk  
11.4 56.5 13.2 173.4 1.4 23.2 12.5 234.7 13.8 240.2 

5

j / nk  
64.7 488 7.59 183.3 1.4 23.2 12.5 234.7 14.0 241 

It is indicated from the table above that as sample size n increases, posterior probability of this true model 

converges to 1 whereby the best g-parameter prior (gj =

5/jk n
) was concluded to be the best for the Model 2 with 

the estimated value of exactly 1 from when n = 1, 000 to n = 100, 000. The means and the standard deviations of 

the number of visited models in the model 2 with 50 ≤ n ≤ 100, 000 of sample sizes established that the g-parameter 

prior (gj =

5/jk n
) gives the best result for the Model 2 with the least value of 10.41 when n = 100, 000. From the 

quartiles of the ratio between the posterior probability of the correct model and the highest posterior probability 

of the next model in the Model 2, it is highly shown that all the g-parameter priors (gj =
/ a

jk n
; ∀a = 3, 4, 5) 

ascertained the true model 2 with the highest values range from Q3 = 8.5 to Q3 = 241 when n = 50 to n = 100, 000 

as it far above unity. 

5.2.1 Posterior Inclusion Probability (PIP) 

This section presents the means and standard deviations of the posterior probabilities of including each of the 

regressors (1, 5, 7, 11 and 13) as indicated in the above equation of model 1. It is expected that as sample size (n) 

increases, those means of these regressors also tend to 1. It gives the degree of errors when the posterior model 

probability is allocated to the wrong sampling model.  
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Table 4: Means and S.Ds of the Posterior Probabilities of Model 1 Regressors with n = 50, 1000 and 100,000 

Priors  gj =
3

j / nk  gj =
4

j / nk  gj =
5/jk n  

 

 

 

 

 

 

 

 

n=50 

Regressors Mean S.D Mean S.D Mean S.D 

*1 0.933 0.164 0.809 0.295 0.637 0.397 

2 0.017 0.164 0.003 0.295 0.001 0.397 

3 0.038 0.164 0.011 0.295 0.003 0.397 

4 0.060 0.164 0.024 0.295 0.010 0.397 

*5 0.07 0.164 0.012 0.295 0.001 0.397 

6 0.014 0.164 0.002 0.295 0.000 0.397 

*7 0.660 0.164 0.419 0.295 0.216 0.397 

8 0.013 0.164 0.002 0.295 0.000 0.397 

9 0.012 0.164 0.002 0.295 0.000 0.397 

10 0.021 0.164 0.003 0.295 0.000 0.397 

*11 0.637 0.164 0.554 0.295 0.426 0.397 

12 0.051 0.164 0.036 0.295 0.035 0.397 

*13 0.200 0.164 0.167 0.295 0.123 0.397 

14 0.040 0.164 0.027 0.295 0.024 0.397 

15 0.046 0.164 0.027 0.295 0.017 0.397 

 

 

 

 

 

 

 

 

n=1,000 

Regressors Mean S.D Mean S.D Mean S.D 

*1 0.992 0.045 0.936 0.183 0.743 0.354 

2 0.000 0.045 0.000 0.183 0.000 0.354 

3 0.001 0.045 0.000 0.183 0.000 0.354 

4 0.007 0.045 0.003 0.183 0.000 0.354 

*5 1.000 0.005 1.000 0.003 1.000 0.354 

6 0.000 0.045 0.000 0.183 0.000 0.354 

*7 0.771 0.005 1.000 0.003 1.000 0.354 

8 0.000 0.045 0.000 0.183 0.000 0.354 

9 0.000 0.045 0.000 0.183 0.000 0.354 

10 0.000 0.045 0.000 0.183 0.000 0.354 

*11 0.850 0.045 0.801 0.183 0.636 0.354 

12 0.008 0.045 0.011 0.183 0.004 0.354 

*13 1.000 0.005 1.000 0.003 0.093 0.354 

14 0.012 0.045 0.007 0.183 0.002 0.354 

15 0.007 0.045 0.017 0.183 0.002 0.354 

 

 

 

 

 

 

 

 

n=100,000 

Regressors Mean S.D Mean S.D Mean S.D 

*1 1.000 0.000 1.000 0.000 1.000 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.001 

