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Abstract  

Drought stress is one of abiotic factor that threat crops economic part directly and indirectly; hence, result great 
yield losses in the world and become predominant cause for food security problem especially in developing 
countries. Pear millet is staple food crop used in different countries. It is widely produced around drought-prone 
arid and semi-arid regions where inter and intera seasonal rainfall variation of the areas become bottleneck for 
pear millet production. Thus, the current review conducted to understand pearl millet breeding for adaptation and 
performance under drought condition. From gene point of view crops drought resistance mechanism grouped in to 
drought escape, drought avoidance and drought tolerance. In all these three mechanisms crops express different 
control characteristics to overcome drought stress problem. Plants can use more than one mechanisms at same 
time based on regulators gene they posses for drought tolerance. Pear millet has huge noble traits such as rapid 
phonological development (early flowering which enables to escape), plasticity growth characteristics (tillering), 
deep and wider spread root growth and high water use efficiency those attribute for its adaptation and performance 
under drought stress. Both conventional and molecular breeding methods had being utilized and also currently 
under utilization for pear millet improvement for drought tolerance. Better performing genotypes selection and 
hybridization done conventionally and crosses were showed 66% heterosis over best parents in grain yield under 
stress; whereas marker assisted selection of QTL used for transfer of drought tolerant gene from drought tolerant 
genotype to drought susceptible genotype but, has good agronomic performance done using molecular breeding 
method. Hence, over 30% high yielders variety developed for drought threatens environments.  
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1. INTRODUCTION 

Pearl millet (Pennisetum glaucum L.) is a staple food crop which is grown almost entirely under rain fed conditions. 
Mostly it is produced around hot, drought-prone arid and semi-arid regions in Africa and south Asia (FAO and 
ICRISAT, 1996). Inter- and intra seasonal variation in rainfall in these regions is often one of the most important 
environmental factors limiting pearl millet productivity (van Oosterom et al., 1996a, b). It is grown principally for 
grain production but is also valued for its fodder, the importance of which has been increasing in recent years. 
Pearl millet is grown in areas with very limited rainfall (300–500 mm in the majority of cases), where crops such 
as maize or sorghum are very likely to be unsuccessful in most years. Thus, pearl millet is a essential component 
of the food security of the rural poor in dry areas. 

Although drought stress can occur any time during the crop cycle, terminal stress (flowering through grain 
filling) is more damaging to the productivity of the crop than stress at the vegetative or pre flowering reproductive 
stages (Mahalakshmi et al.,1987).  Because of pearl millet’s asynchronous tillering behavior and rapid growth rate 
allow it to recover rapidly from intermittent drought stress during the early stages of plant development, but 
provide no advantages under unmitigated terminal drought stress. 

 Improving the adaptation of pearl millet to terminal drought-stress environments is therefore a major 
objective for breeding programmes aimed at improving both the crop’s productivity and its yield stability. It has 
been suggested that the efficiency of breeding for stress environments could be enhanced if plant attributes that 
confer yield advantages in such environments could be identified and used as selection criteria (Ludlow and 
Muchow, 1990 and Fussell et al., 1991). 

However, traits that provide a consistent yield advantage across variable water deficit environments have 
been difficult to identify and use in breeding programs (Richards, 1996 and Turner, 1997). Moreover, whole-plant 
response to drought stress is a complex process conditioned by a number of component responses that both interact 
and differ in their individual responses to the intensity and duration of water deficits, making it difficult to isolate 
individual traits with major effects on tolerance. In recent years, developments in molecular-marker technologies 
and their use in quantitative trait locus (QTL) analysis have provided effective new opportunities for the study of 
plant responses to the environment problem like drought condition (Frova et al., 1999 and Quarrie et al., 1999). 

