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Abstract 

Iron can often be a problematic substance in water resources; its presence in water causes unpleasant odours, taste, 
colour, and staining on clothes. In this study, water samples (n = 70) were collected from existing boreholes within 
the Yenagoa area and subjected to laboratory analysis in order to examine the spatial distribution and trends of 
iron concentration in groundwater. Landuse/landcover (LULC) was also acquired from the Environmental Systems 
Research Institute (Esri) via Sentinel-2 10-Meter LULC, utilizing the geostatistical method. The distribution 
analysis, including the histogram and Q-Q plot, indicates a positively skewed distribution, potentially normal. A 
quadratic pattern in iron concentration trends was revealed using the ArcGIS 10.5 application tool. From the results, 
descriptive statistics present a mean of 0.35 mg/L, a standard deviation of 0.17 mg/L, and a positive skewness of 
0.88. The spatial distribution map highlights areas below and above the WHO permissible concentration of 0.3 
mg/L, while hotspot analysis identifies regions exceeding the standard stipulated guideline with confidence levels 
ranging from 90% to 99%. Comparative analysis of geostatistical models favors the Gaussian model for accurate 
predictions due to its low standardized mean error. The non-normally distributed iron concentration in Yenagoa 
suggests localized areas with elevated concentration levels. In addition, spatial analysis and LULC analysis 
conducted based on the laboratory results distinguished regions adhering to and those deviating from WHO 
guidelines, underscoring the need for targeted intervention and the importance of tailored strategies for areas with 
elevated accumulations. Understanding iron concentration distribution and trends is imperative for devising 
strategies to mitigate potential environmental and health risks. 
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1. Introduction 

Access to safe and clean drinking water is crucial for human health and well-being (Oliveira, 2017; Oki and Eteh, 
2018; Howard and Bartram, 2003). In Bayelsa State, Nigeria, a significant portion of the population relies on 
groundwater for domestic purposes (Oboshenure et al., 2019). However, concerns about groundwater quality in 
the Yenagoa LGA have emerged due to elevated levels of iron (Peterside et al., 2022; Nicholas, 2023; Oki and 
Akana 2016). High iron concentrations in drinking water can cause undesirable aesthetic issues such as 
discoloration, unpleasant odor, and staining. Moreover, excessive iron intake can lead to potential health 
complications like gastrointestinal disturbances and iron overload, a condition characterized by excessive iron 
accumulation in the body (World Health Organization, 2011; Siah et al., 2005). Previous studies in the region have 
primarily focused on assessing overall groundwater quality using basic statistical methods (Opukumo and Oki, 
2021; Richard and Aseibai, 2021). While these studies provide valuable insights, they lack the spatial dimension 
necessary to understand the variability of iron levels across the LGA. Geostatistics offers a powerful set of tools 
and techniques specifically designed for analyzing and interpreting spatial data. By incorporating spatial 
information, geostatistical analysis can reveal patterns, trends, and potential influencing factors that might 
otherwise be overlooked by traditional statistical methods (Isaaks and Srivastava, 2001; Goovaerts, 1997; Banerjee 
et al., 2014).  The Yenagoa LGA, characterized by its dense population and high dependence on groundwater for 
both domestic and agricultural purposes, presents a compelling case for the application of geostatistical methods. 
These methods can provide insights into the spatial distribution of iron levels in the groundwater, contributing to 
a more comprehensive understanding of the issue. By identifying spatial patterns, geostatistical analysis can 
facilitate the identification of areas with elevated iron concentrations, enabling targeted interventions. 
Understanding the spatial distribution of iron levels is crucial for implementing effective strategies to address the 
issue. For instance, areas with high iron concentrations can be targeted for alternative water sources or the 
implementation of iron removal technologies. This targeted approach is essential for protecting residents from 
potential health risks associated with excessive iron intake. Geostatistical methods have been widely 
acknowledged for their ability to unravel complex spatial patterns and guide decision-making in various fields. In 
the context of water quality, the work of Heuvelink (1998), Goovaerts (1999), Krige (1951), and Wackernagel 
(2003) underscores the importance of incorporating spatial information into the analysis. Applying geostatistical 



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)  

Vol.14, No.3, 2024 

 

25 

techniques in the Yenagoa LGA not only contributes to a more nuanced understanding of the spatial distribution 
of iron levels but also empowers policymakers and local authorities to implement targeted interventions that 
address specific areas of concern. 
 
