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Abstract 

Global warming is among the greatest terrible horrors of the modern times. The global carbon cycle is taking place 

in three main reservoirs (the oceans, the atmosphere, and terrestrial systems), which store carbon in different forms 

and varying amounts. The forest ecosystems have large potential to act as a temporary and long-term carbon (C) 

pool.  Global forest vegetation stores 283 Gt of carbon in its biomass, 38 Gt in dead wood and 317 Gt in soils (top 

30 cm) and litter. Globally, the litter C pool accounts for an estimated 5% (43 Pg) of all forest ecosystem C stocks. 

Agroforestry practices can reduce or remove significant amounts of GHGs through increased carbon storage in 

biomass above-ground and below-ground and in soil organic carbon. Roots are an important part of the C balance, 

because they transfer large amounts of C into the soil. Grasslands, including rangelands, shrublands, pastureland, 

and cropland sown with pasture and fodder crops, covered approximately 3.5 billion ha in 2000, representing 26 

percent of the world land area and 70 percent of the world agricultural area, and containing about 20 percent of 

the world’s soil carbon stocks.  Soils are the largest carbon reservoirs of the terrestrial carbon cycle 1500–1550 Gt 

of organic soil carbon and soil inorganic C approximate 750 Gt both to 1 m depth. On a global scale, carbon loss 

from soils is mainly associated with soil degradation, including accelerated erosion and mineralization, and land 

use change, and has amounted to 78+/- 12 Gt since 1850. The idea of Reducing Emissions from Deforestation and 

forest Degradation (REDD) was conceived by United Nations Framework Convention on Climate Change 

(UNFCCC) as the main carbon emission reduction mechanism by developing countries. The implementation of 

improved land management practices to build up carbon stocks in terrestrial ecosystems is a proven technology 

for reducing the concentration of carbon dioxide (CO2) in the atmosphere – offsetting emissions from other sources 

and drawing down atmospheric CO2. 
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1. INTRODUCTION 

Carbon is present in the nonliving environment as carbon dioxide (CO2) gas in the atmosphere, as dissolved carbon 

in water (forming bicarbonate and carbonate solutions), and in carbonate rocks, coal, petroleum, natural gas, and 

dead organic matter (humus). It is found in the atmosphere primarily as CO2, CH4, and chlorofluorocarbons (Brown, 

S. and P. Leonard, 2004) 

Greenhouse gas emission is becoming a critical issue, as there is a growing awareness all over the world about 

its adverse impact and the consequent on climate change. At the dawn of third millennium, greenhouse gases are 

widely accepted by international scientific community as one of the potential threats to the existence of human 

kind coupled with extinction of other flora and fauna. The greenhouse gases with special optical properties that 

are responsible for climate warming include carbon dioxide (CO2), water vapors, Methane (CH4), Nitrous oxide 

(N2O), Nitrogen oxides (NOx), stratospheric ozone (O3), carbon monoxide (CO) and Chlorofluorocarbons 

(CFC’s). Among all these greenhouse gases, CO2 plays a leading role as it contributes to 50% of the total 

greenhouse effect (Bhardwaj SD, Panwar P, 2003).  

According to IPCC (2001) report, since 1800 the concentrations of CO2 in the Earth’s atmosphere have 

increased from around 280 parts per million (ppm) (by volume) to a current value close to 370 ppm. The increase 

coincides with the industrialization of human society and there is good evidence to show that it is caused by 

emissions of CO2 arising from human activities. The most important contributor to the recent increase in the global 

stock of atmospheric CO2 is the burning of fossil fuels (e.g. in power stations) and from the deforestation of land, 

particularly in the tropics. Carbon dioxide, along with a number of other gases present at lower concentrations (so 

called ‘trace gases’ such as methane (CH4) and nitrous oxide (N2O)), traps thermal radiation emitted from the 

Earth’s surface and so gives rise to warming of the Earth’s atmosphere. This warming (known as the ‘greenhouse 

effect’), enhanced by the accumulation of these gases particularly over the 19th and 20th centuries has led to a 

global mean increase in surface temperature of about 0.6 oC (IPCC, 2001). However, the challenges of climate 

change can be effectively overcome by the storage of carbon in terrestrial carbon sinks viz. plants, plant products 

and soils for longer periods of time. 

Richards JF and Flint EP, (1993) reported that, about 80% of the world’s potential for increasing Carbon 

storage in forests (estimated at 60-87 Pg Carbon from now up to 2050) lies in developing countries (Brown S, 

1995). The forest woodland system sequestered more Carbon than all other categories collectively, but the 
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proportion of total Carbon in this class progressively declined throughout the century from 73% in 1880 to 63% 

in 1980.  

The possibility that forests and agricultural land might be manipulated to mitigate CO2 emissions was 

recognized in the United Nations Framework Convention on Climate Change (UNFCCC) in 1992. The Kyoto 

Protocol in 1997 endorsed the idea not only that governments should employ policies to enhance the land carbon 

sink capacities of their territories but also that such mitigation could be set against requirements for reductions in 

emissions from fossil fuel consumption.  

 

Objectives 

The specific objectives of this review paper are:  

(1) To highlight the potential of different carbon pools in carbon sequestration to mitigate climate change 

problem, 

(2) To review the values of terrestrial ecosystem management practices in carbon sinks as Climate change 

mitigation requires the management of terrestrial carbon (C) either by creating new C sinks or by 

preserving existing ones.           

(3) To review the role of carbon sequestration for ecosystem functions and services 

 

METHODOLOGY    

This Seminar paper is exclusively a review paper, so all of the information has been collected from the secondary 

sources. In preparing this paper I read through various relevant books, journals, proceedings, reports, publications 

etc. I have also searched related internet web sites to collect information. I got valuable comments, suggestions 

and information from my colleagues and course instructors. Having collected all the relevant information 

concerning the topic, I myself compiled and prepared this seminar paper. 

 

3. REVIEW OF FINDINGS 

3.1 The global carbon cycle 

There are five global C pools, of which the largest oceanic pool is estimated at 38 000 Pg and is increasing at the 

rate of 2.3 Pg C yr-1. The geological C pool, comprising fossil fuels, is estimated at 4130 Pg, of which 85% is 

coal, 5.5 % is oil and 3.3 % is gas. As stated in Schrag (2007), verified reserves of fossil fuel include 678 Pg of 

coal (3.2 Pg yr-1 of production), 146 Pg of oil (3.6 Pg yr-1 of production) and 98 Pg of natural gas (1.5 pg yr-1 of 

production). Currently, coal and oil each account for approximately 40% of global CO2 emissions. Thus, the fossil 

fuel pool is depleting as a result of fossil fuel combustion, at the rate of 8.3 Pg C yr-1. 

