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Abstract

Litho-structural mapping is critical for resource exploration and hazard assessment, supporting economic
development. This study applies Planetscope and ALOS Palser DEM data to conduct lithological and structural
mapping in the Tharaka-Kanzungo region of Kenya's Northern Kitui County. The approach integrates support
vector machine classification with manual (shaded relief) and automatic (PC Line module) lineament extraction.
Planetscope’s high spatial resolution enabled effective rock unit discrimination, while ALOS Palser DEM data
enhanced linear-structural analysis. SVM classification achieved 76.24% accuracy and a kappa of 70%,
successfully identifying lithologies such as granitoid gneiss, semi-pelitic, calc-silicate, sillimanite-biotite,
hornblendite, and crystalline limestone. Comparative results showed automatic methods detected more, shorter
lineaments sensitive to texture and vegetation, whereas manual extraction captured fewer, longer, and distinct
orientations. Stereographic projections further revealed tectonic features including shear foliations and
lineations, aiding tectonic interpretation. The dominant NE-SW and NW-SE trends indicate structural influence
on fluid pathways and potential mining zones. The integration of remote sensing techniques with ground-based
validation produced a high-accuracy geological map, consistent with existing data. This approach demonstrates
strong potential for updating maps and guiding mineral exploration in remote or inaccessible regions.
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1. Introduction

Geological mapping is essential for exploring mineral, oil, and water resources and assessing natural hazards,
contributing directly to economic development (Bachri, I. et al., 2020). A key phase in mineral exploration is
identifying geological characteristics linked to target mineralization via the analysis geological maps, which
display elements including lithological formations, alteration domains, structural features, and diagnostic
minerals (Shirmard et al., 2022). Satellite imagery provides efficient, economically viable lithological
classification, overcoming labor-intensive traditional field methods, especially in remote areas (Q. Zhang et al.,
2025). When it comes to mineral exploration, the stakes are high, and having accurate geoscience data, like
geological structures and mineral potential maps, is essential for making informed decisions and discovering new
resources (Maghsoudi & Nader Fathianpour., 2016).

The Tharaka-Kanzungo region, nestled within Sub-area II of the Eastern Mozambique Belt System, is made up
of a fascinating mix of granitoid, quartzites, biotite, and hornblende gneisses (Crowther, 1957; Dodson, 1955;
Githenya et. al., 2021; Nyamai C. , 1999). These rock types have gone through quite a bit of deformation due to
regional tectonics and intense metamorphic processes, which have a significant function within the creation of
valuable mineral deposits. Mozambique Belt rock units are generally thought to be metasedimentary in nature,
and they have certainly piqued the interest of geologists over the years (Crowther, 1957; Dodson, 1955).
Lineaments, closely linked to faults and fractures, are key indicators of subsurface mineral deposits. Their
detection enhances mineral prospecting, making remote sensing a vital tool in geological mapping and
exploration (Choudhury et al., 2025).

Mineral exploration in Kenya has largely relied on ground-based mapping, which is labor-intensive, costly, and
limited in remote areas. Sentinel-2 imagery has proven effective for high-resolution lithological and structural
characterization (Cardoso, F. et al.,, 2019). Although image-processing techniques like band ratios, band
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combinations, and PCA aid in exploration, spectral confusion, particularly with agricultural land, can affect
accuracy (Cardoso-Fernandes et al., 2020). Integrating fieldwork with supervised machine learning classifiers
such as SVM, known for its high accuracy, enhances the precision for lithological characterization and minera
exploration (Hu et al., 2018).

High-resolution PlanetScope imagery, generated from over 200 Dove satellites with up to eight bands and 3m
resolution, allows daily revisits (Planet L. , 2018), enhancing spectral and temporal analysis for geological
mapping (Roy et al., 2021). Additionally, Alos Palser DEM with 12.5m resolution (Alaska Facility Services)
supports topographic analysis and lineament detection (Ombiro, et al., 2021; Zafaty et al., 2023). Combining
PALSER and ASTER datasets improves geological interpretation, providing more accurate and detailed
mapping results than using either dataset alone. These advancements have significantly strengthened remote
sensing applications in geology (Pour & Hashim, 2014). Geological mapping remains challenging in structurally
complex regions with outdated maps, leading to misinterpretations. In Kenya, underexploited mineral reserves
persist due to limited funding and inadequate technological infrastructure, despite growing global mineral
demand (Karuku, 2008; Kiptarus J. et al., 2015; Kugeria P. M., 2022).

