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Abstract 

Present Lake Environment of Hartbeespoort Dam was evaluated from Geochemistry of bottom Sediment. Ten (10) 

bottom sediment samples were collected across the entire Lake. The geochemical composition of the sediment 

samples was determined using X-ray fluorescence (XRF); trace and major elements determined includes As, Pb, 

Zn, Cu, Ni, Cr, Fe2O3, TiO2, MnO, CaO and P2O5. The trace elements concentrations of the sediment were grouped 

into three zones base on their spatial distribution. The Western zone of the lake shows a remarkable enrichment in 

Nickel (Ni) and Chromium (Cr) and could be associated with geogenic source. However high enrichment of 

phosphate (P2O5) observed in the same zone could be attributed to anthropogenic source, due to agricultural 

activities on the catchment of Magalies River. Moderate enrichment of As, Zn, Cu, Cr and Pb was recorded in the 

central zone and could be ascribed to entrapment by fine-grained organic and Fe-rich clay deposit in the central 

part of the lake; this was showcased by the strong positive correlation between the trace elements and Fe2O3. As, 

Zn, Pb and Cu were highly enriched in the South – Eastern zone and anthropogenic source could be responsible 

for the enrichment due to the influence of the Crocodile River. The average concentration of As, Pb, Zn, Cu, Ni 

and Cr in the sediment were evaluated by comparison with the upper continental crust (UCC), Shale standard 

(Turekian and Wedepohl, 1961) and Sediment quality guidelines (SQG); the result indicates that As, Pb, Zn, Cu 

and Cr in the study area were above the lowest effect level (LEL) but below the severe affect level (SEL) which 

shows that the impact on biota is moderate. However, Nickel (Ni) was above the severe effect level and could 

therefore have severe effect on the aquatic environment. 
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1. Introduction 

Since ancient civilization Freshwater lakes are acknowledged as centres for cultural development and urbanization, 

these fresh water bodies are increasingly faced with threat of pollution from agricultural activities, 

industrialization, waste generation and other related activities as a result of population density (Forstner & 

Wittmann, 1979). South Africa (SA) is a semi-arid nation with limited amount of rainfall per annum. Its fresh 

water resources are relatively scarce and extremely limited when considered on a relative global scale. To check 

the impending water crises in the country artificial Lakes and impoundments were created through erection of 

Dams across most major rivers (Department of water affairs (DWA) 2004). Apart from Eutrophication; Chemical 

and Heavy metal pollution of reservoirs and rivers of SA is of great concern especially where waste water effluents 

and runoff from urban areas constitutes the significant component of the water balance (Nyirenda et al., 2011; 

Harding et al, 2010; Adebayo et al, 2014). 

Sediments are not just carriers but also potential sources of contaminants in aquatic systems (Fonseca, 

Patinha, Barriga & Morais, 2004). Metals trapped within the sediment can be reintroduced into the aquatic system 

in a bio-available form through remobilization processes commonly triggered by change in physicochemical 

conditions such as pH, redox potential, concentration of organic complexing agents and ionic strength (Gambrell 

et al., 1991; Calmano et al., 1993). 

Heavy metals are very important in ecological assessment due to their general toxicity and their non-

biodegradable nature (Forstner, 1990). Research have shown that the composition of top sediment layers reflects 

the current quality of the overlying natural water body. The evaluation of heavy metals concentration in sediments, 

the physical and chemical forms in which they exist provides information that is crucial in risk assessment, 
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conservation and management of natural water system. The focus of this research therefore is to evaluate the Lake 

environment from geochemistry of the bottom sediment. 

 

2.0 The Study Area 

Hartbeespoort dam can be described as a warm, monomictic, hypertrophic Lake, located on Longitude 

27°51'06.75"E and Latitude 25°45'00.64"S, and about 35km west of Pretoria and North of Johannesburg; 

Sandwiched between the Daspoort Hills on the southern flank and the Magaliesberg mountains on the northern 

side (Robarts et al., 1982; Scott, Seaman, Connell, Kohlmeyer & Toerie, 1977). The Dam is in the North-west 

province of South Africa, close to the border of the Gauteng province. Hartbeespoort Lake is a foremost leisure 

resort in the province. The lake has 195 x 106 m3 storage capacity, and occupies a total area of 20 km2 with mean 

depth of 9.6m. The Dam is situated in the Crocodile River catchment, downstream of the confluence of the 

Crocodile, Jukskei and Hennops Rivers which drains the eastern areas of the catchment. 