The third largest pool is in the soil, pedologic and is estimated at 2500 Pg to 1 m depth. This pool has two 

distinct components: i). Soil organic C (SOC) pool which is estimated at 1550 Pg includes highly active humus 

and relatively inert charcoal C (Batjes, 1996). It comprises a mixture of: plant and animal residues at various stages 

of decomposition; substances synthesized microbiologically and/or chemically from the breakdown products; and 

the bodies of live micro-organisms and small animals and their decomposing products (Schnitzer, 1991).  

ii). Soil inorganic C (SIC) pool estimated at 950 Pg, includes elemental C and carbonate minerals such as 

calcite, and dolomite, and comprises primary and secondary carbonates (Batjes, 1996). The primary carbonates 

are derived from the weathering of parent material. In contrast, the secondary carbonates are formed by dissolution 

of CO2 in soil air into dilute carbonic acid and its interaction with calcium (Ca+2) and magnesium (Mg+2) brought 

in from outside the local ecosystem (e.g. calcareous dust, irrigation water, fertilizers, manures). The SIC is an 

important constituent of soils in arid and semi-arid regions. 

The fourth largest C pool is the atmospheric pool comprising ~800 Pg of CO2-C, and is increasing at the rate 

of 4.2 Pg C yr-1 or 0.54% yr-1. The smallest among the global C pools is the biotic pool, which is estimated at 620 

Pg, comprising 560 Pg of live biomass and 60 Pg of detritus material. The pedologic and biotic C pools together 

are called the terrestrial C pool estimated at approximately 3120 Pg. The terrestrial and atmospheric C pools 

strongly interact with one another through photosynthesis and respiration. 

The strong interactions between the atmospheric, pedologic and the biotic C pools comprise important 

components of the global carbon cycle (GCC). The atmospheric pool is connected to the oceanic pool, which 

absorbs 92.3 Pg yr-1 and releases 90 Pg yr-1 with a net positive balance of 2.3 Pg C yr-1. 
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Figure 1: The primary flows and exchanges that constitute the terrestrial carbon cycle, including uptake through 

photosynthesis, release to the atmosphere through both anthropogenic (fossil fuel emissions, biomass burning, land 

use) and natural emissions (autotrophic and heterotrophic respiration, wildfires, volcanic eruptions), and 

weathering, erosion, and transport.(Source: Keenan T.F. and Williams C.A. (2018);  Figure modified with 

permission from Diana Swantek, Lawrence Berkeley National Lab.) 

 

2.2 Overview of Global forest carbon stocks:  

The forest ecosystems have large potential to act as a temporary and long-term carbon (C) pool (Dixon et al. 1994). 

Approximately 80 % aboveground and 40 % underground terrestrial C is stored in forests (Cao and Woodward 

1998). 

Global forest vegetation stores 283 Gt of carbon in its biomass, 38 Gt in dead wood and 317 Gt in soils (top 

30 cm) and litter. Therefore, the total carbon content of forest ecosystems has been estimated at 638 Gt for 2005, 

which is more than the amount of carbon in the entire atmosphere. This standing carbon is combined with a gross 

terrestrial uptake of carbon, which was estimated at 2.4 Gt a year, a good deal of which is sequestration by forests. 

According to the Intergovernmental Panel on Climate Change report, the conservation and restoration of forests 

can considerably reduce emissions at a low cost and with potential co benefits for adaptation and sustainable 

development. About 80% of the world’s potential for increasing Carbon storage in forests (estimated at 60-87 Pg 

Carbon from now up to 2050) lies in developing countries (Brown, 1995). 

Forests ecosystems sequester and store more carbon than any other terrestrial ecosystem and hence are an 

important natural ‘brake’ on climate change. When forests are destroyed or degraded, their stored carbon is 

released into the atmosphere as carbon dioxide (CO2). Tropical deforestation is estimated to have released of the 

order of 1–2 billion tonnes of carbon per year during the 1990s, roughly 15–25% of annual global greenhouse gas 

emissions (Malhi and Grace 2000, Fearnside and Laurance 2003, 2004,). The largest source of greenhouse gas 

emissions in most tropical countries is from deforestation and forest degradation. In Africa, for example, 

deforestation accounts for nearly 70% of total emissions (FAO 2005). 

Climate change or global warming due to the rise in greenhouse gases into the atmosphere, primarily carbon 

dioxide (CO2), is one of the most urgent global problems. Among anthropogenic GHGs, CO2 is the most abundant 

and is responsible for more than half the radiation associated with the greenhouse effect (Solomon and Srinivasan, 

1996). In 1992, at the Earth Summit in Rio de Janeiro, the United Nations Framework Convention on Climate 

Change (which included voluntary pledges to reduce greenhouse gas emissions) was opened for signature. 

Subsequent negotiations led to the 1997 Kyoto Protocol, under which the developed nations agreed to specified 

reductions in their emissions of greenhouse gases.  
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IPCC, (2007) stated that an increase in the atmospheric concentration of carbon dioxide (CO2) (from 280 

parts per million (ppm) in the pre-industrial era to 390 ppm in 2010, an enrichment of 39 percent) and other 

greenhouse gases (GHGs, such as nitrous oxide (N2O) and methane (CH4), may enhance radiative forcing and alter 

the Earth’s mean temperature and precipitation.  

Three strategies are available for lowering CO2 emissions to mitigate climate change (Schrag, 2007): (i) 

reducing global energy use; (ii) developing low or no-C fuel; and (iii) sequestering CO2 from point sources or 

atmosphere using natural and engineering techniques. 

The most voluminous greenhouse gas produced by humans is carbon dioxide (CO2). In calculating overall 

carbon emissions, the Protocol allows certain removals of carbon by a nation’s forests and soils — “carbon sinks” 

— to be counted and deducted from emissions. Thus, one option for mitigating greenhouse gas emissions — and 

thus possible climate change — is to increase the amount of carbon stored in forests. Mitigating climate change 

by enhancing forest carbon sequestration may be a relatively low-cost option and would likely yield other 

environmental benefits (CRS Report RL33826, 2007). Afforestation is regarded as an effective measure to prevent 

the global warming by sequestrating C both in biomass and in soil. Trees and understory vegetation assimilate 

carbon dioxide (CO2) from the atmosphere and store C in plant biomass. 