The Tharaka-Kanzungo area holds significant untapped mineral potential, but outdated geological and mineral
potential maps from the 1950s hinder modern exploration (Crowther, 1957; Dodson, 1955). Although machine
learning has improved geological data extraction, selecting suitable satellite-derived data for advanced litho-
structural mapping remains challenging. Integration of remote sensing with traditional methods is promising, but
single-source data limits accuracy. GIS/remote sensing offer initial insights but cannot fully replace field surveys
for comprehensive mineral exploration. Instead, these technologies help narrow down target areas for more in-
depth geological, geochemical, and geophysical assessments on the ground, ultimately aiding in the selection of
the best drilling sites (Chepchumba et al., 2019; Maarifa et al., 2024)

Integrating Gis and remote sensing with field investigations and conventional exploration techniques is essential
for accurate geological mapping. This multidisciplinary approach enables more informed, cost-effective
decision-making in resource evaluation and development. No prior studies have focused on remotely sensed
Litho-structural data in Tharaka-Kanzungo, despite clear hydrothermal alteration suggesting mineralization,
leaving a critical gap in geological understanding (Crowther, 1957; Dodson, 1955; Karuku, 2008; Kiptarus J. et
al., 2015). This study updates the Litho-structural mineralization map of Tharaka-Kanzungo using enhanced
PlanetScope imagery and SVM classification. It evaluates manual and automatic lineament extraction from Alos
Palser DEM and validates results through field surveys and geological records.

2. Geological Setting of the Study Area

Tharaka-Kanzungo covers approximately 160 km? section, within the Eastern Mozambique Belt rocks in Kitui
North, between latitudes 0°18'S—0°27'S and longitudes 38°00'E-38°05'E (Fig. 1). Crowther, 1957 and others
described Tharaka-Kanzungo as composed mainly of granitoid gneiss, quartzites, gneisses, and metamorphosed
sediments, with anorthositic rocks extensively boudinaged in later tectonic phases (Dodson, 1955; Nyamai et al.,
1993; Nyamai C. , 1999).

Kenya's Mozambique Belt experienced three tectonic phases, with dominant NNW-SSE to NW-SE trends,
revealing early Earth history (Fig. 1) (Waswa, 2015; Nyamai, 1999). The geological features within the research
region, comprise of intricate overlapping minor and major structures, as delineated by (Crowther, 1957). These
structures comprise faults, folds, and linear features. The area is characterized by prevalent dip faults,
predominantly oriented from northwest to southeast (Crowther, 1957). Faults in Tharaka-Kanzungo can be
recognized through the linear vegetation arrangement, sudden altitude shifts, and the linear alignment observed
in the area's drainage system (Crowther, 1957). Research by (Nyamai C. , 1999) in neighboring areas, geology
reveals diverse fold types. N-S mafic bodies within the Mozambique belt correlate with granulite facies
mineralogical distribution (Nyamai C. , 1999).
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Fig. 1: a) Modified geological map illustrating various lithological units, b) Kenya and Kitui county map and c)
Existing geological and structural map (Crowther, 1957; Dodson, 1955).

3. Material and Methods

3.1 Datasets

This study utilized Planetscope imagery for lithological classification and ALOS/PALSAR DEM for lineament
extraction in the Tharaka-Kanzungo area, with data accessed from Planet and Alaska Facility Services. A cloud-
free, 3m high-resolution PlanetScope image (September 2024, dry season) with four bands (0.45-0.86 um)
(Table 1) was selected to minimize atmospheric disturbances and enhance surface visibility for lithological
feature classification. Topographic and regional geological maps (Survey of Kenya/State Dpt. of Mining),
administrative shapefiles (Geofabric, I[CPAC Portal), and field survey data complemented this (Table 2).

For structural analysis, a Level 1.5 ALOS/PALSAR DEM image (September 2024, FBS mode, L-HH
polarization, 12.5m resolution) was used (Table 1). Developed by METI and JAXA, ALOS/PALSAR is ideal for
mapping complex topography and structural orietations (Northeast—-Southwest, North—South, Northwest—
Southeast). Data processing and analysis were performed using PCI Geomatica Banff and ArcGIS platforms.
Field investigations involved GPS for coordinates, a compass for orientation measurements, a digital camera for

photographs, and a geological hammer for rock sample collection, along with labeling and storage supplies
(Table 2).
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Table 1: Characteristics of PlanetScope imagery and PALSAR, functioning as an L-band Synthetic Aperture
Radar (SAR) sensor with four polarization modes: HH (horizontal transmit/receive), HV (horizontal transmit,
vertical receive), VV (vertical transmit/receive), and VH (vertical transmit, horizontal receive) (Planet L. , 2018;
Bannari et al., 2016; Shirmard et al., 2021).

