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Abstract 

There are many research studies that highlight the benefit of combining more than one geophysical method to 

delineate the subsurface. However, only a small number of studies discuss the use of genetic algorithm to 

simultaneously invert magnetotelluric (MT) and vertical electrical sounding (VES) data. The purpose of this 

research is to evaluate the efficacy of using the genetic algorithm technique to simultaneously optimize and invert 

MT and VES data. For this study, a GA inversion code was written in MATLAB, consisting of two parts: a forward 

program and an inverse program. The inverse program has an inherent forward model, which it uses to produce an 

apparent resistivity (from the corresponding input model parameter). The goal of GA inversion is to generate the 

best model parameter (that is, thickness and resistivity) whose apparent resistivity curve matches the field data’s 

apparent resistivity curve or the synthetic data’s apparent resistivity curve. The forward and GA inversion 

programs were tested on synthetic and real MT and VES datasets. A total of 34 MT and 15 VES soundings were 

acquired from different geothermal fields in Tuscany, Italy. The theoretical apparent resistivity values of the model 

parameter are extremely similar to the measured (experimental) apparent resistivity values, according to analysis 

of the inversion data. This is indicated by the low root mean square error. Results from the simultaneous inversion 

of the synthetic MT and VES models revealed negligible (less than 0.4 percent) errors in resistivity and thickness 

for each layer. In both cases, the error recorded by the application on field VES data and field MT data was less 

than 5 percent and less than 19 percent, respectively. This shows that the GA inverse technique produces accurate 

estimations of subsurface characteristics. 
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1.0 Introduction 

Electrical resistivity and electromagnetic geophysical prospecting methods are among the most commonly used 

geophysical methods in the exploration industry. They are used for detecting geothermal and hydrocarbon 

reservoirs. An example of the electrical resistivity method is vertical electrical sounding (VES), and 

magnetotellurics (MT) is an example of the electromagnetic geophysical method. These methods give data that is 

used to image the subsurface resistivity (Snieder & Trampert, 1999).  

In the case of horizontal layering, VES can give information about the subsurface, such as its lithology, fluid 

content, and other geological properties. However, it is limited in its ability to determine lateral resistivity 

variations in shallow subsurface, at a more or less fixed depth of investigation. The equipotential method usually 

doesn't work because it's hard to figure out how to analyze the diagnostic features. This method involves mapping 

the equipotential lines on the surface of the earth when current is put into the ground through two-point electrodes.  

This shortcoming can be addressed when a combination of MT and VES is employed. A clear delineation of 

subsurface anomalies is possible by determining both lateral and vertical features. It is often essential to combine 

two or more geophysical methods. This helps to appropriately delineate varying geological strata. When both 

resistivity and electromagnetic geophysical methods are used on the same field, it is easier to make accurate models 

of the subsurface. When only one geophysical method is used, it can be hard to tell electrical anomalies apart based 

on their properties. Thus, through a simultaneous inversion, ambiguities in the interpretation process are reduced, 

and a good interpretation of the subsurface can be made. Also, since MT and VES result in finding the same 

physical parameters of the subsurface (apparent resistivity and thickness) through different procedures of data 

processing, interpretations are faster and simpler. Based on these, a simultaneous inversion of MT and VES data 

is feasible. 

Also, a simultaneous inversion of MT and resistivity is important because MT uses telluric currents (no need 

for current sources or long cables, greater depths of investigation, etc.), the magnetotelluric method of prospecting 

resolves the effects of individual layers better than traditional resistivity methods (like VES), and it's a great tool 

for looking into deeper depths while resistivity mostly deals with shallow depths in basins. 

Shallow geothermal reservoirs have different properties compared to deep ones. Thus, for subsurface 

geothermal reservoirs, some physical properties of the earth are of immense essence to observe, like the effects of 

reservoir heterogeneities (fluid content, salinity, and lithology), temperature, and frequency effects on electrical 
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conductivity. Shallow depth examination can be done with the resistivity geophysical method, while deep depth 

can be delineated with the magnetotelluric method. 

The genetic algorithm (GA) has proven to be a very powerful optimization approach in the field of geophysics 

as it produces better data-fitting models from real data. Hence, the GA method has found many applications in 

geophysical problems such as seismic ray tracing, earthquake location, non-linear data fitting, and seismic 

topography. These are well documented. Hamimu et al. (2015) used a genetic algorithm (GA) optimization 

technique encoded using a binary string of MATLAB source code for VES forward modeling and its inversion to 

find the best correlation between the synthetic data’s experimental apparent resistivity and theoretical (predicted) 

apparent resistivity curves, recording very low errors. LI et al. (2008) applied the GA optimization technique to 

invert 1-D CSAMT data with minimum structural constraint by inverting both apparent resistivity and phase data. 