Trees act as a sink for CO2 by fixing carbon during photosynthesis and storing excess carbon as biomass. The 

net long-term CO2 source/sink dynamics of forests change through time as trees grow, die, and decay. In addition, 

human influences on forests (e.g. management) can further affect CO2 source/sink dynamics of forests through 

such factors as fossil fuel emissions and harvesting/utilization of biomass. However, increasing the number of 

trees might potentially slow the accumulation of atmospheric carbon (Moulton and Richards, 1990). Moreover, C 

sequestration in trees is also influenced by the variation of wood density. At identical volume, trees with higher 

wood density (most deciduous species) accumulate more C than those with light wood density (most coniferous 

species). 

The magnitude and progress of the changes in C storage following afforestation are highly various because 

of the influence of different factors, such as climatic condition, soil property, tree species, and present management 

(Paul et al. 2002). 

According to the FAO (2016), reforestation, afforestation, reduced deforestation and sustainable forest 

management would enable increased carbon sequestration. Examining natural carbon mitigation options that 

safeguard the production of food and fibre and habitat for biological diversity. Griscom et al., (2017) put forward 

the most feasible options that the maximum potential of these natural options is 23.8 PgCO2e2 y−1 at a 2030 

reference year. Appropriate forest management is vital for both carbon and forest productivity and to address 

potential risks from pests, disease, fire and extreme weather, as well as maintaining biodiversity. The soil in forests 

hold 39% of the carbon stored in soil and thus management practices need to address the soil carbon pool. 

The natural forest system is declining due to urbanization, expanding farm land requirement and increasing 

the demand of timber production (Chakravarty et al., 2011). These alterations cascade through the ecosystem, 

resulting in increased temperature altered rainfall patterns and degraded soil profiles. Hence, apart from fossil fuel 

combustion, decimation of forest and its products could also be a factor that aids in changing global climate. 

 
Figure 2: Carbon abatement in forest and fields: Source Cunningham et al., 2015 
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2.3 Estimation of Forest Carbon  

In order to recognize how forest ecosystems respond and feedback to climate change, we need to quantify carbon 

stocks in vegetation and soil in forest ecosystems. There are several methods currently used for estimation of forest 

biomass carbon (Yu et al., 2014): (1) Field measurement-based estimation using forest inventory data (Yu et al., 

2014). Biomass data is a basic requirement for the estimation of carbon density and storage and can be acquired 

in different ways but fieldmeasured data is the most basic, direct and authentic (Pan YD, Birdsey RA, 2013). These 

methods include (a) the mean biomass density method [MBM] that directly measures biomass in sample plots and 

uses the average of total plot biomass for each forest type to get biomass for that type, requiring only inventory 

data on forest area. A biomass expansion factor (BEF) is used to convert stem volume to biomass to account for 

all components of trees; (b) the continuous biomass expansion factor method (CBM) expands on the MBM by 

treating BEF not as a constant but as a function of forest age, stand density, and type of site; and (c) continuous 

BEF method (CBM). Fang et al., (2007) derived an equation that accommodates changing BEF values over time 

from inventory data on forest area and volume. (2) Remote sensing-based techniques. Remote sensing data such 

as satellite imagery to aerial photo-imagery from low-flying airplanes may provide a useful means for measuring 

carbon stocks in forests (Brown 2002). 3) Micrometeorological techniques such as Eddy covariance technique and 

their upscaling (Nabuurs et al., 2010). (4) Large-scale ecosystem models as BIOME-BGC, LPJ, ORCHIDEE, or 

DLEM (Tian et al., 2012).  

Each of these methods has its strengths and weaknesses (Nabuurs et al. 2010). For example, field 

measurement-based method provides estimates of both the carbon stock changes and the size of the stocks but has 

limited capability to forecast future changes. 

Ecosystem models can explore the importance of ecosystem physiological responses to climate variability or 

increasing CO2, but most of them do not yet consider natural or human-induced disturbances (Karjalainen et al., 

2003). So far, the estimates of the contemporary carbon balance still vary a lot (Nabuurs et al. 2010). 

Table 1: Comparison of summary processes for forest carbon estimation. Source: Gurung (2008) 

 
 

2.4 Carbon sequestration by tree plantations 

The idea of tree plantations as a sink for carbon dioxide has gained momentum over the last decade (Andrasko 

1990, Cairns & Meganck 1994). Though all the plant species having photosynthesis absorb a part of carbon from 

the atmosphere, trees are considered as the largest individual carbon sinks. Theoretically, the carbon absorbing 

capacity is high in the initial stages of plant growth because metabolism is comparatively high. One half of a tree’s 

dry weight is carbon (Nowak, 1994). 

Among the various methods available, allometric equations are the most common and reliable method for 

determining tree biomass (Gower ST et al., 1999) and carbon storage and flux (Gahagan A et al., 2015) and a large 

number of allometric biomass equations have been developed for different forest tree species in many parts of the 

world. Among the tree growth variables, diameter and height are most commonly used, due to their availability 

and easy to measure in forest inventories. 

The use of tree plantations can be multifunctional: soil rehabilitation, direct economic rewards and carbon 

sequestration (Parrotta, 1992). Nevertheless, improved techniques, including the use of mixed-species plantations, 

should be tested to determine the most effective and productive use of the land for carbon sequestration, 
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particularly in degraded lands (Brown et al., 1997). Results from previous research have indicated the capacity of 

the mixed-species stands to produce relatively high levels of biomass (Montagnini & Porras 1998). 

 

2.5 Litter carbon stock 

Globally, the litter C pool accounts for an estimated 5% (43 Pg) of all forest ecosystem C stocks (Pan et al., 2011). 

The Intergovernmental Panel on Climate Change recognizes litter carbon (C) as one of five C pools in forest 

ecosystems included in the Agriculture, Forestry and Other Land Use sector of annual national greenhouse gas 

inventories (IPCC, 2006). 

Interspecific differences in the production and decomposition rate of litters explain the variations in litter C 

storage (Finzi et al., 1998). Deciduous tree species have a higher annual production of litters than the evergreen 

coniferous species. However, previous research showed that pine and spruce had more litter C than beech and oak 

(Jandl et al. 2007). It is mainly attributed to the slow decay rate of needle litters determined by the chemical 

composition, such as soluble carbohydrates and lignin concentrations (Paul et al., 2002).  

 

2.6 Root carbon stock 

Roots are an essential yet poorly understood component of terrestrial ecosystems. They play an important role in 

the carbon (C) cycle by contributing a significant fraction of ecosystem net primary production (Vogt et al., 1996). 