PlanetScope ALOS PALSER
Sensor Mode Polarization Resolution S.W (km) Incident
(m) angle
Inclination 98° PALSER  Fine (VV/(HH+HV) 10 70 8-60°
or (VV + VH))
Orbit height 475 km Scan Sar HH or VV 100 250-350 18-43°
polarization
Area 16.4 km by 24.6 km Polarimetric = Combined HH, 30 30 8-30°
coverage HV, VH, and VV
polarizations
Orbit Sun-synchronous
Spatial 3mby3 m
resolution

Temporal Daily (since 2017)
resolution

Radiometric 16 bit

resolution

Band and Band 1 (Blue) 0.45 -

wavelength 0.51

(um) Band 2 (Green) 0.50
-0.59
Band 3 (Red) 0.59 -
0.67
Band 4 (NIR) 0.78 -
0.86

Equatorial 9.30-11.30 local
crossing time  time
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Table 2: Summary of the datasets required.

ID Data Specification Application Source
1 PlanetScope GeoTIFF, 3m Spatial Lithological Classification Planet Lab
resolution, WGS 1984 UTM
37s, November 2024
2 ALOS Palser DEM GeoTIFF, 12.5m Spatial Linear-Structural Extraction Alaska Facility Services
resolution, WGS 1984 UTM
37s, September 2024
3 Administrative Shapefile, WGS 1984, GCS.  Area of Study, Transportation, Geofabric, ICPAC Portal.
boundaries drainage pattern, and localities.
4 Toposheet /Aerial JPEG, WGS 1984, GCS, Thematic layer, Planning, Survey of Kenya/State
o orientation, Locating Dpt. of Mining, South
Photo,’EX|st|ng L: 125_'000' 1: 50,000, mineral/rock contacts, Eastern Kenya University,
geological Survey Garmin Geological Units, Geology and Met. Dpt.
Map, GPS
5 Qgis 3.4, N/A Rose diagram, automatic https://agis.org/ , Esri,
ArcMap/ArcGIS Pro, lineament-structures http://www.pcigeomatics.
PCI Geomatica, and extractions, Digital image com/
Rockworks 16 processing and analysis.
6 Hand Lenses 10x, N/A Small mineral crystals and South Eastern Kenya

Measure, Shovel,
Geological
(hammer,
Compasses, Tape
measure)

structures in rocks, Length, and

height of Rock information,

Splitting and breaking rocks,

orientation of Geologic
structures, Strike and Dip.

University, Geology and
Met. Dpt.

Satellite image analysis from Planetscope (Fig. 2) involved systematic data preprocessing and classification.
These procedures are categorized into two main phases: preprocessing and processing. The processing phase
further differentiates between lithological classification and lineament-structural extraction, as detailed in the
subsequent sections.
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Fig. 2: Methodological flowchart adopted in this study

3.2 Data Preprocessing

Planetscope imagery was georeferenced to WGS-84 UTM Zone 37s, benefiting from its pre-orthorectified and
radiometrically calibrated (TOA reflectance) state. This prevents misinterpretations from sensor artifacts
(Bannari et al., 2016). For the PALSAR dataset, geometric correction, including alignment with ground control
points and temporal offset estimation, ensured accurate geolocation and spatial consistency (JAXA (2012)
PALSAR User’s Guide). The WGS84/UTM Zone 37s projection was used. Additionally, all geological and
topographical maps were meticulously spatially referenced and digitized to align with the remotely sensed data.

3.3 Lithological Mapping

This study utilized Support Vector Machine Learning classification (SVMLC) algorithm, to classify lithological
rock units on Planetscope imagery (Maxwell et al., 2018; Shebl, A. & Cs’amer, "A., 2021c.; Shirmard et al.,
2022).

3.3.1 Enhancing Contrast (Saturation Stretch) Technique

Saturation stretch enhancement was applied to Planetscope images to improve visual clarity and emphasize key
lithological features for training, using RGB composites from four-channel RGB-NIR data. Further processing
methods are described in later sections. This technique enhances the visual appearance of the 3-band input image
(R-4, G-3, and B-2) by increasing color saturation, making subtle lithological differences more discernible
(Ijaajaane et al., 2025).

In this study, the saturation stretch technique was employed to enhance visual contrast among lithological units,
particularly in regions exhibiting minimal spectral variation. Enhancing color saturation improved the visual
separation of similar lithologies. Granitoid gneiss shows up in shades of light pink to pale brown, while Calc-
Silicate can be found in dark green to black hues. Marbles typically appeared in light grey to bluish-white, and
biotite gneiss ranges from brown to deep reddish tones. Lastly, magnetite-bearing granitoid gneiss presents itself
in dark grey to bluish-black., aiding more accurate geological interpretation and lithological discrimination.