Molecular-marker breeding method provides opportunities not only to identify QTLs (and their functions) 
that determine complex phenotypes such as drought tolerance (Prioul et al.,1997), but also to improve greatly the 
efficiency of genetic improvement by facilitating the introgression of desirable traits through the use of linked 
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markers (Tanksley,1993 and Mohan et al.,1997). An additional difficulty in genetically improving drought 
tolerance is the lack of a clear measure of drought tolerance or sensitivity. Although a number of (mainly short-
term) physiological parameters have been proposed as indicators of tolerance to drought stress (Turner, 1997), it 
has not been possible to relate these clearly to differences in grain yield under stress conditions (Bidinger and 
Witcombe, 1989). For plant breeders, tolerance has a meaning only if it gives greater yield or stability performance 
in yield under stress. Grain yield itself has limitations as an index for stress tolerance, as grain yield in a particular 
drought environment is influenced not only by genetic differences in drought tolerance, but also by differences in 
time to flowering (drought escape) and differences in yield potential (Bidinger et al., 1987a). In terminal drought 
stress, the combined effects of phenology and yield potential can account for as much as 50% of the variation in 
pearl millet grain yield. As a result of these effects, the most-effective means of improving pearl millet’s grain 
yield in terminal stress environments should be to incorporate specific traits (or responses to stress) that improve 
the tolerance of terminal stress into high yielding genotypes of Pearl millet or appropriate crop duration (Fussell 
et al., 1991). 

Grain yield performance itself is not a simple trait but is conditioned by a number of morphological and 
physiological processes. Sensitivity to post-flowering drought stress in pearl millet is often characterized by 
reduced grain filling and reduced numbers of grains per panicle, which result reduction in grain yield. Although 
genetic variation in the expression of these traits in terminal drought-stress environments exists in the available 
pearl millet germplasm (Bidinger et al., 1987b), the inheritance of such variation and the interactions of its various 
components in determining grain yield in variable moisture deficit environments are not well understood. 
Therefore; the objective of this review is to understand pearl millet breeding for adaptation and performance under 
drought condition.   
 

2. LITERETURE REVIEW 

2.1 Ecological description of Pearl millet growing areas  

More than 95% of the world's millet crop is grown in Africa and South Asia, predominantly in the Sahelian-
Sudanian zones of West Africa and in the semiarid regions east and southeast of the desert in India. The areas of 
adaptation of the species are clearly defined by the mean annual rainfall isohyets of 200-600 mm in both countries. 
These zones are generally characterized by short rainy seasons (2-4 month), high mean temperatures, and high 
potential evapo-transpiration rates, arid shallow and sandy soils (Kowal and Kassam, 1978). Hence, the inter- and 
intra seasonal inconsistency in available soil moisture of Pearl millet growing areas is the major vulnerability to 
its production. Rainfall is erratic as well as low and the water-holding capacity of soils is typically low to moderate; 
thus, limiting the possibilities of buffering rainfall fluctuations with stored soil moisture (Bidinger, 1981). 
 
2.2 Importance of Pearl millet in the Human diet 

Like other Asian and African countries, in Ethiopia Pear millet is widely produced in low land areas or drought 
prone areas. As the crop grows in a short period of time, mostly used for food in rural areas; hence, it is well known 
cereal crop used for poverty escape until relatively  long lifecycle  crop  reached for harvest to be used for 
consumption.  Also most community that have low income prefer it for food because its price on local market is 
less relative to other cereals like maize, wheat, Tef (Eragrostis tef) and Sorghum. In Ethiopia, most of the time 
people don’t use Pear millet sole for food for instance during they make Ingera (Buddeena) (favorite food in 
Ethiopia) they mix much powder of Pear millet with some powder of Tef. This is very important to make very 
good quality Ingera (Buddeena) relative to using sole Pear millet. Additionally, Pear millet plays central role in 
preparation of local alcohols like Tella (Farsoo) and Haraqe which are locally produced in Ethiopia and mostly 
preferred beverage by Ethiopian; thus, used as income source in rural areas and towns.          

Concerning nutritional quality, pearl millet is at least equivalent to maize and generally superior to sorghum 
in protein content and quality, protein efficiency ratio (PER) values, and metabolizable energy levels. Pearl millet 
does not contain any condensed polyphenols such as the tannins in sorghum that can decrease digestibility. 
Although it contains 35% more lysine than sorghum, it is deficient in essential amino acids, (Rooney and 
McDonough, 1987). Pearl millet grain contains 5–6% oil (Jambunathan and Subramanian, 1988) and is also rich 
in important micronutrients such as iron and zinc. Among all cereals, it is the cheapest source of energy, protein, 
iron, and zinc which make pearl millet the major contributor to protein, iron, and zinc intake in the regions where 
it is produced.  