According to the study conducted on forest soils of eastern Amazoˆnia, fine roots make up more than 50% of the 

total C found in the upper 10 cm (Telles et al., 2003). Although the highest density of root biomass is found close 

to the soil surface, roots extend to depths 415 m in seasonally dry forests in eastern Amazoˆnia (Nepstad et al., 

1994), where they are active in taking up water to sustain plant transpiration in the dry season (Jipp et al., 1998). 

Root lifetimes estimated in these studies ranged from 0.4 to 3.2 years. 

Plant roots contribute to soil carbon not only through their death and decomposition, but also by 

rhizodeposition resulting from exudation, mucilage production and sloughing from living roots (Reeder JD, et al., 

2001). In most temperate grassland ecosystems, 75–80% of the root biomass is in the top 30 cm of the soil but, 

because root growth, death and decomposition occur simultaneously and at different rates according to species and 

climatic conditions, accurate determination of carbon transfer from the various sources to the soil is difficult 

(Reeder JD, et al., 2001). 

Recently, Gaudinski et al. (2001) used radiocarbon to estimate the mean age of fine root C in temperate 

ecosystems by comparing the radiocarbon (14C) content of fine root structural material with the measured record 

of change for 14C in atmospheric CO2. Radiocarbon values measured in live, dead, and mixed fine roots from 

temperate deciduous and coniferous forests corresponded to an average of 3–18 years elapsed since C was fixed 

from the atmosphere for three temperate forest sites, longer than estimates of root lifetime previously reported in 

the literature. High 14C values in roots could reflect one of several causes: (1) roots are long-lived and the 14C 

content reflects the mean age of the root; (2) roots are constructed from C that is already high in 14C because of 

recycling or storage within the plant; or (3) roots are constructed from C taken up from the soil. 

The BGB, constituted by all the live roots, plays an important role in the carbon cycle by transferring and 

storing carbon in the soil. The dead litter biomass and woody debris are not a major carbon pool as these contribute 

to only small fraction of the carbon stocks of forests (Ravindranath N.H., Ostwald M., 2008).  Root growth allows 

for the placement of plant tissue directly into the soil, creating a root C pool as deep as the rooting system occupies. 

Some studies suggest that root C pool size and soil organic C pool size have a direct relationship and that most 

soil organic matter is derived from roots (Kong and Six, 2010). This would mean that a change in root inputs, such 

as that engendered by switching from annual to perennial systems, would have a direct impact on soil organic 

matter even deep into the soil profile. 

Temperature, moisture, O2, soil texture, and soil C levels all vary with soil depth and contribute to partial 

explanations for the size discrepancy between root and soil C pools.  

 

2.7 Agroforestry carbon sequestration 

Agroforestry systems are believed to have a higher potential to sequester C than pastures or field crops (Kirby and 

Potvin, 2007). This idea is based on the notion that tree incorporation in croplands and pastures would result in 

greater net aboveground as well as belowground C sequestration (Haile et al., 2008). 

Agroforestry practices like alley cropping and silvopastures have the greatest potential for conserving and 

sequestering carbon because of the close interaction between crops, pasture, trees and soil (Nair PKR, 1998). 

Agroforestry practices can reduce or remove significant amounts of GHGs through increased carbon storage in 

biomass above-ground and below-ground and in soil organic carbon (IPCC, 2019). Agroforestry is recognized as 

an important component in climate-smart agriculture (defined as agriculture that brings humankind closer to safe 

operating spaces across spatial and temporal scales for food systems, in the context of climate change (Neufeldt et 

al. 2013). 

The important elements of agroforestry systems that can play a significant role in the adaptation to climate 
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change include changes in the microclimate, protection through provision of permanent cover, opportunities for 

diversification of the agricultural systems, improving efficiency of use of soil, water and climatic resources, 

contribution to soil fertility improvement, reducing carbon emissions and increasing sequestration, and promoting 

gender equity (Rao KPC, Verchot LV, Laarman J, 2007). The International Panel on Climate Change (IPCC) 

estimates that the current worldwide area under agroforestry is 400 million ha, which results in a carbon gain of 

0.72 Mgha-1 year-1. It is estimated that the potential carbon gain could increase to 26×106 Mgha-1 year-1 by 2010 

and to 45×106 Mgha- 1 year-1 by 2040 (Watson RT, et al., 2000). The use of agroforestry crops is a promising 

tool for reducing atmospheric CO2 concentration through fossil fuel substitution. 

A large number of estimates of C sequestration and C losses in different land-use systems are available. Today, 

agroforestry is recognized as an integrated applied science that has the potential for addressing many of the 30% 

of foliage dry weight constitute C (Schroth et al., 2002). 

Global forestry and land use change combined, contributed annually about 4-6 PgCO2eq/y to the atmosphere 

in the years 1970 – 2009 (Smith et al., 2014). This is about 12% of the total amount of greenhouse gasses emitted 

annually. 

A summary of above-ground C-sequestration rates in some major agroforestry systems around the world is 

presented in Tab. 2. The table indicates that the estimates of CSP in agroforestry systems are highly variable, 

ranging from 0.29 to 15.21 Mg ha–1y–1. 

Table 2: Mean vegetation (above- and belowground) carbon-sequestration potential of prominent agroforestry 

systems. 

 
Establishing agroforestry on land that currently has low tree cover has been identified as one of the most 

promising strategies to raise carbon stocks on currently productive land without compromising food and fiber 

production (Albrecht and Kandji 2003; Montagnini and Nair 2004). Agroforestry is the deliberate integration of 

trees or other woody perennials into field crop or livestock systems, in order to exploit synergies and 

complementarities between different structural elements of the system. Agroforestry has been shown in many 

instances to lead to more diverse, more productive and more sustainable agricultural production than less integrated 

approaches (Nair 2007). 

Carbon stock increases resulting from conversion of treeless land to agroforestry have been estimated at 3 

Mg C ha−1 a −1 in tropical regions (IPCC 2000). Conversion of agricultural land to agroforestry has also been 

reported to entail substantial co-benefits for farmers, such as enhanced soil fertility, resilience to weather extremes 

and additional sources of farm income (Ajayi et al., 2007). 

Tree-based agricultural systems in many parts of the world have been shown to have higher carbon stocks 

than treeless farming systems (Luedeling et al., 2011; Nair et al. 2009a, b) and to provide more environmental 

services (Jose 2009; Paustian et al. 1998). 