3.3.2 Image Classification

The study area encompasses eleven primary information classes, which were systematically selected to ensure
representative and spatially distributed training and testing samples. These classes were delineated using
Planetscope imagery, informed by existing geological maps and visual image interpretation. A critical
prerequisite to the classification process involves the identification of training samples, which act as reference
inputs for the classification algorithm (Fig. 2).
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3.3.3 Training and Evaluation Data

Modified geology map (Fig. 1a) guided the selection of training and evaluation data for eleven rock units, based
on their texture and spatial distribution. A total of 3,564, 857 pixels (20.05% of the studied area) were identified
as training dataset and used in SVM classifier. Additionally, 138 randomly positioned validation points served as
the evaluation dataset (see Fig. 3). Sample distribution per unit is detailed in Table 3.

Table 3: Training and validation Lithological classifications samples

ID  Lithology Unit Data (Training Pixels) Data (Testing)
1 Quartz and Felspathic 142611 10
2 Crystalline Limestone 151649 5
3 Calc-Silicate 675589 5
4 Granitoid Gneisses 848851 50
5 Banded Pelitic 245928 12
6 Sillimanite Biotite 230953 7
7 Magnetite Granitoid 236182 5
8 Semi-Pelitic 713184 35
9 Lamprophyre 46150 1
10 Granite 448075 3
11 Hornblendites 47015 5
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Fig. 3: Field Data Validation Map.

3.3.4 Lithological Classification
Support Vector Machine (SVM), a well-established algorithm in supervised machine learning based on statistical
learning principles (Abdelkader et al., 2022), initially introduced by Vapnik and Chervonenkis in 1963. SVM
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classification operates by identifying a boundary that best divides data points within a multi-dimensional feature
domain. Ideal hyperplane is defined as the one that maximizes the margin between distinct classes (Wenyan Ge,
2020).

In the context of target detection, this process can be simplified to a binary classification problem. When applied
in higher-dimensional spaces, SVM seeks the most suitable linear decision boundary that ensures maximal
separation between the data classes (Bahrami et al., 2018). To handle the complexity of data distributed in high-
dimensional spaces, a kernel function is employed, enabling the transformation of the input space into a more
separable feature space. Radial basis functions (RBFs) exhibit greater kernel power compared to polynomial,
linear, and radial kernels, leading to superior results in achieving better outcomes (Rimal et al., 2020). The
(Equation 1) represents the radial basic function in SVM (Nurlina et al., 2021).

KA, yn) = e BETXE - g (et Equation 1

SVM, a widely adopted multivariate learning technique, is integrated into various software platforms. In this
study, lithological mapping was conducted using a C++-based one-against-one SVM classifier. The kernel
applied was the radial basis function with a regularization parameter of 100 and a gamma value of 0.091,
corresponding to the Planetscope imagery pixel count (Ge et al., 2018).

3.4 Lineaments-Structural Mapping

Lineament extraction forms an integral part of geological mapping and mineral exploration, as mineralization
often aligns with fracture zones (Zhang et al., 2022; Faruwa et al., 2021). In satellite imagery, lineaments appear
as linear or slightly curved features, representing natural structures (e.g., faults, fractures, lithological contacts,
drainage) or anthropogenic elements (e.g., roads, canals) (Bannari et al., 2016). Lineament delineation from
remote sensing data is typically achieved through automatic or manual methods. Automatic extraction uses
image-processing algorithms such as edge detection, while manual extraction relies on visual interpretation using
enhanced imagery (Adiri et al., 2017; Ijaajaane et al., 2025). The choice between methods depends on study
objectives and resource availability.

This study employed both automatic and manual lineament extraction to assess differences between the two
approaches from Alos Palser DEM following the methodology proposed by (Choudhury et al., 2025). This
approach aims to improve the extraction of tectonic-related lineaments from radar-based sensors. However,
lineament identification can also be achieved using alternative data sources such as geomorphological features,
morphometric indices, or optical satellite imageries (Zafaty et al., 2023). Manual lineament extraction entails
three main stages: image enhancement, visual analysis, and digitization of linear features.

Manual extraction allows clear differentiation between natural and anthropogenic lineaments. This study focuses
solely on tectonic features within rock outcrops, excluding drainage, roads, railways, and other human-made
structures from the extraction process. In ArcGIS Pro, manual lineament extraction from ALOS PALSAR DEM
eight shaded relief image employed using the cardinal angle directions at multiple azimuths (0°, 45°, 90°, 135°,
180°, 225°, 270°, and 315°) with a 45° altitude to enhance feature visibility (Fig. 4). The optimal contrast was
achieved using azimuths 270° and 315°, which were selected for final extraction and rose diagram analysis.
Shaded relief views depend on illumination angles. The LINE detection tool within PCI Geomatica Banff was
employed with tailored criteria settings for the study area. The LINE module offers an optimized and
mechanized solution for lineament recognition, supporting geological and geomorphological analyses. For
optimal results, a filter radius (RADI) under 10 pixels and gradient-based edge threshold (GTHR) between 10-70
pixels are recommended (Choudhury et al., 2025).