 

2.1 Drainage System 

Rivers flow in the study area seasonally; high volume of flow is recorded during the raining season of October to 

March. The Crocodile River supplies about 90% of the annual inflow into the lake, the second river with the 

highest inflow is the Magalies River which drains mostly pastoral area used for grazing, agriculture and nature 

reserves (NIWR, 1985). Minor tributary stream systems that also supply the Dam includes the Swartspruit and 

Leeuspruit. The bathymetry and dendritic morphometry of the lake can be attributed to the inflows from the 

aforementioned rivers. Crocodile river has a catchment area of 29,349 km2 and drains a densely industrialized and 

urbanized area of the Witwatersrand (Greater Johannesburg Metropolitan Area) as such the return flows especially 

during the dry season are largely of treated sewage and industrial effluents, this contribute immensely in the supply 

of noxious waste to the Dam (DWS, 2016). 

 
Figure 1: Hartbeespoort Dam and its catchment rivers (Modified after Zohary, 1987) 
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2.2 Geology of the Study Area 

 
Figure 2: Geological Map of the study area, Council for Geosciences South Africa (ArcGIS, 2018). 

Geologically the study area is dominated by rocks of the Pretoria Group which is a subgroup of the Transvaal 

Sequence. Outcrop in the study area includes the Magaliesberg, Silverton, Hekpoort, Daspoort and Timeball 

Formations, they run from the northeast to the southwest through the study area and are composed of 

predominantly quartzite and shales. The dominant landforms that define the geomorphology of the area is the 

quartzite ridges (Magaliesberg and Witwatersberg), they stand out due to their resistant to weathering. The less 

resistant shale (Silverton and Timeball formation) forms the Valley between the quartzite ridges which host the 

Hartbeespoort Dam. Overlying part of the shales is undifferentiated surface deposit (Eriksson et al., 1991) 

 

3.0 Theoretical Background 

3.1 Sources of Heavy Metals 

The elemental composition of Lake Bottom sediment depends on the morphology, lithology, and structural settings 

of the catchment and human activities around it. Generally, the source of Heavy metals to the environment either 

aquatic or terrestrial can be grouped into two (i) Natural sources (ii) Anthropogenic sources (Callender, 2003). 

3.1.1 Natural Sources 

The major natural source of heavy metal in the environment is weathered and eroded crustal material and from 

volcanic eruption (This includes ejection of gases into the earth’s atmosphere), these two major sources accounts 

for approximately 80% of natural source of heavy metals in the environment, while other natural sources such as 

wildfire and biogenic sources accounts for the remaining 20% (Alloway, 1995, Callender, 2003). 

3.1.2 Anthropogenic Sources 

The principal sources of Anthropogenic or manmade heavy metals into the environment includes mining and 

smelting. These activities release Heavy metals into the aquatic environment through tailings and into the earth’s 

atmosphere through metal – enriched dust emission from smelting. Other major anthropogenic sources of metals 

to the atmosphere includes fossil – fuel combustion, cement production, phosphate mining and municipal waste 

incineration, these metal contents in the atmosphere often return to the aquatic environment through rainfall and 

runoff (Callender, 2003). Others sources of anthropogenic heavy metals to the aquatic environment includes 

sewage sludge, agricultural activities (commercial fertilizers and pesticides, animal waste) and waste water 

discharge from treatment plants (Nriagu and Pacyna, 1988). 

 

3.2 Heavy Metals in Freshwater Environments 

In fresh water environment like other aquatic system trace metal often exist as free or complex ions within the 

water body or adsorbed onto the solid. Sedimentation is considered one of the processes that controls the 

distribution and partitioning of heavy metals in aquatic systems (Forstner et al., 1986). Heavy metals become 
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trapped into the bottom sediment through Adsorption, Ion exchange, Precipitation and Biological activities.  

 

3.3 Remobilisation of Heavy Metals in Aquatic Environment 

Heavy metals are frequently remobilised in reaction to change in environmental condition and are therefore not 

permanently bound within the sediment fractions (Fergusson, 1990). The environmental factors that promote the 

remobilisation of heavy metals in aquatic environment includes change in pH and redox conditions of water body 

and the occurrence of Fe – Mn oxyhydroxides (John and Leventhal, 1995). 