Global carbon markets have opened up the possibility of payments to farmers for their contribution to climate 

change mitigation (Jose 2009). 
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Agroforestry systems in humid tropical regions can store substantial amounts of carbon, but little attention 

has been paid to potential carbon stocks in drier areas. Only Smith et al. (2008) provide an estimate for agroforestry 

in warm dry areas (at −0.73–1.39 Mg C ha−1 a −1 , with a mean of 0.33 Mg C ha−1 a −1 ), but these numbers 

were produced by assuming that agroforestry sequestered the same amount of carbon as agriculture with tillage 

and residue management.  

A study of carbon storage and nitrogen cycling in silvopastoral systems on sodic soils was carried out by 

Kaur et al., (2002). They observed that compared to ‘grass-only’ systems, soil organic matter, biological 

productivity and carbon storage were greater in the silvopastoral systems. 

The awareness of agroforestry’s potential for climate change adaptation and mitigation systems is growing 

worldwide (Nair et al., 2009; Schoeneberger et al., 2012) offering the greatest CO2 sequestration potential among 

different land use system by 2040 (Noble et al., 2000). Agroforestry enhances carbon uptake by lengthening the 

growing season, expanding the niches from which water and soil nutrients are drawn and, in the case of nitrogen 

(N)-fixing species, enhancing soil fertility (Nair, 2009). The result is that when agroforestry systems are introduced 

in suitable locations, carbon is sequestered in the tree biomass and tends to be sequestered in the soil as well (Jose, 

2009). 

Agroforestry system combines trees and shrubs (perennial) with agronomic crops (annual or perennial). 

Therefore, they have both forest and grassland sequestration and storage patterns active (Schroeder et al., 1993). 

Globally, an estimated 700, 100, 300, 450, and 50-ton ha-1 of land are used for tree intercropping, multistrata 

systems, protective systems, silvopasture, and tree woodlots respectively (Nair et al., 2012).  These practices have 

greater potential to increase carbon sequestration (Nair et al., 2009; Schoeneberger et al., 2009) 

Thus, management of agricultural systems to sequester carbon has been accepted as a partial solution to 

climate change (Morgan et al., 2010). Sustainably managing agroforestry system, carbon can be retained in these 

systems for centuries (Dixon, 1995). Additionally, agroforestry systems have been recommended to reduce soil 

erosion and improve water quality (WBCSD, 2010). It is also purposeful for a variety of benefits and services such 

as increasing crop yields, reducing food insecurity, enhancing environmental services, and resilience of 

agroecosystems (Ajayi et al., 2011). 

 

2.9. Soil carbon stock 

The term ‘‘soil C sequestration’’ implies removal of atmospheric CO2 by plants through photosynthesis, and 

storage as long-lived, storage of fixed C as soil organic matter that is not rapidly decomposed.  Soils are the largest 

carbon reservoirs of the terrestrial carbon cycle 1500–1550 Gt of organic soil carbon and soil inorganic C 

approximate 750 Gt both to 1 m depth. About 60% organic carbons in the form of soil organic matter (SOM), and 

the remaining inorganic carbon in the form of inorganic compounds (e.g., limestone, or CaCO3). It is estimated 

that SOM stores about twice as much carbon as the atmosphere, and about three times more than forests and other 

vegetation. The strategy of soil C sequestration is cost-effective and environmentally friendly (Lal, 2004a). 

Changes in soil organic carbon levels can have significant effects on atmospheric CO2 levels. Each 1% increase in 

average soil organic carbon content could reduce atmospheric CO2 by up to 2 % (State of Washington, 2012). Soil 

carbon sequestration is thus very cost effective and could take effect very quickly (FAO, 2008).   

The global soil carbon pool amounts to 2500 Gt (gigatons), whereas the biotic pool is 560 Gt (Lal, 2004). 

Most agricultural soils have lost 30% to 75% of their antecedent soil organic carbon (SOC) pool or 30 to 40 t C 

ha-1. On a global scale, carbon loss from soils is mainly associated with soil degradation, including accelerated 

erosion and mineralization, and land use change, and has amounted to 78+/- 12 Gt since 1850. Consequently, the 

present organic carbon pool in agricultural soils is much lower than their potential capacity (Lal et al., 2007). The 

global potential of soil organic carbon sequestration is estimated at 0.6 to 1.2 Gt C year, comprising 0.4 to 0.8 Gt 

C year through adoption of recommended management practices on cropland soils, 0.01 to 0.03 Gt C year on 

irrigated soils, and 0.01 to 0.3 Gt C year through improvements of rangelands and grasslands (Lal et al., 2007). 

More than 40% of the total organic C in terrestrial ecosystems is stored in forest soil1. Converting natural 

forests to agricultural land results in the mineralization of soil organic C (SOC), thus reducing SOC stocks and 

increasing atmospheric CO2 concentrations (Don, A. et al., 2011 and Harris, N. L.et al., 2012). 

The decreases in SOC following a land-use change are difficult to predict due to variations in the factors that 

drive SOC mineralization, e.g., forest type, climate, and soil properties (IPCC, 2007). Understanding the effects 

of these factors is important for assessing the C flux between the soil and the atmosphere and for understanding 

the feedbacks within the global C cycle (Mahecha, M. D. et al., 2010) 

SOM originally comes from atmospheric CO2 that is captured by plants through the process of photosynthesis.  
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Figure 3: Carbon cycle with a focus on soils. (From Department of Energy “Carbon Sequestration Research and 

Development” 1999.) http://www.osti.gov/scitech/biblio/810722 

SOM is a complex of carbon (C) compounds, and includes everything in or on the soil that is of biological 

origin. It includes plant and animal remains in various states of decomposition, cells and tissues of soil organisms, 

and substances from plant roots and soil microbes. 

Organic carbon in the form of humus, the dark, spongy organic matter in soils, is highly resistant to soil 

microbial decomposition. It can be stored in the soil for hundreds to thousands of years, while other SOM (e.g., 

partially decomposed plant residues) can be quickly released as CO2 back into the atmosphere (State of 

Washington, 2012). 

Based on its physical and chemical stability, SOC can be categorized into fast pool (decomposes within 1-2 

years), intermediate pool (partially stabilized organic carbon with turnover times in the range 10-100 years), and 

slow pool (highly stabilized soil carbon which takes 100 to 1000 or more years to decompose) (Lefèvre et al., 

2017). Over time, soil can thus serve as a carbon sink or source depending on soil properties, local climate and 

land use (IPCC, 2019). 