Contour detection utilizes edge filtering to enhance pixel contrast. For effective lineament extraction, key
parameters include a curve-length criterion (LTHR) set at 20 pixels to reduce noise, a line-fitting cutoff (FTHR)
of 2-5 pixels for accurate approximation, and an angular difference threshold (ATHR) of 3-20° to accommodate
natural orientation variations. The linkage distance criterion (DTHR), defining the peak gap allowed across
polylines for connection, is set between 10—45 pixels to preserve structural continuity (N. Choudhury et al.,
2025). These parameter ranges align with established best practices in automated lineament extraction (Awad, et
al., 2022). Lineament extraction in PCI Geomatica was carried out through a series of predefined procedures
applied to shaded relief ALOS PALSER DEM image, using software-specific parameters outlined in Table 4.
Extracted lineaments were imported into ArcMap 10.8 for automating the splitting of combined lineaments into
discrete segments on vertices. Lineament lengths and statistics were computed using the Calculate Geometry tool
and cross-validated against 1:100,000-scale Tharaka-Kanzungo geology map (Fig. 1a). Data were then exported
to GeoRose and Stereonet software, for the analysis and visualization of structural field records, including shear
foliation, fold axes, and lineations. Rose and Stereonet diagrams and lineament density maps were generated to
visualize structural orientations.
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Orientations were measured in the field using a geological compass and subsequently plotted in Stereonet for
structural interpretation. Non-structural features, such as contours, rivers, and cliffs, were excluded through
visual interpretation, following established methodologies (Amraoui et al., 2025). A revised Litho-structural map
was compiled by integrating remotely sensed result and previously reported geological and structural features
with field observations. Field data were cross validated with remote sensing outputs and aligned with the
principal orientations of major lineaments within the area.

388000 392000 396000 388000 392000 396000 388000 392000 396000 388000 392000 396000

o f N

e

Fig. 4: Eight relief maps created using Alos Palser DEM 12.5m

Table 4: Criteria specifications used to delineate lineaments with the PCI Geomatica’s LINE algorithm

Description Criteria Applied Values
Filter radius RADI 10 pixel
Gradient-based edge threshold GTHR 15
Curve-length criterion LTHR 20 pixel
Line-fitting cutoff FTHR 3 pixel
Angular variation limit ATHR 15 degree
Linkage distance criterion DTHR 10 pixel

3.5 Accuracy Evaluation and Field Validation

Classification accuracy was evaluated through producer accuracy (PA), user accuracy (UA), Kappa coefficient
(K), and overall accuracy (OA), all derived from the confusion matrix (Lillesand et al., 2015; Congalton &
Green, 2019). OA reflects the ratio of correctly categorized pixels, UA quantifies commission errors, and PA
measures omission errors. Kappa coefficient quantifies consistency between the categorized map and reference
data, accounting for chance. The range of Kappa values is 0 to 1, where values near 1 reflecting high
classification confidence and those near 0 indicating significant uncertainty (Bachri et al 2019). Therefore, it is
regarded as a more robust indicator of classification accuracy. Samples for training were conducted randomly,
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informed by visual inspection of the geological map. Training samples were chosen through random selection
based human-guided analysis of the geological map.

Fieldwork in the Tharaka-Kanzungo area validated Planetscope and ALOS PALSAR-derived maps through GPS
surveying and georeferenced geological data. Litho-structural mapping captured key features, including faults,
folds, mineralized zones, and shear structures within the Eastern Mozambique Mobile Belt. Accuracy assessment
used ROIs from 1:100,000 maps stereonet and rose diagram analysis. Three new shear zones at Tharaka,
Kanyengya near river Kalange and Kiuga were identified as potential extensions of the Tharaka-Kanzungo shear
zone (Fig. 14) were identified and confirmed through remote sensing. The final map integrates field and remote
data, offering a detailed geological and structural interpretation.

4. Results

4.1 Lithological Mapping

In image analysis, color plays a key role in differentiating objects, enhancing image interpretation. To manage
color effectively in satellite imagery, combining a minimum of three spectral bands (color composites) is
essential. The study area is predominantly covered by lower to middle quartzite, marble, schist, biotite, and
granitoid gneiss outcrops, whereas lamprophyre, limestone, granite, and hornblendite units are sparsely exposed
in the northwestern, southeastern, and southern regions (Fig. 5).