The GA inversion codes were tested with synthetic data and field data. A root-mean-square error (misfit) of 1% 

was recorded when the GA inversion was performed on the 1D CSAMT field data. This indicates that the GA 

inverted resistivity models fit the true models well. Pavlova and Reid (2010) applied genetic inversion of 3D 

seismic to generate porosity variations in a formation. The real data were from porosity logs, which were smoothed 

to match the frequency of seismic data. Minimal errors were recorded at the wells between the smoothed and 

inverted porosities by using genetic algorithm inversion. 

 

1.1 Theory of VES 

Theoretically, vertical electrical sounding (VES) determines electrical resistivity by direct current (DC). In the 

VES method, which is a surface geophysical technique, an electrical current is injected into the ground through 

two electrodes, and surface voltages are measured to determine the direction and quantity of current flow in the 

subsurface. The data is used to image the subsurface resistivity. To increase the depth of investigation, the spacing 

(distance) between the two electrodes is increased (Kearey et al. 2013). 

VES data is commonly used in a variety of geophysical investigations, including groundwater exploration, 

mineral exploration, and environmental studies. In groundwater exploration, VES data can be used to identify the 

depth and thickness of aquifers and their hydraulic properties, which can help in the planning and management of 

groundwater resources. In mineral exploration, VES data can help to delineate the geological structures and ore 

deposits in the subsurface, which can guide the drilling and mining operations. In environmental studies, VES data 

can help assess the contamination and soil properties of a site. 

VES data can be analyzed using various inversion techniques to derive the subsurface model from the 

resistivity measurements. These techniques involve solving the inverse problem by calculating the subsurface 

resistivity distribution from the measured resistivity data. The accuracy and resolution of the subsurface model 

depend on the quality of the data and the inversion technique used. Apparent resistivity, a weighted average of the 

earth materials' resistance to current flow, is calculated using actual current and voltage measurements. This 

apparent resistivity can be referred to as measured, real, field, observed, or experimental apparent resistivity. For 

this study, the field data for VES was acquired using Schlumberger configuration (Figure 1), and the apparent 

resistivity (��.) was computed using the following Equation 1 (Lowrie, 2007): 

 

 

 

Figure 1: Schlumberger array for apparent resistivity measurement 

 

Figure 1: Schlumberger array for apparent resistivity measurement 

 �� =  � 4 �� 	 
� −  ��  	1� 

 

Where �� represents the apparent resistivity, The voltage between the two electrodes of the circuit is denoted 

by V. The two electrodes inject a direct current, denoted by I, into the ground. The current electrodes are separated 

by a distance of L, while the potential electrodes are separated by a distance of   . 
 

1.2 Theory of MT 

Magnetotelluric (MT) data is a geophysical method used to study the electrical resistivity of the subsurface. It 

involves measuring the natural electromagnetic fields, which are generated by the Earth's ionosphere and 

magnetosphere in response to the changing magnetic field of the Earth. The resistivity of the subsurface materials 

can be calculated from the measured variations in the electromagnetic fields. MT data can tell us about the lithology, 

fluid content, and mineralization of the subsurface, among other things (Kearey et al., 2013). 

MT data is commonly used in geophysical investigations, including mineral exploration, groundwater 

mapping, and crustal imaging. In mineral exploration, MT data can help identify potential mineral deposits by 
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mapping the geological structures and identifying conductive zones. In groundwater mapping, MT data can help 

delineate the aquifers and estimate their hydraulic properties. In crustal imaging, MT data can help study the deep 

crustal structure and understand the tectonic processes. 

MT data can be processed and analyzed using various inversion techniques to derive the subsurface model 

from the resistivity measurements. These techniques involve solving the inverse problem, by calculating the 

subsurface resistivity distribution from the measured electromagnetic data. The accuracy and resolution of the 

subsurface model depend on the quality of the data and the inversion technique used (Jones, 2012). The equation 

for calculating the apparent resistivity for MT data is shown below (Equation 2).  

� = ��������|��|�  	2� 

Where : � = apparent resistivity,  �% = permeability constant, � = angular frequency 

             �� = electric field along y – axis, �� = magnetic field along x − axis. 
 

1.3 Forward modelling 

MT and VES geophysical methods measure apparent resistivity data on the field. These measured (field) data can 

be determined with the aid of a mathematical equation and an input model (such as resistivity and thickness for 

VES and MT). Hence, finding the apparent resistivity (output) data with the aid of model parameters describes a 

forward modeling process (Figure 2). 

The forward modeling process for MT and VES methods will require model parameters of resistivity and 

thickness to generate apparent resistivity curves. 

 

 
Figure 2 -  Block diagram for forward modeling 

 

So, forward modeling is a computational technique used in geophysics to simulate the response of subsurface 

geological structures to various physical measurements. It involves creating a mathematical model that represents 

the physical properties of the Earth's subsurface, such as its electrical conductivity, magnetic susceptibility, seismic 

velocity, or gravity distribution. 