At a global scale the relative distribution of the forms depends strongly on climate (Table 3). In general, SOC 

content increases with precipitation, with optimum levels in humid and cold climates (Eswaran et al., 1999). SIC 

is more important in soils of arid and semiarid zones (Eswaran et al., 1999; Table 3). Whereas SOC storage is 

related to biophysical factors and management practices, SIC is relatively resistant to these factors.  Most soil C is 

found in organic form (Table 3; Eswaran et al., 1999), principally stored in the soil organic matter (SOM). SOC 

storage varies within regions and biomes 

Table 3: SOC and SIC storage in the world. Source: summarized from Eswaran et al., 1999. 

 
The West African region is heavily dependent on climate sensitive sectors like agriculture, pastoral practices, 
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forestry, fisheries, etc. These sectors are also C-based systems, emphasizing the pivotal role of both above and 

belowground C in the provisioning of ecosystem goods and services. SOC in various pools (either in plant biomass, 

litter or soil) constitutes a major driver of development in West Africa, and underlies major ecosystem services 

such as nutrient and soil moisture retention that contribute to plant productivity (Fischeret al., 2006). 

Soil C, productivity, and degradative processes are closely related (V°agen et al., 2005; Roose and Bath`es, 

2001). C sequestration in soil provides benefits of improved soil quality (fertility, water holding capacity, 

resistance to erosion) and ecosystem functioning through contributions to ecosystem services: biomass production; 

storing, filtering and transforming nutrients and water; reducing soil temperature extremes and soil water loss; 

improving soil structure, water infiltration and water-holding capacity; hosting the biodiversity pool; acting as a 

platform for most human activities; providing raw materials; acting as C pool; and storing geological and 

archaeological heritage (Craswell and Leffroy, 2001; Table 4). As an important indicator of soil quality, SOC 

sequestration and conservation becomes a strategy to achieve food security. Organic C stocks alone have been 

shown to describe 78% of the variability of maize yields in Nigeria (Smaling and Dixon, 2006). 

Table 4: Ecosystem services derived from soil organic carbon pool. Modified from Lal, 2004 

 
The newly increased soil C input under elevated CO2 may stimulate microbial degradation of soil organic 

matter decomposition, a phenomenon known as a “priming effect” (Bader and Cheng 2007). It has been shown 

that CO2-induced priming effect can override environmental effects (such as soil temperature, soil moisture, or 

soil properties) to accelerate soil organic matter decomposition rates, and hence resulting in expanded soil 

respiration to offset the extra soil C input due to increased plant growth, and a decrease in soil C content (Bader 

and Cheng 2007). Several studies have detected priming effects in temperate forests (Bader and Cheng 2007). 

Drake et al., (2011) also reported that total quantity of C entering the soil via litter fall and all belowground C 

inputs increased 17 % from c. 1.50 kg C m2 year1 under ambient CO2 to c. 1.75 kg C m2 year1 under elevated 

CO2. However, these increases in C entering the soil under elevated CO2 was matched by increased C loss 

attributable to significant increases in fine and coarse root respiratory fluxes (i.e., autotrophic respiration) and a 

significant increase in heterotrophic respiration (Drake et al., 2011). 

The effects of changes in soil management, such as increased soil disturbance and aeration, the addition of 

fertilizers, and changes in residue amount and quality, have often been cited as primary factors in the changes of 

soil organic matter from native levels (Gregory et al., 2016). 

Many factors interact to determine how much C is transferred between pools and how much C remains in a 

particular pool. Soil temperature, moisture, O2 availability (Fontaine et al., 2007) are important environmental 

variables controlling the rate of decomposition and soil texture, and existing soil C levels determine the length of 

time C remains in the soil (Rasse et al., 2005). 

Restoration of degraded soils has the potential to provide terrestrial sinks of C and reduce the rate of 

enrichment of atmospheric CO2. Woomer et al. (2004a) report a study in Senegal where the terrestrial C stocks 

ranged from 9MgCha−1 in degraded savannahs in the north to 113MgC ha−1 in the remnant forests of the River 

Senegal valley. The results of Woomer et al. (2004a) further showed that the estimated total C stocks were 1019 

Tg in 1965 and 727 Tg in 2000, indicating a loss of 292MTC over 35 years. 
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Table 5: Global carbon stocks in vegetation and soil carbon pools to the depth of 1 m (IPCC, 2000). 

 
 

2.10 SOC and climate change 

The relation between soil organic carbon and climate change seems interesting to study as they can influence each 

other. The impact of climate change (mainly temperature rise) on SOC pool is negative whereas soil can be either 

a source or sink of carbon based GHGs depending on the circumstances (Lefèvre et al., 2017). Climate change 

affects the soil organic carbon dynamics as climatic variables regulate the different terrestrial carbon components 

and the processes that occur in this system. 

Change in the global climate mainly temperature rise would affect soil organic carbon dynamics by altering 

its decomposition rate and plant litter production. Temperature increase would facilitate soil respiration, which 

lead to release of more GHGs into the atmosphere (Schlesinger, 1992). In addition, climate change affects the 

pattern of plant litter production (Cao & Woodward, 1998) which is the prime source of new SOC. 

Changes in amount of litter would likely lead a significant impact on the soil organic carbon stock dynamics 

and bio-geological cycles (Sayer et al., 2007). However, it is difficult to predict the impact of climate change on 

SOC due to the reason that litter production under climate change may decrease, increase or remain the same 

depending on the carbon dioxide concentration in the atmosphere (Cao & Woodward, 1998; Yurova et al., 2010; 

Cao et al., 2011). 

On the other side, SOC affects global climate by either being a source or sink of carbon based GHGs 

responsible for global warming. SOC serves as a sink to GHGs when atmospheric carbon dioxide is sequestrated 

by vegetation and the litter input from these plants ends up in the soil. 

 

2.11 Carbon sequestration in grasslands 

Grasslands and savannas cover 20% of the earth’s land surface (Lieth H, 1975) and store 30% of global soil organic 

carbon (Field C et al., 1998). Grasslands, including rangelands, shrublands, pastureland, and cropland sown with 

pasture and fodder crops, covered approximately 3.5 billion ha in 2000, representing 26 percent of the world land 

area and 70 percent of the world agricultural area, and containing about 20 percent of the world’s soil carbon 

stocks (FAOSTAT, 2009). A large part of the world’s grasslands is under pressure to produce more livestock by 

grazing more intensively, particularly in Africa’s rangelands, which are vulnerable to climate change and are 

expected nonetheless to supply most of the beef and milk requirements in Africa (Reid et al., 2004). 