We performed one distinct transformations on the RGB image (using bands 4, 3, and 2) to enhance the visual
clarity of lithological facies in the study area. This transformation aimed to make it easier to identify different
geological formations, and each one proved effective in bringing out specific geological units. Contrast
enhancement using the 4-3-2 band combination revealed clear differentiation between the primary lithological
units. Iron-rich rocks or weathered zones were displayed in brown-reddish tones, while fresh mafic or ultramafic
rocks were identified by greenish-yellow hues. Silica-rich rocks appeared in bluish-cyan, and barren land are
visible in grey-white colors (Fig. 5b).
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Fig. 5: a) Planetscope Colour Combination of Bands R=4, G=3, and B=2, b) Contrast enhancement (Saturation
Stretch) of the color combination of Planetscope imagery bands R=4, G=3, B=2.

4.1.1 Lithological Classification

The SVM-based lithological map from Planetscope imagery, aiming to update the existing lithological map
shows general agreement with the Tharaka-Kanzungo 1:100,000 geological map (Fig. 6), particularly for
extensive facies. However, smaller units like hornblendite, lamprophyre and calc-sillicate formations appeared
only faintly in the southern, western and northeastern section.
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Fig. 6: Lithological Map produced using Support Vector Machine classifier on Planetscope imagery

4.1.2 Accuracy Evaluation and Validation
The lithological map's accuracy was assessed using independent validation samples, field observations, and
reference to a geological map. To quantitatively assess classification performance, by SVM, a comparison was
made with observed field features. Figure 7 highlights key locations used for visual verification. Figs. 9a—f
present field photographs that highlight the dominant geological formations in the study area.
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To quantitatively assess classification performance, 138 randomly selected ground-truth geological samples from
the study area served as reference data for evaluation. Table 5 presents the OA, PA, UA, as well as Kappa for
evaluating lithological classification via the SVM approach. SVM-based classification map achieved notably
commendable accuracy, an achieved accuracy level of 76.24% alongside a Kappa statistic of 69.5%, indicated a
pronounced agreement beyond random chance. This result clearly highlighted the superior capability of the SVM
method in accurately identifying lithological units using Planetscope imagery (Fig. 6).

Table 5: Confusion matrix along with statistical metrics for Support Vector Machine (SVM) classification.
Metrics for assessment included PA, UA, OA, and the Kappa (k). Key: QF=Quartz and Felspathic,
CL=Crystalline limestone, CS=Calc-silicate, GG=Granitoid gneisses, BP=Banded pelitic, SB=Sillimanite
biotite, MG=Magnetite granitoid, SP= Semi-pelitic, L= Lamprophyre, G= Granite and H= Hornblendites.

Reference

Classification Q&F CL CS GG BP SB MG SP L G H X(User PA UA
Q&F 10 0 0 0 1 1 1 0 0 2 1 16 62.5% 62.5%
CL 0 5 0 0 0 0 1 1 0 0 0 7 55.56% 71%
CS 1 1 5 0 1 0o 2 0 1 2 1 14 100% 35%
GG 0 0 0 50 0 0 0 0 2 0 3 55 100% 90%
BP 0 1 0 0 12 0 0 0 0 1 0 14 75% 85%
SB 2 0 0 0 0 7 1 0 1 0 0 11 70% 63.64%
MG 0 0 0 0 1 0 5 0 0o 0 O 6 35.71%  83.33%
SP 1 1 0 0 1 2 2 351 0 0 43 97.22%  81.40%
L 0 1 0 0 0 0o o0 0 I 1 0 3 16.67%  33.33%
G 1 0 0 0 0 0o 2 0 0 3 0 6 3333%  50%
H 1 0 0 0 0 0 o0 0 0 o0 5 6 50% 83.33%
Y (Producer) 16 9 5 50 16 10 14 36 6 9 10 181 OA 76.24%

K 69.72%

Figure 8a shows that the highest PA (>90%) was achieved for granitoid gneisses (GG), calc-silicate (CS), and
semi-pelitic (SP), while the best UA (>80%) was observed for granitoid gneisses, banded pelitic (BP), magnetite
granitoid (MG), homblendite (H), and semi-pelitic. The granite (G) class had the lowest PA at 33.33%,
indicating misclassification, partly due to random sampling, while lamprophyre (L) showed the lowest UA at
33.33%, highlight limitations in reliably identifying these specific lithologies. As shown in Figure 7b, granitoid
gneisses (GQG), semi-pelitic (SP), and banded pelitic (BP) exhibited the highest Kappa coefficients with 93.6%,
81.1%, and 80.5% respectively, whereas lamprophyre (L) recorded the lowest at 7.3%.
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Fig. 8: Lithological classification accuracy for each class in the Planetscope data analyzed using the RBF SVM
method, reporting: (a) PA and UA, and (b) Kappa coefficient for individual classes.
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Fig. 9: Fleld photographs illustrating various rock units within the region. a) Crystalhne Limestone of the
northern flank of Tharaka. b) Lineation and foliation layers of banded pelitic in Kanyengya. ¢) Granitoid gneiss
dominating across the study area. d) Highly oxidized red soil in Ciampiu. ¢) Quartz-feldspathic in Kiuga and f)
Pegmatite vein on granite rock in Ndiani.
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4.2 Lineaments-Structural Mapping