2. Materials and Methods 

2.1 Study Area 

The study area is Yenagoa, the capital city of Bayelsa State, Nigeria. It is located in the heart of the Niger Delta 
basin (Figure 1). Spanning latitudes 4˚58'30''N - 5˚3'30''N and longitudes 6˚16'0''E - 6˚22'0''E, Yenagoa boasts a 
population of 352,285 (National Population Commission 2006) and is projected to reach 524,400 by 2022 
(https://citypopulation.de/en/nigeria/). Well-connected by roads, the city rests on low-lying terrain with a peak 
elevation of 37 meters (Figure 2). Farming, fishing, and small-scale sand extraction from waterways are the 
mainstays of the local economy (Eteh et al., 2019). Geologically, the area sits on the southwestern edge of the 
Niger Delta, extensively studied by Reyment (1965) and others. The basin itself formed due to a failed rift junction, 
marking the separation of South America and Africa and the opening of the South Atlantic (Doust & Omatsola, 
1990). Rifting began in the Late Jurassic and ended in the Mid-Cretaceous (Short & Stauble, 1967). The region is 
riddled with faults, mostly of the thrust type. 

 
Figure 1: Sample Points within the Study Area 
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Figure 2: Digital elevation map of study area 
 
2.2 Sample Collection and Analysis 

Seventy groundwater samples were collected from boreholes strategically distributed across Yenagoa LGA, 
Bayelsa State, ensuring adequate coverage of the study area. The sampling locations were georeferenced using a 
Global Positioning System (GPS) device. Iron concentrations were determined in the laboratory using standard 
analytical procedures, while landuse/landcover were acquired from the Environmental Systems Research Institute 
(Esri) via Sentinel-2 10-Meter Land Use/Land Cover https://livingatlas.arcgis.com/landcoverexplorer/# 
 

2.3 Geostatistical Analysis 

This study employs geostatistical methods, which assume that natural phenomena can be modeled by random 
processes exhibiting spatial autocorrelation (Issaks and Srivastava 2001: Chowdhury et al. 2016). Through these 
techniques, we: 

 Predict values at unsampled locations: This allows us to estimate the values of groundwater parameters 
at points where measurements were not taken. 

 Assess uncertainty in predictions: Geostatistics provides measures of confidence in the estimated values, 
allowing us to understand the limitations of our predictions. 

 Model spatial patterns: By analyzing the spatial relationships between data points, we can gain insights 
into the underlying processes governing the distribution of groundwater parameters. 

Ordinary Kriging for interpolation: The values at unmeasured locations were calculated using Ordinary Kriging, 
a geostatistical interpolation method based on the concept of spatial autocorrelation (Allard ,2013). This method 
is used to estimate the value of a variable at an unsampled location based on its values at sampled locations.  
Exploratory spatial data analysis: Before applying interpolation techniques, the data was explored using tools 
provided in the ArcGIS 10.5 Geostatistical Wizard. These tools include: 

 Histogram: This provided insights into the distribution of data points, helping us understand the range 
and frequency of values. 

 QQPlot: This allowed us to assess the normality of the data, which is important for certain geostatistical 
analyses. 

 Trend analysis: This helped us identify any global trends or patterns in the data that might influence the 
spatial distribution of groundwater parameters. 

 Semivariogram: This is a key tool in geostatistics, used to quantify the spatial autocorrelation in the data. 
It reveals how the similarity between data points changes as the distance between them increases. 
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The kriging estimate at a location x0 is given by the following formula: 
Z(x0) = ∑ λi * Z(xi) 
where: 

 Z(x0) is the estimated value at location x0 
 Z(xi) is the value of the variable at the i-th sampled location xi 
 λi are the kriging weights assigned to each sampled point, such that they sum to 1 

The weights λi are determined by minimizing the variance of the kriging estimate subject to the unbiasedness 
condition. This minimization problem leads to a system of linear equations that can be solved for the weights. 
 