Forward modeling of VES (Vertical Electrical Sounding) data usually involves the following steps: first, 

defining the geometry and properties of the subsurface model. This involves creating a layered model that 

represents the different geological units or formations present in the subsurface. Each layer is assigned a resistivity 

value and layer thickness based on available geological information or assumptions. The second step is to use 

appropriate mathematical equations, such as the Wenner, Schlumberger, or Dipole-Dipole equations, to calculate 

the apparent resistivity at each electrode spacing for the given subsurface model. Noise or measurement errors are 

introduced into the calculated apparent resistivity values to simulate the realistic variability that can occur in field 

measurements. This helps make the forward modeling results more representative of actual survey conditions. 

In this research, the inverse filter developed by Ghosh (Ghosh, 1971b) was implemented in the forward 

modeling software to quickly compute apparent resistivity curves. This method is able to compute apparent 

resistivity curves for known layer parameters such as thickness and resistivity. Ghosh’s method is based on the 

application of a linear filter through a resistivity transform function, known as the kernel function (Koefoed, 1979). 

Using Ghosh’s inverse method involves two major steps. The first step is to determine the resistivity transform 

function, T(m), for an N-layer subsurface system using Pekeris recurrence relations (Equation 3). 

 23 = 2345 + �3 tanh	8ℎ3�1 + 2345	tanh	8ℎ3� �3⁄ � 	3� 

  

Where 23  represents 2	<� at the surface of the Earth, �3 represents the resistivity of the =>? layer, ℎ3  represents 

the thickness of the =>? layer, and 2@ represents �@ for the deepest layer. 

The second stage involves the convolution of sampled resistivity transfer values with Ghosh’s inverse filter 

coefficients, given by Equation 4. 
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��A = B C2ADCC  ;    F = 0, 1, 2, 3, … . I 	4� 

Where ��A is the apparent resistivity transform at point F,  F is the sample point where convolution is carried 

out, C is the filter coefficient. These equations are used to solve the forward modeling problem. 

It’s worth noting that the forward model is just a series of test runs to help generate the theoretical apparent 

resistivity curve from a known or assumed model parameter. This theoretical apparent resistivity curve would have 

been generated due to certain model parameters (assumed by the genetic algorithm) that are supplied to the forward 

model. The objective function statistically estimates the error between the measured (field) apparent resistivity 

and the theoretical apparent resistivity from the forward model. 

 

1.4 Inversion 

Apparent resistivity data are measured on the field through geophysical MT and VES geophysical methods. The 

measured apparent resistivity represents unknown earth models. The process of finding the earth model (thickness 

and resistivity) that describes the measured apparent resistivity data is termed "inversion". 

All inversion models have a forward model inherent in them. Any assumed model (resistivity and thickness) 

can be used to generate an apparent resistivity curve by using the mathematical equation of forward models. This 

curve generated from the inversion process is compared to the apparent resistivity curve, which can be generated 

from the field data. A statistical function called the root-mean-square (rms) value helps to estimate the error 

between the measured apparent resistivity curve and that of the inversion’s "apparent resistivity curve." If a low 

rms value is recorded, then the inversion’s "apparent resistivity curve" can represent the measured field data. Thus, 

the model (resistivity and thickness) that generated the inversion’s "apparent resistivity curve" is representative of 

the subsurface formation’s layers. 

The process of predicting models (resistivity and thickness) that can best describe the subsurface can be 

enhanced through optimization techniques such as genetic algorithms, simulated annealing, swarm optimization, 

neighborhood algorithms and particle swarm optimization. These are all stochastic data optimization techniques 

(Sen & Stoffa, 2013). 

1.4.1 GA inversion technique 

A genetic algorithm can be described as a computer program that mimics the process of evolution in nature. It 

applies the principle of natural selection of the best-fit individual from an initial population set to migrate to the 

next generation (of population) through genetic factors of crossover, mutation, inheritance, and selection (Figure 

3). 

1.4.1.1 Operators and Parameter Setting of Genetic Algorithm 

GA operates through the reproduction of "genetic operators" (parameters); thus, it conducts a neighborhood search 

to obtain a local or global minimum. This step involves selecting models for mating based on their fitness 

(objective function). A rank selection scheme is used to assign a probability to each model, and a new population 

is randomly extracted with computed probabilities. The genetic section of the inversion algorithm is carried out 

by the genetic operators, namely selection, crossover, and mutation (Klinger et al., 2008). Hence, better models 

with a lower misfit when compared to the measured field data have a higher chance of being included in the next 

generation and contributing to the reproduction of new models (offspring). Thus, in each generation, the best 

models are identified, resulting in an optimized final model parameter. 

1.4.1.2 Objective function 

It is a mathematical description of a linear programming problem in which the objective is to maximize or 

minimize a particular numerical value. The objective function describes the problem's optimization goal and how 

much each parameter (variable) contributes to it (Imperial.ac.uk, Department of Computing, 1996). 