Grassland ecosystems managed for livestock production represent the largest land-use footprint globally, 

covering more than one-quarter of the world’s land surface (Asner GP, et al., 2004). Global estimates of the relative 

amounts of carbon in different vegetation types suggest that grasslands probably contribute>10% of the total 

biosphere store (Eswaran H, 1993; Nosberger J, 2000). The annual Net Ecosystem Production (NEP) of temperate 

grassland is between 1 and 6 tC ha-1 yr-1 according to the radiation, temperature and water regimes, as well as to 

the nutrient status and the age of the sward (IPCC, 1996). Global estimates of the relative amounts of carbon in 

different vegetation types suggest that grasslands probably contribute>10% of the total biosphere store (Nosberger 

J, 2000). 

Primary production in overgrazed grasslands can decrease if herbivory reduces plant growth or regeneration 

capacity, vegetation density and community biomass, or if community composition changes (Chapman and 

Lemaire, 1993). If carbon inputs to the soil in these systems decrease because of decreased net primary production 

or direct carbon removal by livestock, soil carbon stocks will decline. 

In broad terms, grasslands are ecosystems in which the dominant vegetation component is comprised of 

herbaceous species. There have been many approaches to the classification of grasslands of the world, but 

inevitably there is an element of arbitrariness about this (Coupland, 1979). The broadest division is between 

temper-ate and tropical grasslands and this review focuses on the first of these. Of the temperate grasslands of the 

world, some have grasslands as their natural vegetation and some are anthropo-genic in origin. In areas where 
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grasslands are the natural climax vegetation (e.g. the steppes of central Asia and the prairies of North America), 

the rainfall is low enough to pre-vent the growth of forests 

 
Figure 4: The carbon cycle in grazed grassland showing the annual net change (Mg C ha−1 yr−1) for 

herbivores, vegetation and soils, where net biome productivity is equivalent to C sequestration. The C fluxes are 

shown for intensively grazed grassland at an annual stocking density of 2 livestock units (LSU) ha−1. (Source: 

Soussana et al., 2004.) 

Under existing management conditions, most temperate grasslands worldwide are considered to be C sinks. 

The higher rates in grasslands compared with arable systems is explained partly by greater supply of C to the soil 

under grassland ( Jackson  et al., 1996) and partly by the increased residence time of C resulting from the absence 

of disturbance by tilling. Additional reasons are: (i) a greater part of the input from root turnover and rhizode 

position is physically protected as POM; (ii) a large part of the POM is chemically stabilized (Gregorich  et al., 

2001); and (iii) aggre-gates tend to protect native organic matter from decomposition (Collins  et al., 2000; Six  et 

al .,2002). 

Like carbon sequestration in forests or agricultural land, sequestration in grassland systems – primarily, but 

not entirely in the soils – is brought about by increasing carbon inputs. It is widely accepted that continuous 

excessive grazing is detrimental to plant communities (Milchunas and Lauenroth, 1993) and soil carbon stocks 

(Conant and Paustian, 2002a). When management practices that deplete soil carbon stocks are reversed, grassland 

ecosystem carbon stocks can be rebuilt, sequestering atmospheric CO2 (Follett, Kimble and Lal, 2001). 

Using seeded grasses for cover cropping, catch crops and more complex crop rotations all increase carbon 

inputs to the soil by extending the time over which plants are fixing atmospheric CO2 in cropland systems. 

Rotations with grass, hay or pasture tend to have the largest impact on soil carbon stocks (West and Post, 2002). 

Adding manure to soil builds soil organic matter in grasslands (Conant, Paustian and Elliott, 2001). 

According to IPCC (2007a), the technical potential for reduction of CH4 emissions from manure estimates to 

be 12.3 Tg C yr-1 by 2030; N2O emissions could also be reduced. Adding manure in one place to build soil carbon 

stocks is offset by removal or what would be carbon inputs in another place (by forage or feed harvest). 

Globally, an estimated 0.2—0.8 Gt2 CO2 yr-1 could be sequestered in grassland soils by 2030, given prices 

for CO2 of USD20–50/tonne (IPCC, 2007a). 

Estimated rates of carbon sequestration per unit are lower than those for sequestration on agricultural land, 

but sequestration potential is comparable to that of croplands because grasslands cover such a large portion of the 

earth’s surface million ha of grassland worldwide have been degraded to some degree by mismanagement (Bridges 

and Oldeman, 1999). 

Grasslands contain a substantial amount of the world’s soil organic carbon. Integrating data on grassland 

areas (FAOSTAT, 2009) and grassland soil carbon stocks (Sombroek, Nachtergaele and Hebel, 1993) results in a 

global estimate of about 343 billion tonnes of C – nearly 50 percent more than is stored in forests worldwide (FAO, 

2007). 

Just as in the case of forest biomass carbon stocks, grassland soil carbon stocks are susceptible to loss upon 

conversion to other land uses (Paustian, Collins and Paul, 1997) or following activities that lead to grassland 

degradation (e.g. overgrazing). Over the last decade, the grassland area has been diminishing while arable land 

area has been growing, suggesting continued conversion of grassland to croplands (FAOSTAT, 2009). When 

grasslands are converted to agricultural land, soil carbon stocks tend to decline by an average of about 60 percent 

(Guo and Gifford, 2002). 

Grassland management practices that sequester carbon tend to make systems more resilient to climate 

variation and climate change: increased soil organic matter (and carbon stocks) increases yields (Pan et al., 2006); 

soil organic matter also enhances soil fertility; reducing reliance on external N inputs (Lal, 2009b). 
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2.12 Terrestrial Carbon stocks in Ethiopia 

Ethiopia is located at 2° 54’N-15° 18’ N latitude and 32° 42’E-48° 18’ E longitude. It is a land-locked country 

with a land area of 1.12 million km2 occupying a significant portion of the Horn of Africa. The country has diverse 

climate, geology and topography resulting in heterogeneity of soil types (Hurni et al., 2007; Mesfin, 1998). The 

forest resources of Ethiopia store 2.76 billion tons of carbon (about 10 billion tons of CO2 equivalents) in the 

Above Ground Biomass (AGB) (Moges et al., 2010). However, the forest resources in Ethiopia have experienced 

so much pressure due to the increasing need for wood products and conversion to agriculture. Indigenous 

conservation practices of forest resources in Southern Ethiopia are traditionally well developed. The south-western 

part of Ethiopia accounts for 18% of the country’s forest cover (Menker and Rashid, 2012). Ethiopia does not have 

carbon accumulation records databank to monitor and enhance carbon sequestration potential of different forests. 