2.4 Model Fitting 

Spatial autocorrelation, a fundamental concept in geostatistics, describes the tendency for closer things to be more 
alike than those farther apart. This relationship is vital for predicting unknown values in groundwater studies. 
Semivariograms, a statistical tool, quantify this spatial dependence. However, choosing the appropriate model for 
these semivariograms significantly impacts prediction accuracy. This study evaluated six models (circular, 
Gaussian, tetraspherical, exponential, spherical, and stable) for predicting iron (Fe) concentrations in groundwater. 
The best model was identified through cross-validation, considering various statistical metrics: 
1. Mean Error (ME): 
  ME = ∑ (y_i - ŷ_i) / n 
where: 

 y_i is the true value for the i-th data point 
 ŷ_i is the predicted value for the i-th data point 
 n is the total number of data points 

2. Root Mean Square Error (RMSE): 
  RMSE = √(∑ (y_i - ŷ_i)^2 / n) 
where: 

y_i and ŷ_i are the same as in the ME formula 
3. Average Standard Error (ASE): 
  ASE = ∑ (SE_i) / n 
where: 

 SE_i is the standard error for the i-th data point 
4. Root Mean Square Standard Error (RMSSE): 
  RMSSE = √(∑ (SE_i)^2 / n) 
where: 

 SE_i is the same as in the ASE formula 
Interpretation: 

 Mean error (ME): ideally close to zero for optimal model performance. 
 Root mean square error (RMSE): should be close to the average standard error (ASE) for accurate 

predictions. High RMSE values indicate overestimation, while low values signify underestimation. 
 Average standard error (ASE): This reflects the inherent variability in the data. 
 Root mean square standard error (RMSSE): Values close to 1 indicate accurate predictions; values above 

1 suggest overestimation, while those below 1 denote underestimation. 
 

2.5 Spatial autocorrelation  

Spatial autocorrelation analysis is conducted to explore potential factors influencing the spatial distribution of iron 
levels. This analysis examined the relationships between iron concentrations and various environmental variables, 
such as distance to rivers, elevation, and land cover types. 
 
3. Result and Discussion  

3.1 Trend Analysis 

To gain deeper insights into the iron concentration in Yenagoa's groundwater, a comprehensive analysis was 
conducted for the year 2023. This study employed a diverse set of analytical tools to evaluate data normality and 
discern underlying trends, shedding light on the dynamics of iron concentration in the region. 

The first step in the analysis involved a meticulous examination of the distribution of iron concentration data 
for the year 2023.  Figure 3 is histogram that visually represents the frequency distribution of the data. Notably, 
both the mean and median were found to be in close proximity, suggesting a potential normal distribution. However, 
a closer inspection using skewness analysis uncovered a positive skew, indicating a departure from perfect 
normality. 
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Figure 3: Histogram Plot of GroundwaterIiron Concentration Fe (mg/L) 

To further validate the normal distribution, a (Q-Q) plot was generated (Figure 4a). The Q-Q plot reinforced 
the notion of a normal distribution, as the data points closely aligned with the expected quantiles along the straight 
line. This dual approach provided a nuanced understanding of the data's distribution characteristics, highlighting 
both the normality tendencies and the subtle skewness. 

Moving beyond distribution analysis, the study delved into the identification of trends within the iron 
concentration data. Leveraging the ArcGIS Trend Analysis tool, a comprehensive assessment was conducted, 
revealing underlying patterns. When the data was rotated at 30°C, a distinctive U-shaped curve emerged, indicative 
of a second-degree trend. To enhance the clarity of the dataset for subsequent analysis, this trend was meticulously 
removed, creating a smoother surface 

 
Figure 4a: Q-Q Plot Groundwater Iron Concentration Fe(mg/L). 
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Figure 4b: Trend Analysis of Iron concentration Fe(mg/L) in Groundwater 

A three-dimensional (3D) visualization technique was then employed, projecting the data onto the east-west 
and north-south planes (Figure 4b). The trend analysis tool was applied once again, fitting a polynomial line 
through the projected points. The resulting visualization showcased a conspicuous quadratic trend, depicted by the 
white and black lines in Figure 4. This observation unequivocally confirmed the presence of a non-linear pattern 
in the iron concentration data. 

 
3.2 Iron Concentration Fe (mg/L) 

Iron (Fe) is a naturally occurring element found in groundwater, but its concentration can vary significantly 
depending on various factors like geology, aquifer characteristics, and human activities. Understanding the spatial 
distribution of Fe in groundwater is crucial for assessing water quality, potential health risks, and developing 
effective management strategies. 