The root-mean-square error (RMS) serves as the objective function to be reduced, and it is represented as: 

JKLM = N1I B	@
3O5 P3 −  Q3�� 	5� 

Where;  = Objective function, N = Total number of field data, Xi = Measured ith real data 

             Zi= The ith predicted model 

For the individual model parameters, we defined an objective function (), that was the average of root- 

means-squares  of  the  differences  between  the  real group  (apparent resistivity [ohm-m] and phase [m])   and  

the  calculated  group  apparent resistivity (apparent resistivity [ohm-m] and phase [rad]) .  

The optimization takes place within a constrain referred to as the search limit (space), consisting of upper and 

lower limits of the model parameters. These are the maximum resistivity and thickness (�<�� , ℎ<��� and the 

minimum resistivity and thickness (�<3S , ℎ<3S �. These model parameters are vector values. 

In this work, GA optimization was used to retrieve the true resistivity and thickness of each layer model. 
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These parameters were encoded as the gene type in the GA to be used for the genetic operation. For the synthetic 

earth model, a four-layer formation model was assumed, which consists of seven model parameters, namely, four 

(4) apparent resistivities and three (3) thicknesses. These were defined in the search area. An 8-bit binary string of 

28 was used to encode each parameter in the search area; this allowed for the transfer of binary information 

between the boundary parameters and any parameter of interest in the search region. To facilitate the genetic 

procedures, a "chromosome" was created by concatenating the binary strings representing all of the parameters in 

a subsurface structural model. Each chromosome was used individually to get the best possible answer, which 

represents a model of resistivity and thickness (Stoffa and Sen, 1991). 

1.4.1.3 Crossover 

This entails swapping of the substrings of two individuals in order to produce a new offspring, thereby varying the 

programming of a chromosome from one generation to the next (MathsIsFun, 2016).  This approach is likely to 

produce even better individuals by mixing good individuals, which are put into the next generation of the 

population (Imperial.ac.uk, Department of Computing, 1996). For our work we varied the cross-over fraction to 

obtain optimized model parameters. 

1.4.1.4 Mutation 

It provides GA-based inversion with a mechanism to avoid being trapped in local optima convergence, so the 

searching process goes to other areas of the search space. That’s why GA has the distinct characteristic of always 

providing global (error minima) optimization for every problem. To achieve this objective, which is global 

convergence, mutation has to diversify the generation created by randomly changing the gene in each chromosome; 

hence, it adds new characteristics that diversify the chromosomes into the next generation, resulting in identifying 

the best gene, which at the last generation gives the least RMS recorded for all the population runs. In this work, 

a constant mutation factor of 10% was maintained. 

1.4.1.5 Stopping condition 

GA optimization is known to be an iterative process. The iteration can end whenever the repetition process reaches 

a predetermined number of generations or by timing the iterations so as not to exceed a specified time (seconds). 

Other conditions that could be employed to terminate the iteration are when all the models (individuals) within a 

population have the same root-mean-square (fitness) value or when the root-mean-square is below a specified 

value. 

Create initial population (Generation Zero)

Calculate Fitness for each individual in 

Population

Selection

Crossover

Mutation

Calculate Fitness for each Individual in 

Population

Stopping condition Apply

Choose the individual with the Highest 

Fitness Value

End

Start

 
Figure 3: Flow diagram of Genetic Algorithm optimization [Source: Wirsansky, 2020] 
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2.0 Methodology 

2.1 Simulation Work Flow 

The simulation work for this paper consisted of four major stages: the main genetic algorithm codes (MAIN), the 

modeling of extracted synthetic and field data (MODEL), and the objective function, which is used to verify the 

validity of each predicted model’s retrieved true resistivity and thickness (of each layer) in relation to the measured 

field data. The final stage is the depth plot, which provides a subsurface view of the optimized true resistivity and 

thickness of the formation (Figure 4). 

 
 

2.2 Data acquisition and usage 

Fifteen (15) VES data points were acquired through a single sounding in Italy. The VES soundings were acquired 

with a Schlumberger array. Acquisition of the VES soundings was carried out with a maximum AB/2 distance of 

200 m electrode spacing. VES sounding plots are represented by the apparent resistivity (ohm-meter) and phase 

(degree). 

Also, 34 MT sounding data were acquired from a geothermal field in Toscany, Italy. The electrical resistivity 

structure of the earth was imaged using electromagnetic (EM) fields produced by the planet's natural environment. 

At an MT location, the MT instrument captures the horizontal electric and magnetic field components as time 

series. This data was used to generate a period-dependent impedance tensor. Robust processing techniques were 

used to process the time series to obtain tensor impedances like impedance skewness and ellipticity (Egbert & 

Booker, 1986). This aids in knowing the noise effect on the real data and the dimensionality to apply in processing 

the MT data collected. 