 

3.4 Sediment as a Marker of Heavy Metals Pollution 

The role and importance of sediments in evaluating the quality of an aquatic system is best illustrated in lacustrine 

environment (Zullig & Schweiz, 1956). Geochemical analysis of Lake Bottom sediments plays a great role in 

determining the provenance, distribution extent and likely hazard of heavy metal contamination (Forstner, 1976). 

Sediments samples from aquatic environment provide means of evaluating the various influences from natural and 

man-made sources because aquatic sediments are known to document historical events of pollution caused by 

natural phenomenon, industrial development and population growth.  

Studies have shown that water sample analysis can only indicate the intensity of heavy metal concentration 

at the time of sampling (Wittmann & Forstner, 1975). Fine particle sediment (< 2μ) are considered reliable archives 

of heavy metal pollution in aquatic environment (Forstner and Muller, 1974). The concentration of trace metals in 

sediments and suspended matter often exceed those in aqueous solution by factor of 1:100, sediment analysis can 

therefore be used as a tool to identify sources of short-term pollution from anthropogenic sources in aquatic 

environment (Wittmann & Forstner, 1975). 

 

4.0 Methodology 

4.1 Sediment Sampling 

Bottom sediment samples were taking in March, 2017. A total of 10 samples (n = 10) were collected across the 

entire lake using dredging method with the aid of a boat. The depth of the sampling stations ranges between 7 and 

22m. The sampling stations were located strategically on western, central and south-eastern part of the lake to 

target sediments from the two major inflows into the dam, which are the Crocodile and the Magalies River. The 

sediment samples were packaged in polyethylene bags and transported to Shimane University Japan for XRF 

analysis. 

 

4.2 Analytical Procedures 

Approximately 50g of each sample were placed in a Pyrex beaker and covered with aluminium foil to prevent 

contamination. The samples were oven dried at a temperature of 110°C for 48hours. Using an automatic agate 

mortar and pestle grinder, the samples were ground for about 20 min to breakdown aggregates within the sediment 

into fine powder. The powdered samples were then compressed into briquettes following the Ogasawara (1987) 

method by applying a force of 200kn for 60s. The concentration of selected major elements such as TiO2, Fe2O3, 

MnO, CaO and P2O5 (wt%) and trace element such as As, Pb, Zn, Cu, Ni, and Cr, as well as Zr, Th, Sc and TS 

(ppm) in the sediment were determined by XRF (X-ray fluorescence) in the Department of Geosciences, Shimane 

University, using RIX-2000 spectrometer (Rigaku Denki Co. Ltd) which is equipped with a Rh-anode X-ray tube. 

Average errors for all elements analysed are less than ±10% on a relative scale. 
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Figure 3: Satellites image of the lake showing the sediment sampling stations and the major inflows. 

 

4.3 Sediment Characteristics 

Sediment samples collected from the lake can be described as very soft, blackish and slightly silty mud (Fine clay), 

except for the sample (n = 9) which was collected at the inflow area of the Crocodile River, which was brownish 

mud with a foul smell. The sediment which can be described texturally as fine grained, is rich in organic matter. 

The clay rich sediment is often layered by Fe (oxy) hydroxides which act as transporters of metallic pollutants by 

adsorption (Bibi et al., 2006). 

 

5.0 Result 

5.1 Concentration of Elements in the Sediment 

The elemental compositions of the bottom sediment showing the abundance of selected major and Trace elements 

are summarized in Table 5.1; The range between the values of the geochemical data varies considerably which 

can be attributed to the source of the sediment to Dam, and the kind of pollutants transported by the catchment 

rivers to the impoundment. 

 

5.2 Spatial distribution of elements Concentration across the study area 

The concentration of metals in the bottom sediment of Hartbeespoort Dam, represented graphically to show the 

spatial distribution of the enrichment in the study area indicates that the heavy metal enrichment can be divided 

into three zones; (i) The western zone (ii) The Central zone (iii) The south-eastern zone. This is based on the 

sampling pattern of this study. 