This analysis focuses on Fe concentration in groundwater samples collected from a specific part of Yenagoa, 
Bayelsa State, Nigeria, as presented in Table 1. The Table provide descriptive statistics for Fe concentration, 
including the mean (0.35 mg/L), standard deviation (0.17 mg/L), and range (0.05-0.92 mg/L). Additionally, the 
table compares the average Fe concentration to the World Health Organization (WHO) 2011 guideline of 0.3 mg/L 
for drinking water. 

Standard Deviation: The standard deviation of 0.174 mg/L reveals that some samples deviate significantly 
from the mean, potentially indicating areas with higher or lower iron concentrations. 

Skewness and Kurtosis: The positive skewness value (0.88) shows that the distribution is skewed towards 
higher iron concentrations, with a few outliers potentially contributing to this. The kurtosis value (4.12) further 
indicates a distribution with heavier tails compared to a normal distribution, implying a higher probability of 
extreme values. 

Quartiles and Median: The median iron concentration (0.36 mg/L) is slightly higher than the mean, indicate 
that a majority of the samples have iron levels exceeding the WHO guideline. The 1st quartile (0.24 mg/L) 
indicates that at least 25% of the samples have iron concentrations below the guideline. 
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Table 1: Descriptive statistics result of groundwater concentration of Iron in the Study area 
Parameter Value 

Count 70 
Minimum 0.05 
Maximum 0.92 

Mean 0.35 
Standard Deviation 0.17 

Skewness 0.88 
Kurtosis 4.12 

1-st Quartile 0.24 
Median 0.36 

World Health Organization (WHO) 2011 0.3 mg/L 
 

3.3 Spatial distribution map 

Figure 5 provides a spatial distribution map of groundwater iron concentrations, offering a visual representation 
of the extent of the issue. The spatial distribution map illustrates areas with concentrations ranging from 0.05 to 
0.3 mg/L, denoted by a brown color. These areas fall below the World Health Organization (WHO) 2011 guideline 
for drinking water, set at 0.3 mg/L (Table 1). This suggests that certain regions have acceptable iron levels, 
providing valuable information for resource allocation and management.  However, the analysis also identifies 
areas with iron concentrations exceeding the WHO guidelines of 67%. The color gradient in Figure 5, ranging 
from light brown to dark blue, signifies concentrations above the recommended limit. These areas pose a potential 
risk to public health, warranting immediate attention and intervention to ensure the safety of the drinking water 
supply. 

The comparison with the hotspots map superimposed on the spatial distribution map adds complexity to the 
assessment. Hot spots, defined as areas with concentrations significantly higher than the surrounding regions, are 
identified based on statistical confidence levels. The analysis indicates that concentrations greater than 0.3 mg/L 
correspond to hotspots, with confidence levels ranging from 90% to 99%. Cold spots, on the other hand, represent 
areas where iron concentrations are significantly lower than the surrounding regions. These areas may provide 
insights into potential factors contributing to lower iron levels, such as geological features or effective water 
treatment measures. Understanding both hotspots and cold spots is crucial for developing targeted strategies to 
address elevated iron concentrations and ensuring equitable access to safe drinking water. 

Table 2 and Figure 6 presents a comprehensive comparative analysis of six distinct geostatistical models 
utilized for predicting iron groundwater concentrations in a specific segment of Yenagoa, Bayelsa State. Delving 
into this dataset facilitates an in-depth comprehension of the merits and demerits inherent in each model within 
this particular context. 

Examining the Mean Error of all models reveals a consistently low range from 0.0034 mg/L (Gaussian) to 
0.0046 mg/L (Exponential). This implies that, on average, the predictions made by the models closely align with 
the actual iron concentrations in the groundwater. 

The Root-Mean-Square (RMS) Error, offering insight into the variability of prediction errors, showcases 
similar values across all models at approximately 0.1740 mg/L. This suggests that there is no significant divergence 
in their capabilities to capture the distribution of actual iron concentrations. 