Magneto-telluric (MT) sounding plots are represented by means of two curves, namely those indicating 

apparent resistivity (ohm-meter) and phase (degree) as functions of period (time) or frequency. In the preparation 

of a depth model plot for the case of four formations (as done for the synthetic model in this work), seven (7) 

random parameters must be taken into account, including four resistivities and three thicknesses, each of which 

varies from zero to infinity. 
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2.2.1 Data Used 

Two main types of data were used in this work: synthetic data and real (field) data. The synthetic data described a 

four-layered (synthetic) earth model that was created with known thickness and corresponding resistivities (Table 

3.1). It was used to test the effectiveness of the simultaneous MT and VES inversion models developed. 

The real data consisted of MT and VES sounding data (taken from different fields in Tuscany, Italy). After 

the successful run of the simultaneous MT and VES inversion models on the synthetic data, the same simultaneous 

GA inversion codes were implemented on the field MT and VES data. The simultaneous GA inversion codes 

produced the MT and VES inversion models. The generated models described the subsurface layer properties by 

retrieving their thicknesses and corresponding resistivities. A depth plot was generated using the thicknesses and 

resistivities (Figure 5). 

Figure 5: GA inversion process, data used and program output. 

 

2.3 Description of the genetic algorithm used in the study 

First, the model parameters to be determined, namely, the true resistivity and thickness of each layer of the 

formation, were encoded on strings of binary digits and stored in the computer’s memory. The GA codes create a 

population made up of individuals (model parameters), which are stored in the computer’s memory. The model 

parameters (likely solutions) evolve through the natural selection process, such as mutation, cross-over, and 

inheritance. 

Each model (that is, true resistivity and thickness) is tested statistically and assigned a value to rate its 

closeness to measured data. This is achieved by using the objective function. This performs a statistical analysis 

by calculating the root-mean-square. Its value quantifies the errors in the estimated model from the field data 

(Snieder & Trampert, 1999; Forrest, S., 1993). 

After rating all the models (individuals) within a population based on the objective function criteria, models 

with their theoretical apparent resistivity curves much similar to that of the measured or field data’s apparent 

resistivity curves are kept and allowed into the next generation of models, made up of new populations (new 

models). 10% of the models in the new population were mutated (that is, flipping individual model parameters). 

Other model parameters were affected by crossovers (that is, recombination of model parameters to generate new 

offspring in the new population). These evolution factors optimize the final solution or model. 

In this work, the GA inversion process terminates whenever the number of renewed generations reaches a 

predetermined number, which ranges from 50 to 200. Determining which parameters to vary and use in the GA, 

such as population size and crossover probability, can be challenging, since no specific criteria exist for such 

determinations. Thus, several trial runs were conducted. GA optimization parameters such as selection, mutation, 

cross-over, population, and generation size, which were input values, were diversified until the set of parameters 

that were appropriate with respect to convergence rate and misfit value were chosen. A satisfactory root-mean-

square error was obtained for the simultaneous inversion of MT and VES synthetic models (Table 6) and the 

individual VES and MT data (Tables 7 and Table 8). 

 

2.4 GA inversion Application on Synthetic Data 

The developed simultaneous genetic algorithm inversion of MT and VES codes were tested on a four-layered 

synthetic earth model. The testing of the GA codes helps validate the GA inversion method before it is applied to 

a real data set. The MT synthetic data used for this earth model were the generated resistivity, thickness, frequency, 

and phase. For the VES synthetic data, the generated resistivity, thickness, and electrode spacing are the parameters 
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used. The synthetic data were assumed to be measured in a horizontally layered space and were generated from 

the forward model. 

 

2.5 GA Input Data for Synthetic VES & MT Data 

A four-layered structural (earth) model was assumed to generate the synthetic data (Tables 5 and 6). The upper 

three strata are positioned above the basement, which has an infinite thickness and a resistivity of 20 ohms/m. In 

the simultaneous GA inversion, we searched for the best combination of MT and VES resistivity and thickness 

for each layer. The total number of unknown parameters were four resistivities and three thicknesses. The upper 

and lower limits were placed in the search spaces of the model parameters (Table 1 and Table 2). 

We set constant upper and lower boundary conditions for the resistivity and thickness parameters, ensuring that 

the range is large enough to include all parameter values for the formation. As the GA inversion method is a 

stochastic procedure, it uses random numbers and identifies models near a global minimum solution. Several 

inversion runs were executed, where each inversion had a different population size, crossover fraction, and 

generation number. For each run, an optimal model was determined for the unknown parameters of resistivity and 

thickness (Table 5). 

Table 1: Structural model of MT data used in the test and search space assuming a four-layer model  
Synthetic Model Search Space 

Layer 

Number 

Resistivity (ohm-

m) 

Thickness (m) Frequency (Hz) Resistivity 

(ohm-m) 

Thickness 

(m) 

1 50 100 

1-10000 

0.01-150 0.1 -200 

2 10 100 0.01-100 0.1- 200 

3 100 200 0.01-100 0.1-250 

4 20  0.01-100 
 

 

Table 2: Structural model of VES data used in the test and search space assuming a four-layer model.  
Synthetic Model Search Space 

Layer 

Number 

Resistivity 

(ohm-m) 

Thickness (m) Electrode Spacing 

(m) 

Resistivity 

(ohm-m) 

Thickness 

(m) 

1 50 100 

1-10000 

0.01-150 0.1 -150 

2 10 100 0.01-100 0.1- 150 

3 100 200 0.01-100 0.1-250 

4 20  0.01-100 
 

 

2.6 GA Input Data for VES & MT real Data 

Table 3 and Table 4 show the input parameters for the GA-based inversion that were applied for the 1D modeling 

of MT and VES real data, respectively. For this GA-based inversion, we searched for an optimal resistivity and 

thickness for each layer. The total number of unknown parameters were four resistivities and three thicknesses. 