 

2.3 Mechanisms of drought tolerance of plants 

In genetic sense, the mechanisms of drought resistance can be grouped in to three categories. These are drought 
escape, drought avoidance and drought tolerance (Levitt, 1972). However; crop plants use more than one 
mechanism a time to resist drought (Gaff, 1980). Drought escape is defined as the ability of plants to complete its 
life cycle before serious soil and plant water deficits develop. This mechanism involves rapid phonological 
development (early flowering and maturity), developmental plasticity (variation in duration of growth period 
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depending on the extent of moisture deficit) and preanthesis assimilation to grain (Turner, 1979). Drought 
avoidance is the ability of plants to maintain relatively high tissue water potential   despite of a shortage of soil 
moisture, where as drought tolerance is the ability of plant to with stand water deficit with low tissue water 
potential. The responses of plants tissue to water deficit determine their level of drought tolerance.  

Drought avoidance is performed by maintenance of turgor through increased rooting depth, efficient root 
system and increased hydraulic conductance and by reduction of water loss through reduced epidermal absorption 
of radiation by leaf rolling and folding (Begg,1980) and reduce evaporation area (leaf area) (Turner and Aust, 
1986). Plants under drought condition survive by doing a balancing act between maintenance of cell turgor and 
reduction of water loss (Shashidhar et al., 2000). This mechanism could be done through osmotic adjustment (a 
process which induce solute accumulation in to cell) increase in cell elasticity and decrease in cell size and 
desiccation tolerance by protoplasmic resistance. 

 
2.4 Adaptation and Performance of Pearl millet under drought 

Drought is the major constraint to pearl millet as it is grown in the drier semiarid and arid regions. However, 
adaptive evolution and natural selection made Pearl millet relatively the most drought and high temperature 
tolerant among other cereals. Traditional landraces from drier regions are good sources for breeding drought 
tolerance (Kusaka et al., 2005). Although, the yield potential of many of the landraces is lower as compared to 
improved cultivars, genes for drought tolerance in the landraces can be utilized to combine with high yield potential 
(Yadav et al., 2000). 

The growth potential of any crop species is a function of its growth rate and the length of the growth cycle. 
This is obviously habituated by the agronomic potential where it is grown (relating to water, light, and nutrients). 
In general, Pearl millet is rarely grown in areas having high agronomic potential. It is almost in variably grown in 
low rainfall areas (Van Oosterom et al., 1996a, b) and under marginal fertility which in fact, results in an 
incomplete use of the available water (Paynev et al., 1990). Thus, environmental factors are usually the main 
limitations to its growth potential. Even under favorable conditions, Pearl millet tends to have a shorter crop cycle 
than other cereals because it has a “built in” drought escape mechanism (early flowering) inherited from its wild 
progenitors, having evolved in semi-desert environments with adapted short life cycles. Therefore, pearl millet is 
short cycled, has a short grain-filling period and has small seed sizes. Its growth potential is no match for other 
longer-duration cereals growing in favorable environments. Yet, it enjoys a high crop growth rate that confers a 
fairly high growth potential under optimal conditions (Begg, 1965), relating in particular to its being a C4 plant, 
with a large leaf area index (LAI) due to its erect type (Craufurd and Bidinger, 1989), and high radiation use 
efficiency (RUE) (Squire et al., 1987). The maximum RUE recorded ranges from 2.5 gMJ−1 to 4.0gMJ−1 (Squire 
et al., 1987; Ram et al., 1999). 

 
2.5 Pearl millet characteristics enhance performance under drought  

2.5.1Tillering and developmental flexibility 

Pearl millet develops primary tillers, and then secondary tillers from the primary ones, about every 45–50◦C 
days (base temperature of 10◦C).  Because of high tillering ability and the length of the period between 
floral initiation and flowering is similar, plants have tillers at all stages of apical development at all times 
(Craufurd and Bidinger, 1988). Also based on the emergence place from main shoot of pearl millet tiller 
can be basal and nodal tillers which are emerged from main shoot at different time (Van Oosterom et al., 
2002)(Figure1). This developmental plasticity/fluctuation allows pearl millet to compensate for potential 
failure of the main and primary tillers in the case of arid and semi- arid drought season. The secondary 
tillers would, to a large extent, compensate for the yield loss on the main tillers by a larger number of them 
developing a panicle, as long as the relief from mid-season drought makes sufficient water available for the 
secondary tillers to reach maturity (Mahalakshmi and Bidinger, 1985). Hence, due to its natural plasticity 
characteristics, pearl millet is often considered as not affected very much by mid-season drought.  
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Figure 1. The number of panicles per square meter reaching anthesis at a certain number of DAE at 

Patancheru rainy season 1995 for (a) RCB-IC 911 and (b)WRajPop for main shoot (o-o), basal tillers  
(          -          ) and nodal tillers (        ——     ) Panicle numbers are pooled for 3-day intervals. Nodal 

tiller numbers at 80 DAE represent panicles for which the anthesis date is not known (van Oosterom et al., 
2002). 