5.2.1 The Western Zone 

Nickel (Ni) and Chromium (Cr) were enriched in the western zone of the Dam; these enrichments could be 

associated with geogenic source because Magalies River flowing into the dam from the western zone and its 

tributaries (Skeerpoort and Leeuspruit Rivers) transport sediments rich in these metals (Wittmann & Forstner, 

1975). Phosphate (P2O5) was enriched also in the western zone, this can be attributed to Anthropogenic source 

because the Magalies River and its tributaries drains mostly pastoral area used for grazing, agriculture and nature 

reserves (NIWR, 1985). 
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Table 5.1 Geochemical composition of Hartbeespoort Dam Bottom sediment 

 HTBD = Hartbeespoort Dam, No = Number 

5.2.2 The Central Zone 

The central zone down to the wall of the Dam is the deepest part of the impoundment, it hosts very fine sediments 

rich in clay at its bottom. As, Zn, Cu, Pb, and Cr were all moderately enriched in this zone, the trend of the 

enrichment however was towards South-eastern zone of the Dam with exception Cr which enrichment trend is 

towards the western zone. Ni was exceptionally very high at the central zone. These enrichments in the central 

zone can be attributed to Fe-rich clay deposit in the deepest part of the impoundment. Fe – oxide is considered an 

excellent trapper of trace metals (Diallo & Ishiga, 2016).  

5.2.3 The South – Eastern Zone 

The south – eastern zone of the dam which is the inflow route of the Crocodile River, display a striking enrichment 

of As, Zn, Pb and Cu. Wittmann &Forstner (1975) reportes that the sediments of the crocodile river are enriched 

in Zn, Pb, Hg and Cd and attributed the enrichment to anthropogenic source. The enrichment of these 

environmentally sensitive elements (As, Zn, Pb and Cu) in the south – eastern         zone of the Dam could therefore 

be attributed to human induced activities. 

Table 5.2 Correlations between the elements in the sediment of Hartbeespoort Dam 

 Bold values highlight strong correlations. 

 

Sample     

No: 
  Trace elements (ppm) 

 

 

 
  Major elements (wt %) 

 

 As Pb Zn Cu Ni Cr V  TS TiO2 Fe2O3 MnO CaO P2O5 

 
              

HTBD 1 4 14 70 17.1 59.7 471 73.9  3440 0.45 2.39 0.08 2.2 0.46 

HTBD 2 4.4 11 44 17.4 64.3 538.5 104.6  1723 0.69 4.89 0.1 0.96 0.2 

HTBD 3 3.3 9.5 42 15.7 71.8 686.6 100.6  1483 0.62 4.47 0.09 0.97 0.13 

HTBD 4 7.2 18 102 59.3 138.7 670.6 199.9  4851 0.76 8.49 0.17 3.45 0.45 

HTBD 5 7.8 23 127 80.7 151.2 616.5 223.7  4689 0.91 9.77 0.2 5.42 0.44 

HTBD 6 7.1 21 118 67 141.6 617.1 209.7  4577 0.89 8.62 0.2 6.75 0.41 

HTBD 7 8.4 38 178 86.1 156.2 512.5 252.7  3854 0.97 11.2 0.24 1.71 0.25 

HTBD 8 8.5 43 204 90.4 158.8 475.3 247.6  4349 1.04 11.29 0.26 1.21 0.22 

HTBD 9 5.8 34 160 53.9 75.7 241.3 114.3  1342 0.66 5.09 0.13 0.98 0.17 

HTBD10 10.2 57 287 107.2 134.5 371.7 204.2  1426 1.01 9.85 0.16 1.06 0.23 

  As Pb Zn Cu Ni Cr V TS TiO2 Fe2O3 MnO CaO P2O5 

As 1.00             
Pb 0.85 1.00            
Zn 0.89 0.99 1.00           
Cu 0.99 0.87 0.90 1.00          
Ni 0.87 0.55 0.61 0.88 1.00         
Cr -0.22 -0.62 -0.57 -0.25 0.19 1.00        
V 0.86 0.59 0.63 0.89 0.99 0.14 1.00       
TS 0.34 -0.09 -0.02 0.33 0.68 0.49 0.62 1.00      
TiO2 0.90 0.73 0.75 0.91 0.90 -0.02 0.93 0.34 1.00     
Fe2O3 0.90 0.66 0.69 0.91 0.97 0.08 0.99 0.51 0.97 1.00    
MnO 0.79 0.57 0.59 0.83 0.94 0.05 0.96 0.64 0.88 0.94 1.00   
CaO 0.18 -0.25 -0.14 0.19 0.44 0.49 0.37 0.71 0.19 0.26 0.32 1.00  
P2O5 0.11 -0.27 -0.17 0.06 0.28 0.37 0.18 0.76 -0.09 0.06 0.12 0.76 1.00 
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Figure 4 (a,b,c,d): Concentration of As, Zn, Pb and Cu in bottom sediment of HTBD, Metal Values of Shale 

standard (Turekian and Wedepohl, 1961) is used as relative scale. 