3 0.000 0.000 0.000 0.000 0.000 0.001 

4 0.000 0.000 0.000 0.000 0.000 0.001 

*5 1.000 0.000 1.000 0.000 1.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 0.001 

*7 1.000 0.000 1.000 0.000 1.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.001 

9 0.000 0.000 0.000 0.000 0.000 0.001 

10 0.000 0.000 0.000 0.000 0.000 0.001 

*11 1.000 0.000 1.000 0.000 1.000 0.000 

12 0.000 0.000 0.000 0.000 0.000 0.001 

*13 1.000 0.000 1.000 0.000 1.000 0.000 

14 0.000 0.000 0.000 0.000 0.000 0.001 

15 0.000 0.000 0.000 0.000 0.000 0.001 

It is indicated from the Table above that regressors 1, 7 and 11 are close to 1 while other regressors 5 and 13 

misbehaved with sample size n = 50 for the Model 1 of the three g-parameter priors (gj = / a

jk n ; ∀a = 3, 4, 5); 

with sample size n = 1,000 for the Model 1, all regressors (1, 5, 7, 11 and 13) are close to 1 but regressors (5, 7 

and 13) are equally 1 in terms of mean of the three g-parameter priors (gj = / a

jk n ; ∀a = 3, 4, 5) and for n=100,000 

it is shown that all the regressors (1, 5, 7, 11 and 13) are equal to 1 in terms of mean for the Model 1 of the three 
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g-parameter priors (gj = / a

jk n ; ∀a = 3, 4, 5). 

This establishes that highest sample size yields the best result in this case and hence, the best modified g -

parameter prior is gj = 
5/jk n . 

 

5.3 Predictive Inference (PI)  

This section deals with predictive inference via the Log predictive Score (LPS) in terms of point and overall 

predictions for some samples based on the values of the regressors 
*

wX ; for model 1, w=19 different vectors of 

the K = 15 regressors. The below Table depicts the predictions via log predictive score (LPS) for model 1 via the 

100 samples (y, X∗).  

Table 5: Medians of LPS (
* *
, ,wX y X ): Point and Overall Predictions using the modified g-parameter priors (gj 

= / a

jk n ; ∀a = 3, 4, 5) 

  n=50 n=100 n=1000 n=10,000 n=100,000 

 Priors *

minX  
*

minX  
*

minX  
*

minX  
*

minX  

 

Point Prediction 
gj =

3

j / nk  2.30213 2.40094 2.24929 2.39517 2.42331 

gj =
4

j / nk  2.35721 2.40094 2.24929 2.39517 2.42331 

gj =
5/jk n  2.35721 2.40094 2.38751 2.40113 2.42331 

 

Overall 

Prediction 

gj =
3

j / nk  2.213 2.521 2.187 2.433 2.331 

gj =
4

j / nk  2.236 2.513 2.156 2.439 2.331 

gj =
5/jk n  2.247 2.522 2.166 2.411 2.335 

It can be established from the above Table that the vector of regressors that lead to the minimum value for 

the mean (100 replication) of the sampling model 1 for the modified priors (gj = / a

jk n ; ∀a = 3, 4, 5) are all close 

to the threshold of 2.335 as specified for BMA models, especially when n = 50. In the same vein, the above Table 

presents the overall predictive performance via the LPS (
* *
, ,wX y X ) for the 19 different values of 

*

wX  and the 

100 replications of (y, X∗). Obviously, all the elicited g-parameter priors showed well predictive behaviour for n 

= 100, 000, but the best of all is the modified prior (gj = 
5/jk n ) with the exact value of threshold i.e. 2.335 as 

specified for BMA models. 

  
Figure 1: Point Prediction with the Modified g-priors for n=50 and n=100 
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Figure 2: Point Prediction with the Modified g-priors for n=1,000 and n=10,000 

 

 
Figure 3: Point Prediction with the Modified g-priors for n=100,000 

 

6.Application of BMA with the Best Modified g-Parameter Prior (gj=
5

j / nk ) to Water Pollution in Ibadan 

Water pollution is the contamination of water bodies, usually as a result of human activities. Water is considered 

polluted when unwanted materials with potentials to threaten human and other natural systems find their ways into 

water sources or reserved fresh water in homes or industries. Therefore, the BMA method is applied to the water 

pollutants and its pollution level to account for the uncertainties embedded in both the parameters and model using 

the best modified g-parameter prior, gj = 
5/jk n with the water pollution level model given below: 