Shaded relief from ALOS PALSAR DEM enhances discontinuities for lineament mapping. To ensure
objectivity, geological data were excluded during processing. Post-analysis, artificial lineaments are identified by
overlaying roads, drainage, and geology, and subsequently removed. Table 6 and Figures 10-14 present results
highlighting notable differences regarding lincament features among different datasets and techniques,
underscoring the effectiveness for every method in extracting structural and geomorphological features.

4.2.1 Manual and Automated Extraction

Manual delineation of lineaments from Alos Palser DEM imagery revealed structural trends and dimensional
attributes. In total, 125 lineaments were mapped (Fig. 10a), varying from 157 m to 3049 m, with a mean value of
1031 m. Rose diagram results reveal a prevailing NE-SW (around 45°-90°) and minor E-W orientation, aligning
with surface patterns observed in the remote data (Fig. 12a).

Automatic lineament extraction produced a substantially greater number of lineaments, totaling 334 features
(Fig. 10b), ranging from 1562 m to 250 m and averaging around 363 m in length. Rose diagram results show a
primary NNW-SSE (around 135°) and minor NW-SE trend, Fig. 12b), indicating a key structural alignment in
that direction captured by the radar data.

Table 6: Statistical summary of Manual and automatic lineaments extracted from Alos Palser DEM data.

Type of Data Number of Total length of Max (m) Min(m)  Mean (m)
Lineaments Lineaments
Alos Palser DEM 125 128870 3049 157 1031
(Manual)
Alos Palser DEM 334 121323 1562 250 363
(Automatic)
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Fig. 10: Possible lineaments distribution map: a) Lineaments manually extracted from Alos Palser DEM and b)
Lineaments automatically derived from Alos Palser DEM data.

4.2.2 Lineament Distribution Density Map (LDDM)

The research area exhibits generally low lineament distribution density (Fig. 11), with the highest concentrations
in mountainous regions. Moderate densities border these, while the lowest values occur in populated troughs and
lowlands, with isolated moderate density zones. Draping the geological map with the lineament distribution
density map reveals a clear correlation, where high densities align with intensely fractured zones. The
southwestern high-density area corresponds to the NE-SW and NW-SE Kanzungo area, fault corridor occupying
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the study area's core. The southeastern section of the research area, covering the Gatoroni and Kamuin shows
low density of lineaments due to moderate urbanization. However, small enclaves exhibit high densities.
Lineament variability is primarily influenced by geology and rock outcrops.

Lineament density analysis highlights notable variations across the Alos Palser DEM and extraction methods,
especially in distribution and concentration. Manual yields a dispersed and less structured LDD pattern, with a
peak of 3.72 km/km? (Fig. 11a). In contrast, automated exhibits a higher and stronger focused LDD, a modest
increase to 4.63 km/km? (Fig. 11b). These results, despite varying methods, indicate comparable structural
influences.

The highest lineament densities are concentrated within the western, northern, southwestern, northwestern, and
central sector of the study region, regardless of the extraction method, while the southeastern region shows the
lowest values. The Alos Palser DEM data proves effective for lineament analysis. Automatic extraction yields
the highest lineament count and density, supporting its value in structural mapping. Manual analysis emphasizes
trends oriented NE-SW and NW-SE, contrasting automated NNW-SSE results, showing complementary
structural insights (Fig. 11).
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Fig. 11: Lineament density maps distribution derived from a) Manually and b) Automatically extracted
lineaments using Alos Palser DEM

4.2.3 Orientations of Lineament

To examine azimuthal variability and dominant structural orientations, rose diagrams were utilized. This study
generated diagrams for lineaments obtained from ALOS PALSAR DEM using automatic and manual extraction
techniques (Fig. 11). Automatically delineated lineaments show a dominant NNW-SSE (around 135°) and minor
NW-SE orientation, while manual extraction reveals an NE-SW (around 45°-90°). The rose diagrams (Fig. 12a-
b) clearly illustrate dominant structural alignments of N-S, NNW-SSE, and NE-SW complemented by NW-SE
being the most prominent. Also, emphasize the complementary strengths of automation in detecting geological
structures.