 

 
Figure 5 (a,b,c): Concentration of Ni,Cr and P2O5 in bottom sediment of HTBD, Metal Values of Shale standard 

(Turekian and Wedepohl, 1961) is used as relative scale for Ni and Cr while Metal Values of Shale standard 

(PAAS) is used as relative scale for P2O5 (Condie, 1993). 

 

5.3 Comparison of Metal Concentration with Sediment Quality Guidelines 

Studies have shown that high concentration of heavy metals in bottom sediment of aquatic environment can cause 

adverse biological effect, without the quality of water necessarily exceeding the quality standard (Bibi et al., 2006). 

In this study attempts were made to establish the present condition of the aquatic environment by comparing the 

As, Pb, Zn, Cu, Ni, and Cr concentration in the Hartbeespoort Dam (Table 5.2) with upper continental crust (UCC), 
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the shale standard by Turekian and Wedepohl (1961) and sediment quality scale developed by the New York State 

Department of Environmental Conservation (NYSDEC, 1999). 

The NYSDEC (1999) developed the lowest effect level (LEL) and the severe effect level (SEL) benchmark 

or scale. Based on this scale if the LEL is exceeded, the negative impact of the metal on biota is considered 

moderate; if the SEL is exceeded, the impact on biota is considered severe. 

The average concentration of As, Pb, Zn, Cu, Ni, and Cr in the bottom sediment of study area (Table 5.2) is 

greater than the upper continental crust (UCC) scale and the shale standard by Turekian and Wedepohl (1961). In 

terms of effect on the aquatic biota As, Pb, Zn, Cu and Cr were above the lowest effect level (LEL) but below the 

severe effect level, the impact of these metals on the biota could be considered moderate. However, the average 

concentration of Ni (115.4ppm) was twofold the severe effect level and could therefore have severe effect on the 

biota. 

Table 5.2 Heavy metal concentration in the bottom sediment of the study area (ppm) compared to Sediment quality 

standards. 

 

Metals 

 

UCCa 

 

T & Kb 

 

LELc 

 

SELd 

 

HTBD 

As 1.5 1.6 6 33 6.65 

Pb 20 20 31 110 26.85 

Zn 71 95 120 270 133.2 

Cu 25 45 16 110 59.48 

Ni 20 68 16 50 115.4 

Cr 35 90 26 110 520 

a Upper continental crust (UCC; Taylor and McLennan, 1985) 
b Turekian and Wedepohl, 1961 (Shale Standard) 
c Lowest effect level (LEL, NYSDEC 1999) 
d Severe effect level (SEL; NYSDEC 1999) 

 HTBD = Hartbeespoort Dam. 

 

6. Conclusion  

The Heavy metal concentration in Hartbeespoort dam was determined through bottom sediment sample analysis. 

The bottom sediment is in a reduced state due to the stratified nature of the lake. The trace elements concentrations 

of the sediment were grouped into three zones base on their spatial distribution. The Western zone of the lake 

shows a remarkable enrichment in Nickel (Ni) and Chromium (Cr) and could be associated with geogenic source. 

However high enrichment of phosphate (P2O5) observed in the zone could be attributed to anthropogenic source, 

due to agricultural activities on the catchment of Magalies River which flows into the dam through the western 

zone. Moderate enrichment of As, Zn, Cu, Cr and Pb was recorded in the central zone and is ascribed to entrapment 

by Fe-rich clay deposit in the central part of the lake. As, Zn, Pb and Cu were highly enriched in the South – 

Eastern zone and anthropogenic source could be responsible for the enrichment due to the influence of the 

Crocodile River. 

The sediment quality guidelines used in this study indicates that As, Pb, Zn, Cu and Cr in the study area were 

above the lowest effect level (LEL) but below the severe affect level which shows that the impact on biota is 

moderate. However, Nickel (Ni) was above the severe effect level and could therefore have severe effect on the 

Biota. 

Fundamentally the result of this research showcases the environmental condition of the Hartbeespoort Dam, 

by providing important information regarding the heavy metal concentration of the Dam which could be used by 

the authority concern to assess the potential risks and the remobilization tendency of the trace metals in the Dam. 
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