Nodal tillers on the main shoot stared to appear one week earlier to anthesis of the main shoot panicle and 
they reach 250.300 oC d (nearly 3 weeks) after anthesis of the main shoot panicle. Most of the period between 
emergence and anthesis of nodal tillers; thus, coincides with the period between the end of leaf growth and the 
start of grain filling of the main shoot (van Oosterom et al., 2002). The basal tillers appear start around 150 oC d 
(after one week) after emergence of main shoot and  reached anthesis 2-4 days later than the main shoot where as 
difference between  main shoot and basal tillers in the standard deviation for anthesis were minor under optimum 
condition. 
2.5.2 Flowering time 

In most crops, matching plant phenology with the stress environment is a key factor in adaptation to drought. 
Flowering time, a so called “drought escape mechanism,” is the major component of pearl millet’s adaptation to 
water scarce environments (Bidinger et al., 1987a) as a result of its earliness flowering. Therefore, earliness is an 
important drought escape attribute of pearl millet and is, indeed, a major component of genotype by environmental 
interaction. For instance, in the case where the rains stop early, a one week difference in the time to flowering 
between two genotypes brings about a 30% reduction in the grain-filling period and gives the early cultivar more 
chance to escape drought stress, where as the late cultivars likely to suffer the stress before or during reproduction. 
In line with this, Bidinger et al. (1987a) authenticated that about 50% of yield variation under drought stress 
conditions could be explained by differences in the yield potential of genotypes and their flowering time.  

In West Africa, the sensitivity of pearl millet to the photoperiod (Clerget et al., 2004) is a way that it has 
evolved to “trigger” an escape mechanism, since it appears that the timing of flowering is closely related to the 
end of the rainy season. On the other hand, pearl millet flowers “on time” to ensure that it can complete its 
maturation cycle with the remaining soil moisture (Kouressy et al., 1998). Any genotype with delayed flowering 
may be exposed to serious stress conditions during its reproduction phase.  

Panicle harvesting index is a particularly effective variable for post-flowering stress, because the mass of the 
structural parts of the panicle (which complete their growth prior to flowering) is largely unaffected by stress, 
whereas the mass of grain is significantly affected by both floret abortion and reduced grain filling (Bidinger and 
Mukuru, 1995). Early flowering genotype can perform more than tolerant genotype next to genotype under non-
stress condition (Table 1). Also, early flowering genotypes showed better performance in grain per panicle, single 
mass grain, total grain mass and total panicle mass next to non-stress condition, but greater than tolerant genotypes.   
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Table 1. Consequences of different levels of terminal stress tolerance on pearl millet panicle components and 
panicle harvest index (PNHI) (Source- Bidinger, 2002) 

Genotype level of 
tolerance 

Panicle structural  
part(g) 

Grains per 
panicle (no.) 

Single mass 
grain (g) 

Total 
grain 
mass (g) 

Total 
panicle 
mass (g) 

PNHI 
(%) 

Non-stress 
conditions 

5.0 1500  0.0100 15.0 20.0 75 

Escape: early 
flowering 

5.0 1500  0.0085 12.8 17.8 72 

Tolerant 5.0  1350(−10%) 0.0085(−15%) 11.5 16.5 70 

Intermediate 5.0  1200(−20%) 0.0070(−30%) 8.4 13.4 63 

Susceptible 5.0  1200(−20%) 0.0050(−50%) 6.0 11.0 55 

2.5.3 Rooting ability 

Pearl millet is known to be deep and profusely rooted, with the ability to match it’s rooting to water availability in 
a very plastic manner, leading to a highly varying root growth to shoot growth ratio, depending on the intensity of 
water limitation (Squire et al., 1987). During the vegetative period, root growth is very abundant, but little is 
known about root growth during the post anthesis period, though it has been reported that it continues well into 
grain-filling in long duration (Do et al., 1989). Root penetration rates between 3.5and 4.5cm day−1 have been 
reported in sandy soils (AzamAli et al., 1984). Root depth is dependent on the season length of the cultivar, and 
can be as deep as 3m in long-duration varieties, in contrast to only 140cm in short-duration cultivars (Chopart, 
1983). Lateral root spreading is also a major feature of pearl millet, with the soil volume exploration at low planting 
density being as much as 6m3. 