Stereographic projections and lineation of field measurements helped us evaluate structural directions, revealing
significant aspects of the area’s deformation processes. The general trend of the structures follows the Northeast-
Southwest and Northwest-Southeast (Fig. 12c-d), with minor north south (N-S) trends. These alignments suggest
structural controls on fluid flow and mineralization, with stereonets confirming a complex fault system likely
influenced by regional tectonic stresses (Fig. 12¢-d).
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Figure 12: Rose and stereonet diagrams showing linear-structural trend from Alos Palser DEM: a-b) Manual and
automatic remote extraction; c-d) Field based lineation and stereographic measurement

4.3 Field Validation

Field checks, supported by existing literature (Dodson, 1955; Crowther, 1957; Githenya et. al., 2021), confirmed
faults, folds, and joints, particularly in Tharaka, Kiuga, Ndiani, Kanyengya and Kamwerini. Figure 13 shows
selected validation points, representing outcrop-scale fault and mineralization observations across the study area.
Field observations confirmed a strong spatial association among copper, iron-rich zones, quartz anomalies and
fault structures zones near Kanzungo, Ciampiu, and Kanyengya distributed across the southwestern, central, and
northern portions of the study region (Fig. 14a-n). Additionally, copper enrichment correlates well with argillic
and silica alteration zones. Field analyses further validate the presence of new copper prospects in western and
central portion of the region (Fig. 14g)
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Fig. 14: a) Sericite alteration showing white mica, b) Silicification prominent in faulted zones ( Kiuga), c)
Argillic Zone widespread, linked to clay mineral, d) Heavy Mineral Sands and magnetite rich iron mineral
(Ndiani & Mukuruni area) in River Keera, e-f) Quartz and feldspar mineral on granitoid gneiss, g) Fault-related
copper mineralization (malachite and azurite), h) Crystalline Limestone, i-j) Shear joints and Strike-slip faults, k)
Quartz and Feldspar vein, 1) Biotite gneiss showing foliation and lineation trend and mineral banding, n) Strained
mylonites.

5. Discussion

Machine learning Models (MLMs) are increasingly valuable within remote sensing for geological mapping,
addressing cost, complexity challenges often associated with hyperspectral and multispectral imagery (Bachri et
al., 2020). This study assessed SVM's performance for lithological classification in arid and semi-arid land
(ASAL), proving reliable for most rock units, including granitoid gneiss and pelitic schists, though lamprophyre
detection was limited. Planetscope imagery significantly enhanced textural detail, aiding classification.
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While SVM-based automatic classification generally outperformed the existing geological map in accuracy
metrics, its detection of hornblendite veins remained limited, showing lower agreement for hornblendite and
sillimanite-biotite units (Fig. 6). These limitations are attributed to factors like differential weathering, mineral
composition variability, and image resolution. Overall, the applied method offers an efficient and rapid
alternative to traditional field mapping for generating and updating lithological maps in remote regions, reducing
time and resource demands.

Linear-structural analysis, leveraging ALOS PALSAR DEM and remote sensing data, gave us important details
about the study area's tectonic evolution consistent with findings by (Dodson, 1955; Crowther, 1957; Nyamai et
al., 1993). Manual lineament extraction, prioritized for its interpretive reliability, revealed a dominant NE-SW
trend, whereas automatic methods yielded more numerous, shorter features trending NNW-SSE. Field
measurements confirmed dominant NE-oriented shear foliations, indicative of compressional stress, with good
correspondence between these and major remote sensing trends. ALOS PALSAR DEM effectively captured key
Linear-structural features and fault systems controlling mineralization, highlighting deformation zones. Despite
inaccessibility limiting field verification of some shear zones, remote sensing successfully revealed structurally
significant lineaments, addressing a key literature gap by producing a detailed structural map of the EMMB.

6. Conclusions

This study significantly enhanced litho-structural mapping in Tharaka-Kanzungo by integrating high-resolution
PlanetScope imagery and ALOS PALSAR DEM with field data. SVM-based classification achieved 76%
accuracy (Kappa 0.7), while automated lineament extraction revealed dominant Northeast—Southwest, NNW—
SSE, North—South, and Northwest—Southeast trends. These structural features, including north-dipping shear
foliations, align with key mineral-related fault zones and reflect an N-S stress regime from the Eastern
Mozambique Mobile Belt, effectively channeling vein-hosted copper, iron, silica, and kaolinite mineralization
(Dodson, 1955; Crowther, 1957; Githenya et. al., 2021). Field investigations further confirmed unmapped
minerals and consistent sheared rock exposures. This research highlights the complementary strengths of remote
sensing datasets and the necessity of cross-validation for accurate mapping and mineral exploration in complex,
inaccessible terrains. Future work should integrate LiDAR and hyperspectral data for enhanced interpretation
and geophysical survey.
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