The upper and lower limits in the search spaces of the parameters are also listed (Tables 4 and 7 for VES; Tables 

5 and 8 for MT). 

The population size was set at 100, with a sub-population of 20 each [20 20 20 20 20] and a crossover of 0.5. 

The simulation terminated the iterations at 50 generations for MT and 200 generations for VES. Since this 

inversion method is a kind of probabilistic approach using random numbers, it finds models near a global minimum 

solution. Several inversion runs were executed, where each inversion had the same upper and lower boundary 

conditions for the resistivity and thickness parameters; these were made so large that they did not require any 

changes during each inversion process. 
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Table 3 - Input data for 1D MT for the GA-based Inversion 

Genetic Operation 

 (Initial Model) 

Resistivity [ohm.m] 

Thickness [m] 

Frequency [Hz] 

Noise [%] 

Smoothing Parameter  

Lower Boundary 
Resistivity [ohm.m] 

Thickness [m] 

Upper Boundary 
Resistivity [ohm.m] 

Thickness [m] 

Coefficient for LCI  

R
A

N
G

E
 - 

Initial Population  0 – 100 

Migration Interval 0 – 10 

Cross-Over  0 - 0.5 

Generation 0 - 50 

Table 4 - Input data for VES for the GA-based Inversion 

Genetic Operation (Initial Model) 

Resistivity [ohm.m] 

Thickness [m] 

Frequency [Hz] 

Noise [%] 

Smoothing Parameter  

Lower Boundary 
Resistivity [ohm.m] 

Thickness [m] 

Upper Boundary 
Resistivity [ohm.m] 

Thickness [m] 

Coefficient for LCI  

R
A

N
G

E
 - 

Initial Population  0 - 200 

Migration Interval 0 - 10 

Cross-Over  0 - 0.5 

Generation 0 - 200 

 

3.0 Result and Discussion  

3.1 Application on synthetic data: Simultaneous Inversion of four-layered model 

The assumed synthetic earth model has uneven formation resistivity with a corresponding thickness. Its third 

layer has the highest resistivity and thickness. The conductive layer (layer 2) is located between the high-

resistance formations (layers 1 and 3). The search limit required by the GA inversion technique to estimate the 

model parameters of this formation is presented in Table 5 for both MT and VES.  

Table 5: The synthetic earth model 

 
 

Synthetic Model VES Search Space MT Search Space 

Layer 

Number 

Resistivity (ohm-m) Thickness (m) Resistivity 

(ohm-m) 

Thickness 

(m) 

Resistivity 

(ohm-m) 

Thickness 

(m) 

1st layer 50 100 0.01-150 0.1 -150 0.01-150 0.1 -200 

2nd layer 10 100 0.01-100 0.1- 150 0.01-100 0.1- 200 

3rd layer 100 200 0.01-100 0.1-250 0.01-100 0.1-250 

4th layer 20  0.01-100  0.01-100  
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                           a)                                                    (b)                                             (c) 

Figure 6 - Fitting of synthetic(experimental) and predicted simultaneous MT&VES model; (a) Top: apparent 

resistivity as a function of frequency for the synthetic MT model; (a) Bottom: phase as a function of frequency for 

the synthetic MT model; (b) Middle: apparent resistivity as a function of electrode spacing for synthetic VES model 

(c) Depth plot of formation thickness as a function of apparent resistivity for the simultaneous MT and VES model; 

the red line indicates the synthetic data, and the blue line represents the predicted data. 

After extensive test runs, a population of 200, a generation of 200 and a cross-over fraction of 0.5 were 

considered adequate for the 1D simultaneous inversion of synthetic MT and VES data. When the forward modeling 

code was run, the results produced an apparent resistivity curve with 40 data points dispersed logarithmically. The 

theoretical apparent resistivity curves, the true and inverted resistivity models, and the observed (experimental) 

curves, are shown in Figure 6b. For MT, red dotted lines represent the model's curve for the observed apparent 

resistivity, and a blue solid line represents the model's predicted apparent resistivity, which is produced by the GA 

inversion (Figure 6a top). Likewise, for VES, the curve for the observed apparent resistivity of the model is 

illustrated by red solid lines, while the predicted apparent resistivity, which is produced by the GA inversion, is 

illustrated by a blue solid line (Figure 6b). The depth plot generated by the GA simultaneous inversion of the MT 

and VES synthetic models is shown in Figure 6c, where the red solid line represents the synthetic model depth 

plot and the blue solid line represents the predicted model depth plot. 