According to Moges et al., (2010) report, Ethiopia woodlands are covering large areas and their carbon stock is 

much higher than high forests which are 1,263.13 million tons of carbon per 29.55 million hectare in woodland 

and 434.19 million tons of carbon per 4.07 million hectare in the high forest.  

National soil database carbon pools estimate, which currently does not exist in Ethiopia (Okolo et al., 2019). 

According to Adugna et al. (2013), information on carbon stocks of forest is limited in Ethiopia. Based on major 

landforms and altitudinal variations, the soils of Ethiopia can be grouped as highland and lowlands soils. The 

highlands of Ethiopia constitute more than 44% of the total area of the country (FAO, 1984) Vegetation and soil 

degradation are serious problems in both the highlands and lowlands of Ethiopia (EFAP, 1994) 

 Although there are case studies on soil carbon pools for selected parts of Ethiopia (Girmay et al., 2008) 

estimate on national soil carbon pools is missing. In spite of the limited knowledge of soils, data, variability and 

various forms of soil carbon and factor influencing the pools, attempt was done to estimate soil carbon pool in 

Ethiopia. (Table 1). The estimate was based on bulk density figures from African Highland Initiative (AHI 1997) 

and Mesfin (1998). Soil profile data were used from UNDP/FAO (1984) and estimates from Batjes (1996). Soil 

carbon stocks (tonnes C/ha) was calculated based on carbon concentration (%) and bulk density (BD) for each 

mean depth in the soil unit as described in Jones (2007). 

Table 6:  Preliminary Estimate of Soil Organic Carbon pool in Ethiopia 

 
**Hurni et al (2007) * Source CSA (2010) + (See also +++) +mean bulk density for profile AHI (1997) & Mesfin 

(1998) ++ mean distribution along profile (0-100 cm) is 50 cm for shallow soils (supplementary fact) +mean 

profile depth, organic carbon was based on AHI (1997), data from UNDP/FAO (1984) and Batjes (1996). 
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Table 7: Carbon stock potential of different forest ecosystems of Ethiopia. 

         Name T ha-1 

AGBC BGBC LHGsBC SOC TCS 

Adaba-Dodola CF Bazezew et al.,2014) 278.03 41.76 1.06 186.4 507.29 

Danaba CF (Bazezew et al., 2015) 278.03 41.76 1.06 186.4 507.29 

Egdu forest (Yohannes et al., 2015) 278.08 55.62 3.47 277.6 614.72 

Humbo forest (Chinasho et al., 2015) 30.77 14.46 12.55 168.2 225.98 

MauntZequalla forest (Girma et al., 2014) 273.2 47.6 6.5 57.6 348.8 

Tara Gedam forest (Gedefaw, 2015) 306.66 61.52 0.9 274.3 643.11 

Zequala Monastery forest(Girma et al., 2014) 237.20 47.60 6.99 57.62 349.41 

Meskel Gedam forest(Dagnachew Tefera, 2016) 146.34 29.27 3.03 131.79 310.43 

Anbessa forest(Yilma et al., 2010) 169.02 34 1.15 149 353 

Sekelemariyam State forest( Yitayal, 2016) 119.88 24.34 101.56 3.69 249.48 

Gera forest(Hassen, 2015) 217.27 43.54 5.08 172.62 440.71 

Simien Mountain NP (Assaye  and Asrat, 2016) 57.83 13.88 0.85 92.7 165.26 

Selected church forest in Addis Ababa(Tolla, 2011) 122.85 25.97 4.95 135.94 289.6 

Gesha-Sayilem forest(Admassu et al.,2019) 164.5 32.9 1.27 137.67 362.4 

AGBC and BGBC- above ground and below ground biomass carbon stock; TCS-total carbon stock; LHDsBC- 

litter, herbs and grasses biomass carbon; CF- community forest 

 

4. CONCLUSION AND RECOMMENDATIONS 

Global warming is among the greatest terrible horrors of the modern times. It is believed that carbon is among the 

most significant casual factors which cause global warming. In terrestrial system, in which carbon is retained in 

live biomass, decomposing organic matter and soil play an important role in the global carbon cycle. Carbon is 

exchanged between these systems and the atmosphere through photosynthesis, respiration, decomposition and 

combustion. Human activities are responsible for making changes in carbon stocks in these pools by changing the 

land use pattern of any area.  

Forests sequester and store more carbon than any other terrestrial ecosystem and are an important natural 

‘brake’ on climate change. When forests are cleared or degraded, their stored carbon is released into the atmosphere 

as carbon dioxide (CO2). Roots are an essential yet poorly understood component of terrestrial ecosystems. They 

play an important role in the carbon (C) cycle by contributing a significant fraction of ecosystem net primary 

production. Soil organic matter is a chief contributor to the carbon stocks of forests after AGB and soils, which 

are the major sources of carbon emissions following the deforestation. 

The implementation of improved land management practices to build up carbon stocks in terrestrial 

ecosystems is a proven technology for reducing the concentration of carbon dioxide (CO2) in the atmosphere – 

offsetting emissions from other sources and drawing down atmospheric CO2. 

The large populations of people who depend directly on grasslands tend to be poor and vulnerable to climate 

variability and climate change. Implementing practices to build – or rebuild – soil carbon stocks in grasslands 

could lead to considerable mitigation, adaptation and development benefits. 

 

RECOMMENDATIONS 

Afforestation is highly recommended as an effective measure to prevent the global warming by sequestrating C 

both in biomass and in soil.  

Implementing strategies available for lowering CO2 emissions to mitigate climate change, such as (i) 

Reducing global energy use; (ii) developing low or no-C fuel; and (iii) sequestering CO2 from point sources or 

atmosphere using natural and engineering techniques. 

Concerted effort should be made by different stakeholder in supporting agroforestry.  

The idea of Reducing Emissions from Deforestation and forest Degradation (REDD) which was conceived 

by (UNFCCC) should be effectively implemented as the main carbon emission reduction mechanism by 

developing countries like Ethiopia.  

Forest management should be enhanced and proposed as a way to mitigate the impacts of climate change and 

sustain the supply of ecosystem goods and services.  

Developing effective policies capable of growing terrestrial carbon sinks is a primal strategy for effective 

achievement in reducing the effect of global warming.  
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