It is often assumed that water uptake and, consequently, water limitation is what limits pearl millet production 
in a low rainfall environment. However, it has been shown that water may not be the most limiting factor, at least 
in the sandy soils, where substantial water storage and drainage have been found below the deep root zone (Payne 
et al., 1990). This may not be the case in all soils where pearl millet is grown. In fact, roots appear to play an 
important role in pearl millet genotypes that differ in the presence or absence of a major terminal drought tolerance 
QTL (Vadez et al., 2005). 
2.5.4 Water use efficiency 

Being a C4 plant, pearl millet already has high transpiration efficiency (TE). However, it seems that the major 
strategy of pearl millet is to maximize carbon fixation as long as water is available. Therefore, stomata movements 
adapt in such a way that the transpiration rate is kept as high as possible (Squire, 1979). It also appears that stomata 
are sensitive to the vapor pressure deficit (VPD), particularly during the pre-flowering stage, this being related to 
differences in the abscicic acid (ABA) content of the leaves (Henson and Mahaklakshmi, 1985). 

At the plot level, water use efficiency (WUE) values of 300–400kg biomass ha−1 cm−1 water have been 
reported as summing a full ground cover (LAI > 3–4) (Singh and Singh, 1995). Under low planting density, the 
WUE usually drops to the range 50–150kgha−1 cm−1, mostly because of an increased evaporation component 
(Payne, 1997). 

 
2.6 Breeding for adaptation and performance under drought 

The overall goal of a breeding programme for drought stress is, ultimately, an improved genetic yield, or a more 
stable yield, under drought conditions. Latter, Vincent et al. (2012) reported that the stabilization of yield across 
environments in drought-prone areas is very important. There are different ways to assess what is commonly called 
“drought tolerance,” and this depends mostly on how close the assessed trait/parameter is from the final target an 
increased genetic yield (Vincent et al., 2012).  

For pearl millet, it was assumed that grain yield can be improved under water limited environments if specific 
traits and responses associated with drought tolerance can be identified and incorporated into elite high-yielding 
genotypes of appropriate crop duration (Bidinger et al., 2000). The QTL-mapping approach is ideal to meet such 
objectives as it can both identify individual genetic factors associated with a specific response and monitor the 
incorporation of the identified factors into the breeding programmes. The objective of using mapping-population 
progenies, based on commercially important hybrid parents, is to improve the drought tolerance of the parents so 
that the popular hybrids produced by them will have greater tolerance to drought (Yadav et al., 2002).  

 
2.7 Breeding methods used in Pear millet improvement  

2.7.1. Conventional breeding method 

This approach was initially used to select genotypes achieving a high PNHI under terminal drought conditions. 
PNHI was initially tested in hybrid parent breeding, where it was used as a selection criterion by the following 
procedure(Vincent et al. (2012): Conduct bidirectional selection for combining ability for high and low PNHI in 
replicated potential maintainer (B) and restorer (R) line test cross nurseries (three testers each) grown in managed 
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terminal drought stress environments (Kramer, 1980). Cross parents selected for high and low PNHI under stress 
conditions on three different A or R line testers from those used in the original test cross nurseries in which 
selection was carried out. Vincent et al. (2012) evaluate these test crosses for general combining ability (GCA) for 
PNHI, grain yield and yield components, in both fully irrigated control environments and in managed stress 
environments. Hence, the author reported that in both experiments, the dissimilarities between the high and low 
PNHI selections in the irrigated environments were small and generally not statistically significant; however, the 
differences in the terminal stress environment between the high and low selections were statistically significant 
and of a greater magnitude under stress conditions. For instance, the combining ability of high PNHI selections 
was greater that of the low PNHI selections by approximately 5–8% for PNHI, by 9–13% for grain yield, and by 
6–7% for seed mass (Vincent et al. (2012). 