The inclusion of Standardized Metrics, such as standardized mean and RMS errors, enables cross-model 
comparisons despite differing scales. The Gaussian model emerges with the lowest standardized mean error, 
indicating a minimized tendency to overestimate or underestimate on average. On the other hand, the exponential 
model boasts the lowest standardized RMS error, signifying its superior ability to effectively encapsulate the 
spread of errors. 
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Figure 5: Hotspots and Spatial Distribution of Iron Concentration Fe(mg/L) in Groundwater 

The Average Standard Error, a metric gauging the uncertainty associated with each model's predictions, 
reveals uniformity among all models. This suggests comparable levels of uncertainty in their forecasted values. 

In evaluating Model Performance, circular and spherical models exhibit similar performance metrics, with 
slightly elevated mean and RMS errors compared to their counterparts. While suitable for preliminary assessments, 
these models may not be optimal for precise predictions. Tetraspherical and Gaussian models, however, present 
slightly improved performance, characterized by lower mean errors and competitive RMS errors. Among them, 
the Gaussian model, with its lower standardized mean error, stands out and could be considered for further in-
depth analysis.  

The Exponential and Stable models exhibit the lowest RMS errors, underscoring their proficiency in capturing 
the variability of iron concentrations. However, their higher mean and standardized mean errors suggest a 
predisposition to overestimate. While valuable for studies emphasizing potential contamination risks, cautious 
interpretation is imperative to prevent exaggeration of iron levels. 
Table 2: Prediction Error for Concentration of Iron in Groundwater  

Model/Error Circular Spherical Tetraspherical Exponential Gaussian Stable 
Samples 70 of 70 70 of 70 70 of 70 70 of 70 70 of 70 70 of 70 

Mean 0.0035 0.0037 0.0039 0.0046 0.0034 0.0044 
Root-Mean-Square 0.1735 0.1740 0.1738 0.1740 0.1737 0.1737 
Mean Standardized 0.0207 0.0215 0.0225 0.0260 0.0201 0.0248 
Root-Mean-Square 

Standardized 1.0519 1.0550 1.0572 1.0541 1.0517 1.0527 
Average Standard Error 0.1640 0.1636 0.1634 0.1636 0.1643 0.1637 

 

3.4 Influence of land use/land cover on groundwater iron concentration   

The land use/land cover in a particular area can significantly influence the groundwater iron concentration. Iron 
concentration in groundwater is a complex interplay of geological, hydrological, and anthropogenic factors. The 
land use/land cover map depicted in Figure 7 and summarized in Table 3 reveals that water constitutes 6% of the 
area. Iron is likely to exert minimal influence on the overall water quality in large bodies such as rivers or lakes, 
owing to its low solubility in well-oxygenated water. Nevertheless, smaller bodies of water, like ponds or stagnant 
areas, may experience higher iron concentrations, potentially affecting aquatic life. The data in Table 3, along with 
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Figures 7 and 8, indicate that 58% of the area is covered by vegetation. Iron, being an essential micronutrient for 
plant growth and vital for chlorophyll production and photosynthesis, needs to be present in adequate levels in the 
soil for healthy vegetation. However, excessive iron can be harmful to plants. The prevalence of vegetation 
suggests that iron availability likely falls within suitable ranges for most plant species. Wetlands, constituting 2% 
of the land use/land cover map according to Table 8 and Figure 8, typically have oxygen-depleted soils, promoting 
the reduction of ferric iron (Fe(III)) to ferrous iron (Fe(II)). The more soluble and mobile Fe (II) can potentially 
influence nutrient cycling and the plant communities adapted to wetland conditions. However, without specific 
data on iron concentrations and distribution, it is challenging to precisely assess the impact. Similar to vegetation, 
iron is crucial for crop growth. Various crop species have different iron requirements, with deficiency limiting 
yields and excess iron proving detrimental. Tailoring agricultural practices based on soil iron content is essential 
for optimal crop production. Built areas, covering 24% of the land use/land cover map as per Table 3 and Figures 
7 and 8, indicate potential concentrations of iron in the environment due to construction activities and infrastructure. 
The impact on surrounding ecosystems depends on factors like waste management practices and potential iron 
leaching from construction materials. Exposed soil is susceptible to erosion, potentially leading to increased iron 
input into water bodies. However, the small area of bare ground suggests a minimal impact in this case. Similar to 
wetlands, flood vegetation often thrives in anoxic soils where Fe (II) is prevalent. Iron availability might influence 
specific plant communities and their ecological functions within floodplains. In rangelands, iron availability in 
soils can affect the composition and quality of forage for grazing animals. Deficient iron can impact animal health, 
while excess iron can be toxic. Understanding the iron content in rangelands is crucial for proper grazing 
management and animal health. 