Figure 6 shows that the predicted apparent resistivity curve and the observed one are very similar. For this 

model, the apparent resistivity root mean square error is 0.31% (Table 6). The optimal subsurface parameters of 

the predicted model obtained by the GA simultaneous inversion of the MT and VES synthetic models are 

summarized below (Table 6), with a depth plot in Figure 6c. 

Table 6: Predicted model parameters for MT and VES synthetic data. 

Synthetic Model Predicted Model * 

RMS = 0.31% 

C.O =  0.8; GEN. = 200; POP.= 200 

Layer Number Resistivity  

(ohm-m) 

Thickness (m) Resistivity   

 (ohm-m) 

Thickness (m) 

1st layer 50 100 50.04 98.2 

2nd layer 10 100 10.67 109.2 

3rd layer 100 200 104.91 190.99 

4th layer 20  20.01  

*RMS: Root-mean-square error, C.O: cross over fraction, GEN: Number of generations   POP: Number of 

population (individual models) 

The root-mean-square (RMS) gives an indication of the accuracy of the GA inversion technique. It represents 

the percentage deviation of the predicted model’s apparent value from the measured (experimental) data. Equation 

(3) was used to quantify the apparent resistivity curve error, referred to as the root-mean-square error. The error 

recorded for the predicted model was less than 0.31%. It can be seen from Table 6 that the inverted parameters are 

close enough to the synthetic model, which in turn suggests a reliable estimate of layer parameters by the GA 

optimization technique. 

An error margin of less than 0.31% was recorded in this work when the simultaneous GA inversion technique 

was implemented on a four-layer synthetic MT and VES data. This is similar to that reported by Hamimu et al 
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(2015) who applied GA inversion on VES synthetic data and Wijanarko and Grandis (2019) who applied it on MT 

synthetic data. 

Hamimu et al. (2015) applied the GA inversion technique on several VES synthetic earth models, and all the 

synthetic models reported an error margin less than 5% for each layer, while Wijanarko and Grandis (2019) 

generated three layered earth models from MT synthetic data. They employed the genetic algorithm to find the 

model parameters for the 1D MT synthetic data. The root-mean-square error recorded between the inverse model 

and the synthetic MT data was less than 7%. This shows the applicability of the GA optimization techniques in 

estimating the model parameters of both VES and MT synthetic data. 

  

3.2 Application of GA inversion on observed (real) Field Data 

3.2.1 Standard 1D VES Inversion 

The search limit required by the GA inversion technique to estimate the model parameters of the real VES data is 

presented in Table 7. After several trials, a population size of 200 with 100 generations and a cross-over fraction 

of 0.5 were considered for the 1D simultaneous inversion of observed (real) VES data. Optimal results were 

obtained when a 4-layer earth model was used in the modeling of the real VES data. The first, second, and third 

layers recorded an average resistivity of 10.16 ohm-m, 23.39 ohm-m, and 5.41 ohm-m, respectively, with 

corresponding average formation thicknesses of 5.18 m, 13.25 m, and 28.18 m. The third layer, which has the 

largest formation thickness, is also the least resistive (indicating the presence of an aquifer). 

Table 7: True model, search space and genetic operators for 1D VES inversion 

 Predicted Model 

Number of 

layers 

Search space for GA inversion 

(Resistivity and thickness boundary) 

RMS = 4.31%  

�<3S  

(Ω. 8� 

�<�� Ω. 8� 

ℎ<3S  

(m) 

ℎ<��  

(m) 

C.O = 0.5    GEN. = 100  POP. = 200 � 	Ω. 8� 

h 	8� 

1st layer 0.1 20 0.1 15 10.16 5.18 

2nd layer 0.1 15 0.1 20 23.39 13.25 

3rd layer 0.1 10 0.1 30 5.41 28.18 

4th layer 

(Half space) 

0.1 50   30.00  

The apparent resistivity curve produced by the forward modeling code's run consists of 15 logarithmically 

distributed data points. The observed (field) data and predicted apparent resistivity curves, along with the inverted 

resistivity model’s depth plot, are shown in Figure 7. The curve of the observed apparent resistivity of the model 

is illustrated by blue solid lines, while the predicted apparent resistivity is illustrated by a red solid line (Figure 7). 

The predicted model’s depth plot is shown by a blue solid line in Figure 7b. It can be seen from this figure that the 

subsurface layers were clearly delineated by GA inversion of VES field data, with a RMS error margin of 4.31% 

(Table 7). 
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Figure 7 - Fitting of observed and predicted VES 1D model (a) apparent resistivity as a function of electrode 

spacing for 1D VES data; (b) depth plot of formation thickness as a function of apparent resistivity for 1D VES 

predicted model. 