Conventional breeding efforts have been implementing starting from earlier to yet in order to improve Pear 
millet performance under stress; for instance Yadav (2008) crossed four exotic elite with three landraces of Pear 
millet that possess different reaction to drought stress, and evaluated the performance of parents with their 
progenies under non stress and stress conditions using grain yield and biomass traits (Table2).  Hence, the author 
authenticated the performance of most progenies over their parents in both grain yield and biomass under stress 
and non stress; also, in addition to realizing the availability of heterosis in drought tolerance in both traits, almost 
all the crosses showed superior record over both parents under stress than non stress in grain yield.  The landraces 
and exotic elites   showed 16.7 to 22.5 g/m2 and 13.9 to 22.6 g/m2 in grain yield performance under stress 
respectively; whereas, 19.4 to 37.5 g/m2 recorded by crosses which exceeded high performed of both parents over 
66% in grain yield performance under stress.   
Table 2: Grain yield and biomass under non-drought and drought stress environments of three Pearl millet 
landraces, four exotic populations and twelve crosses (Yadav, 2008) 

Genotypes Grain yield Biomass  
Non stress(g/m2-1) stress(g/m2-

1) 
S* Non stress(g/m2-1) stress(g/m2-

1) 
S* 

Landrace33 193.5 22.5 1.01 767.3 239.3 0.98 
Landrace65 168.9 21.5 1.00 645.9 225.7 0.92 
Landrace85 158.8 16.7 1.02 787.4 195.8 1.07 
Average S*   1.01a   0.99a 
ICMP89410 178.8 20.1 1.01 740.9 242.4 0.96 
ICMP96132 238.5 10.2 1.09 683.4 131.7 1.15 
ICMP93191 240.6 22.6 1.03 810.2 173.2 1.12 
MCNELC 224.7 13.9 1.07 805.5 194.4 1.08 
Average S*   1.05b   1.08b 
33 x ICMP89410 235.1 36.8 0.96 989.3 283.0 1.01 
33 x ICMP96132 213.8 22.6 1.02 897.9 202.7 1.10 
33 x ICMP93191 271.7 25.7 1.03 900.5 208.0 1.09 
33 x MCNELC 187.8 19.4 1.02 749.2 276.9 0.90 
65 x ICMP89410 266.7 34.7 0.99 1098.3 314.1 1.01 
65 x ICMP96132 163.6 26.4 0.96 715.2 285.2 0.85 
65 x ICMP93191 183.3 27.8 0.97 826.6 256.7 0.98 
65 x MCNELC 99.5 26.8 0.83 616.1 202.0 0.95 
85 x ICMP89410 157.8 35.1 0.89 703.6 342.2 0.73 
85 x ICMP96132 177.4 37.5 0.90 872.7 280.4 0.96 
85 x ICMP93191 186.0 22.2 1.00 769.8 236.6 0.98 
85 x MCNELC 191.4 20.8 1.02 906.1 261.5 1.01 
Average S*   0.97a   0.97a 
LSD 45.7 8.1 0.054 149.1 60.1 0.088 

S-stress susceptibility index, *Mean S values in a column with different letter are statistically different 
2.7.2 Molecular breeding method 

This is the modern approach which is more precise and time saving method when compared with conventional 
breeding including pearl millet breeding for drought tolerance.  Based on the fact that PNHI remains a highly 
complex trait for which a molecular approach can increase precision during the selection process (Vincent et al., 
2012). For molecular breeding, the development of recombinant inbred lines (RILs) is needed to link phenotypic 
data and marker data, and potentially identify QTLs, i.e., genome portions that are related to phenotypic data. Prior 
to that, the parents used for crossing should comply with a number of characteristics to maximize the chances of 
discovering RILs. They should be chosen from large number of accessions (Kramer, 1980); have maximum 
phenotypic contrast (Sinha.1986); have large genotypic contrast(Begg and Turner, 1976); and be similar for certain 
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phenotypic traits that can interact with the trait of interest (yield) (Singh,1990); such as time to flowering or 
photoperiod sensitivity (Vincent  et al.,2012) also taken into consideration. 