WP L = 0  + 1 DO + 2 T UR + 3 COL + 4 pH + 5 ALK + 6 TH + 7 CAH + 8 CL+ 9 FE + 10 SI + 

11 SOL + 12 DS + 13 SS + 14 COD +     (35) 

where   is a stochastic error term, independently and identically distributed as 
2(0, )N  with the variables 

Water Pollution level (WPL)as the regressand, Dissolved Oxygen (DO), Turbidity (TUR), Colour (COL), PH, 

Alkalinity (ALK), Total Hardness (TH), Calcium Hardness (CAH), Chloride (CL), Iron (FE), Silica (SI), Total 

Solids (SOL), Dissolved Solids (DS), Total Suspended Solids (SS) and Chemical Oxygen Demand (COD). 
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Table 6: Posterior Probabilities of Including each of the Regressors (PIP) in the Water Pollution Level 

Regressors PIP Post Mean Post S. D. Cond. P. Sign Index 

DS 0.0614 0.0476 0.1895 1 12 

Sol 0.0610 0.0475 0.1918 1 11 

Alk 0.0380 0.0220 0.1125 1 5 

CaH 0.0031 0.0048 0.0947 1 7 

Cl 0.0005 -0.0006 0.0887 0 8 

pH 0.0005 29.0408 7.9941 1 4 

TH 0.0003 0.9765 1.2543 1 6 

DO 0.0000 0.0000 0.0000 NA 1 

TUR 0.0000 0.0000 0.0000 NA 2 

Col 0.0000 0.0000 0.0000 NA 3 

Fe 0.0000 0.0000 0.0000 NA 9 

Si 0.0000 0.0000 0.0000 NA 10 

SS 0.0000 0.278 0.0000 NA 13 

COD 0.0000 0.000 0.0000 NA 14 

Table 6 presents the means and standard deviations of the posterior inclusion probabilities (PIP) of each of 

the regressors in the water pollution level. It is indicated that the dissolved solids (DS) with PIP of 6.14% is very 

important if modelling water pollution of Asejire River in Ibadan. 

Table 7: The MCMC and the Exact Posterior probabilities for the First Best 5 Models 

Models PMP (Exact) PMP (MCMC) Predictors 

0001 0.0704614 0.0705800 DS 

0008 0.0608948 0.0513800 SOL 

0204 0.0350687 0.0426200 ALK and DS 

0004 0.0240914 0.0250200 DS 

0284 0.001588 0.0025200 DS, CaH, ALK 

It is shown from the table above that the best model Dissolved Solid (mg/l) has PMP of 7.0% among the 1186 

models visited. 

 
Figure 4: Posterior Model Probabilities and Model Size  

It can be observed from the above figure that PMP (Exact) is closed to PMP (MCMC) due to the statistics of 

shrinkage factor which is exactly 1. 
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Figure 5: Marginal Density for Dissolved Solid 

From the above figure, DS appeared as the most important pollutant in the water pollution model with PIP of 

6.14%. 

 
Figure 6: Cumulative Model Probabilities with the Signs of their Regressors 

Figure 6 shows the cumulative model inclusion probabilities based on best 14 models. It also depicts the 

inclusion of a regressor with its sign in the model selection process. This image plot is based on the Bayes factor 

of the MC3 simulator. The blue colour means a positive sign. It is confirmed that the selected best model with PMP 

of 97% includes only the dissolved solids (DS). 

 

7.Conclusion 

In this paper, the elicited modified g priors need only the choice of one scalar hyper parameter known g-class. The 

consistencies conditions and asymptotic properties for the modified g-parameter priors were derived. The 

empirical results on both posterior model and predictive inferences indicate that the modified prior gj = 
5/jk n

was the best out of the three g modified parameter priors considered in the BMA technique. This implies that, the 

higher the power of the sample size (n), the more efficient and the g parameter prior. The application of the best g 

prior to modelling Asejire River shows that the effect of dissolved solids (mg/l) and total solids (mg/l) as water 

pollutants in Asejire River, Ibadan, Oyo State are very important. Thus, the two water pollutants are recommended 

in modelling Asejire River and also to used the elicited modified parameter prior, gj=
5/jk n  combined with a 

uniform model prior for model selection or Bayesian model averaging in Asojire River model whenever 

informative prior is not available for both small and large samples. 
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