The GA optimization technique, when applied to other measured VES data, reliably modeled the subsurface 

layer. Jha M.K. et al. (1998) applied the GA inversion technique to interpret field apparent resistivity data and later 

correlated the interpretation with available well logs in the same field. They recorded a root-mean-square error of 

less than 10% for 29 sites out of 38 that were investigated. 

3.2.2 Standard 1D MT Inversion 

For a 1D MT model of the subsurface from the real MT measurement, 7 layers were assumed. After several trials, 

the following GA operator parameter inputs were considered for the inversion of the MT observed data: population 

size of 200, 100 generations, and a cross-over fraction of 0.5. The average thickness for each layer was 9.4 m, with 

an average resistivity of 21.7 ohms per meter. A root-mean-square of 18.3% was recorded. It also shows that layer 

6 is the least resistive layer with a resistance of 5 ohms per meter and a thickness of 8.9 m (Table 8). 

Table 8: Predicted model, search space and genetic operators for 1D MT inversion 

 Predicted Model 

Number of 

layers 

Search space for GA inversion 

(Resistivity and thickness boundary) 

RMS = 18.3%  

�<3S  

(Ω. 8� 

�<�� Ω. 8� 

ℎ<3S  

(m) 

ℎ<��  

(m) 

C.O = 0.5    GEN. = 100  POP. = 200 � 	Ω. 8� 

h 	8� 

1st layer 0.1 40 0.1 15 32.00 10.00 

2nd layer 0.1 20 0.1 15 16.00 9.00 

3rd layer 0.1 20 0.1 15 17.00 11.00 

4th layer 0.1 40 0.1 15 29.00 8.00 

5th layer 0.1 30 0.1 15 22.00 10.00 

6th layer 0.1 10 0.1 15 5.00 8.90 

7th layer (Half 

space) 

0.1 40   31.00  

The 34 data points that made up the forward modeling code's output for the observed apparent resistivity 

curve were dispersed logarithmically. The observed (field) data and predicted apparent resistivity curves, along 

with the inverted resistivity model’s depth plot, are shown in Figure 8. The curve of apparent resistivity against 

frequency shows red dotted lines for the observed apparent resistivity, while the predicted apparent resistivity is 

illustrated by a blue solid line (Figure 8a (top)). Likewise, the curve of phase against frequency shows the observed 

apparent resistivity of the model with red dotted lines, while the predicted apparent resistivity is illustrated by a 

blue solid line (Figure 16a (bottom)). The predicted model depth plot is shown by a blue solid line in Figure 8b. It 

can be seen from this figure that the subsurface layers were clearly delineated by GA inversion of MT field data, 
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with a RMS error margin of 18.3% (Table 8). 

 

                              (a)                                                            (b) 

Figure 8:  Fitting of observed (experimental) and theoretical MT 1D model;((a) Top) Apparent resistivity as a 

function of frequency for the inversion of test MT 1D data; ((a) Bottom) Phase as a function of frequency for the 

inversion of real 1D MT data. (b) Depth plot of subsurface resistivity as a function of depth (thickness) inverted 

from 1D MT  data. 

The GA optimization technique, when applied to the observed and measured data, reliably modeled the 

subsurface layer. Shi et al. (2000) applied the MGA (Multi-scale Genetic Algorithm) to over 20 magnetotelluric 

data sets. For a six-layer model, he recorded a root-mean-square error of 16.6%. The identified formation layers 

correlated well with drilled well-bore data. This further shows the applicability of GA inversion of MT data in 

delineating the subsurface layers, with a root mean square error (RMSE) less than 20%. 

 

4.0 Conclusion 

The stochastic GA-inversion method was encoded in the MATLAB programming language and was successfully 

tested by applying the simultaneous GA inversion on synthetic MT and VES data to determine the model 

parameters (thickness and resistivity) of a synthetic earth model. For the synthetic data, it generated model 

parameters of resistivity and thickness with a root-mean-square error less than 0.31%. 

The GA inversion codes were also applied separately to field MT and VES data. For the VES data, a RMSE 

was less than 5%, and that for MT was less than 20%. For the separate 1D models of VES and MT GA-based 

inversions, the formation depth models were satisfactorily delineated, giving a four-layer depth model and a seven-

layer depth model for VES and MT, respectively. 

This indicates the applicability of GA inversion in interpreting measured field data. Though the GA inversion 

program in this project can inverse both MT and VES data at the same time, it is only capable of accepting one 

input. This gives credence to the robustness of the simultaneous GA inversion program. Again, the low RMS 

values recorded for the synthetic and field MT and VES data during the inversion clearly show that simultaneous 

inversion of the VES and MT data sets by the GA optimization technique is feasible and effective in modeling 

subsurface layers. 

To improve the lateral description of subsurface formation, lateral constraints can be included in the GA 

inversion technique to further examine the horizontal variation of resistivity in the subsurface. One major limitation 

of this work was the inability to apply the simultaneous GA inversion technique to both VES and MT data sets 

measured from the same field (location). It will be prudent for this to be done whenever such data is available. 
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