This approach has been used successfully for the identification of terminal drought tolerance QTLs (Yadav 
et al., 2003), and the introgression of a terminal drought tolerance QTL into the background of the popular pearl 
millet hybrid HHB67 to create the new hybrid HHB67-improved. This terminal drought tolerance QTL has a major 
effect, giving over 30% of the yield variation under terminal drought. 
2.7.2.1 QTL and Marker assisted selection for drought tolerance 

Most of the physiological traits associated with drought resistance are quantitative in nature (Serraj et al., 2003) 
which implies that traits controlled by many genes. Therefore, using molecular markers, QTL can be detected in 
an appropriate population of plants. A locus for any quantitative trait can be mapped as long as polymorphism is 
observed in the segregating populations under analysis and phenotypic information is available for the lines in the 
population (Figure2). However, for traits as complex as drought tolerance, the success of the QTL approach is 
conditioned by the effectiveness of the phenotyping procedure in detecting among recombinant lines repeatable, 
highly heritable differences that permit the identification of robust QTL(Serraj et al.,2003). 

A QTL-mapping approach is currently used at different research centers including ICRISAT to dissect the 
genetic and physiological basis and apply marker assisted breeding strategies for several traits linked to drought 
tolerance, including the PNHI and yield components of pearl millet under terminal drought. For terminal drought 
in pearl millet, several mapping populations have been developed using restriction-fragment length polymorphism 
(RFLP) skeleton mapping, trait phenotyping (Hash and Witcombe, 1994) and QTL mapping (Yadav et al., 2002). 
Test crosses of mapping-population progenies, derived from inbred pollinators and from seed parents differing in 
their response to drought, were evaluated in a range of managed terminal-drought-stress environments to identify 
individual QTL associated with drought tolerance (Figure 2).  

A number of QTL associated with drought tolerance of grain yield and its agronomic and physiological 
components were identified (Yadav et al., 2002). Some of the identified QTL were common across water-stress 
environments and genetic backgrounds of the two mapping populations, while others were specific to a particular 
water-stress environment or genetic background. Interestingly, all the identified QTL contributed to increased 
drought tolerance through their effect on either increased maintenance of growth or harvest index or both in 
terminal-drought stress environments. Programmes for marker-assisted backcross transfer of the identified QTL 
into the elite parent of these mapping populations have been initiated for the improvement of pearl-millet 
productivity in water-limited environments (Yadav et al., 2002). 

 
Figure.2 Scheme for marker-assisted backcrossing of desired (+) segregants. A QTL was introgressed after four 
rounds of marker-assisted backcrossing (Source: Vincent et al., 2012) 
 

3. CONCLUSION 

Drought stress is a wide spread phenomenon in many areas in which pearl millet is grown. It is the major constraint 
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to pearl millet as pearl millet grown in the drier semiarid and arid regions. However, adaptive evolution and natural 
selection made pearl millet relatively the most drought and heat tolerant among other cereals crops. Like other 
cereals pearl millet tolerate drought through mechanisms such as drought escape, drought avoidance and drought 
tolerance. Pearl millet has primary and secondary tillers. Also based on their emergence tillers can be basal and 
nodal tiller which are important traits that enables pearl millet to tolerate terminal drought. This is due to they 
emerge from main shoot at different time and compensate the damaged primary tillers flower and grain filling by 
drought stress. This asynchronous tillering behavior and rapid growth rate allow it to improve rapidly from 
intermittent drought stress during the early stages of plant development. 

Pearl millet has many important phenotypic and physiological characteristics that enable it to adapt and 
perform under drought stress. These are early flowering and deep rooting characteristics.  Early flowering is an 
important drought escape attribute of pearl millet and   enables it to gives yield before drought problems occur.  
Deep rooting and Lateral root spreading help pearl millet perform very well under drought stress by taking up 
water deep from the soil. Being C4 plant, physiologically pearl millet withstands high temperature and decrease 
evaporation by closing stomata which increase their water use efficiency. 

Pearl millet breeding for adaptation and performance under drought is on progress using different breeding 
methods. These breeding methods are conventional and molecular breeding which had being used and also 
currently under utilization to improve pearl millet for drought tolerant. Conventionally, genotypes that is drought 
tolerant and result good yield is selected and/ or genetically diverse elites having desirable agronomic traits and 
dissimilar in drought tolerant potential are crosses to improve yield performance under drought; hence, 66% 
heterosis over best parents achieved under stress in grain yield. But in molecular breeding drought tolerant 
genotype is screened using marker assist selection. Therefore; using these Breeding methods some Pear millet 
varieties developed for drought prone areas and over 30% grain yielder variety developed for drought stress areas 
compared to parents which are locally under production.  
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