 
Figure 6: Fitting Model for Concentration of Iron in Groundwater 
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Figure 7: Landuse/land cover map in part of Yenagoa , Bayelsa State. 

 
Table 3: land use/land cover 2023 in part of Yenagoa, Bayelsa 

S/no Classification Area (km2) % 

1 Water 19.23 6 

2 Vegetation 182.54 58 

3 Wetland 5.75 2 

4 Crop 4.57 1 

5 Built area 76.7 24 

6 Bare Ground 0.21 0 

7 Flood Vegetation 0.65 0 

8 Rangeland 26.83 8 
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Figure 8: Percentage Chart of Landuse/land Cover map in Study Area. 
 
3.5 Spatial Autocorrelation Analysis 

Table 4 shows the results of a spatial autocorrelation analysis that examined the relationships between iron 
concentrations and land use/land cover in part of Yenagoa, Bayelsa. The analysis used the Global Moran's I index, 
which is a measure of spatial clustering. 
Table 4: Spatial autocorrelation result between iron concentration and landuse /land cover 

Global Moran’s Summary 

Moran's Expected Index 0.129401 
Expected Index -0.00005 

Variance 0.000049 
Z-Score 18.43976 
p-value 0 

The Moran's I index is a statistic that ranges from -1 to 1. A value of -1 indicates perfect negative 
autocorrelation, meaning that similar values are clustered together. A value of 1 indicates perfect positive 
autocorrelation, meaning that dissimilar values are clustered together. A value of 0 indicates no spatial 
autocorrelation. The Moran's I index is positive (0.129401), which indicates that there is a positive spatial 
autocorrelation between iron concentrations and land use/land cover. This means that areas with high iron 
concentrations tend to be clustered together, and areas with low iron concentrations tend to be clustered together. 
The Z-score is very high (18.43976), and the p-value is very low (0.000000), which both indicate that the results 
are statistically significant. This means that we can be confident that the observed pattern of spatial autocorrelation 
is not due to chance. This finding is consistent with the idea that iron concentrations are influenced by land use/land 
cover. For example, industrial areas are often a source of iron pollution, so it is not surprising that areas with high 
iron concentrations tend to be located near industrial areas. The results of this study can be used to inform land 
use planning and environmental management Yenagoa, Bayelsa. For example, the finding that iron concentrations 
are clustered together can be used to identify areas that are at high risk of iron pollution. This information can then 
be used to target these areas for cleanup or to prevent future pollution. 
  
4. Conclusion  

This research aimed to gain a thorough understanding of the iron concentration distribution and trends within 
Yenagoa's groundwater resources. Utilizing diverse analytical tools to assess data normality, identify patterns, and 
forecast concentrations across different geographical areas, the study uncovered noteworthy insights. The 
examination of iron concentration distribution indicated a potential normal distribution, although a positive 
skewness value hinted at a deviation from perfect normality. The subsequent trend analysis brought attention to a 
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quadratic trend, emphasizing non-linear patterns in the dataset. The spatial distribution map visually depicted iron 
concentrations across the study area, revealing regions adhering to World Health Organization (WHO) 2011 
guidelines for drinking water and others surpassing recommended limits, posing potential health risks. The 
identification of hotspots and cold spots added complexity to the assessment, highlighting areas with significantly 
higher or lower concentrations. The geostatistical modeling offered a comprehensive comparison of six distinct 
models for predicting iron groundwater concentrations. Evaluation based on prediction errors, mean errors, and 
standardized metrics indicated the Gaussian model as a preferred choice for studies focusing on average iron levels 
and minimizing bias. However, the Exponential and Stable models, despite a tendency to overestimate, 
demonstrated proficiency in capturing the variability of iron concentrations with low RMS errors. The influence 
of land use/land cover on iron concentration was explored, revealing potential impacts on water quality, vegetation 
health, and animal forage. Spatial autocorrelation analysis demonstrated a positive correlation between iron 
concentrations and land use/land cover, offering insights for land use planning. It is imperative for authorities, 
policymakers, and communities to collaborate in implementing measures to mitigate the health risks associated 
with elevated iron levels in groundwater, ensuring a safe and sustainable water supply for all. 
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