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Abstract 

Changes in rainfall pattern directly or indirectly affect various sectors like agricultural, insurance and other allied 

fields that play major roles in the development of any economy. An agrarian country like Ghana cannot do 

without rain because its agricultural sector heavily depends on rain water. In this study, the rainfall data was 

modelled using SARIMA model. The model identified to be adequate for forecasting the rainfall data was 

ARIMA (0, 0, 1)(0, 1, 1)12. An overall check of the model adequacy with the Ljung-Box revealed that this model 

was adequate for forecasting the rainfall data. 
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1.1 Introduction 

For centuries, the dynamics in precipitation pattern and its effects has been a vital climatic problem facing 

nations. Related to global warming, changes in rainfall patterns directly or indirectly affects various sectors like 

agricultural, insurance and other allied fields that play a major role in the development of any economy. This 

affects the lives of people in a country socially, economically and politically. An agrarian country like Ghana 

cannot do without rain because its agricultural sector heavily depends on rain water. Knowing the pattern of 

rainfall in the country is very important so far as the agricultural sector and generation of hydropower is at stake.  

Myriad of researches have been undertaken on the patterns of rainfall in different country using time series 

analysis. Naill and Momani (2009) used time series analysis to modelled rainfall data in Jordan. They identified 

ARIMA (1, 0, 0)(0, 1, 1)12 as the best model for the rainfall data. They concluded that an intervention analysis 

could be used to forecast the peak values of the rainfall. Also, Vyas et al., (2012) performed trend analysis of 

rainfall data of Junagadh district. In addition, Mahsin et al., (2012) used seasonal Autoregressive Integrated 

Moving Average (SARIMA) model to study the patterns of monthly rainfall data in Dhaka division of 

Bangladesh. Oyamakin et al., (2010), also performed time series analysis on rainfall and temperature data in 

south west Nigeria.  

Thus in this study, the SARIMA model was used to develop a model for forecasting rainfall data in the 

Navrongo Municipality of Ghana. 

 

1.1.1 Materials and method 

The sample data for this study was monthly rainfall data obtained from the Navrongo meteorological service 

station from the period January, 1980 to December, 2010.  The data was divided into in-sample and out-of-

sample. About 90% of the data which was used as the in-sample was used in developing the model and the 

remaining 10% which was used as out-of-sample was used for out-of-sample comparison.  

The data was modelled using the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. 

Before developing the SARIMA model, the data was tested for stationarity using the Augmented Dickey-Fuller 

(ADF) test. The SARIMA model is an extension of the Autoregressive Integrated Moving Average (ARIMA) 

model to capture both seasonal and non-seasonal behaviour in a time series data. The SARIMA model denoted 

by ARIMA��, �, 	
��, �, 
�  can be written in lag form as (Halim and Bisono, 2008); 

ϕ��
Φ���
�1 − �
��1 − ��
��� = θ��
Θ���
��                                                 

ϕ��
 = 1 − ��� − ����−. . . −�!�!                                                                      

Φ���
 = 1 − "��� − "����−. . . −"#�#�                                                                 

θ��
 = 1 − $�� − $���−. . . −$%�%                                                                           

Θ���
 = 1 − $��� − $����−. . . −$&�&�                                                                   

where 

p, d, q are the orders of non-seasonal Autoregressive , differencing and Moving Average respectively 

P, D, Q are the orders of seasonal AR, differencing and MA respectively 

�� represent the time series data at period t 

s represent the seasonal order 
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B represent backward shift operator 

�� represent white noise error at period t 

To avoid fitting an over parameterized model, the Akiake Information Criterion (AIC), the corrected Akiake 

Information Criterion (AICc) and the Bayesian Information Criterion (BIC) were employed in selecting the best 

model. The model with the minimum values of these information criteria is considered as the best. In addition, 

the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error 

(MAPE) were employed for in-sample and out-of-sample comparison of the best two model selected by the 

various information criteria. Finally, in order to use the best model developed for any meaningful generalisation, 

the model was diagnosed. The Autocorrelation Function (ACF) plot of the model residual was examined to see 

whether the residuals of the model are white noise. The Ljung-Box Q statistic was also used to check for overall 

adequacy of the model. In addition, the correlation matrix of the model parameters was examined to ensure that 

multicollinearity does not exist. 

 

1.1.2 Results and discussion 

The maximum rainfall recorded was 496.60mm and the minimum rainfall was 0.00mm during the period under 

consideration. The average rainfall was 75.13mm. In addition, the coefficient of variation of 125.44mm was a 

clear indication that the data was not stationary. The time series plot (Fig 1) of the data showed that there is 

seasonality in the data. This can be seen clearly from the correlogram (Fig 2) as both the ACF and PACF of the 

data showed significant spikes at the various seasonal lags. The data was further tested for stationarity using the 

Augmented Dickey-Fuller (ADF) test. The ADF test statistic of -13.64 with a p-value = 0.07 indicates that the 

data was not stationary at the 5% level of significance. The data was then transformed using logarithmetic 

transformation and seasonally differenced to make the data stationary. As shown in Fig 3, the first seasonal 

difference was enough to make the data stationary as the differenced series fluctuates about the zero point 

indicating constant mean and variance which affirms that the series is stationary. Also, the ADF test was again 

applied on the transformed seasonally differenced series. The ADF test statistic of -6.74 and p-value = 0.01 

indicates the data was stationary at the 5% level of significance. 

Furthermore, the correlogram (Fig 4) of the differenced series affirms that the data is stationary after the first 

seasonal difference as both the ACF and PACF of the seasonally differenced series decays rapidly with few 

significant lags. From Fig 4, the ACF showed a significant spike at seasonal lag 12 and lag 48 indicating that a 

seasonal moving average component needs to be added to our model. Also, the PACF showed significant spikes 

at seasonal lag 12, lag 24, lag 36 and lag 48 indicating that a seasonal autoregressive component needs to be 

added to our model. In addition, both the ACF and PACF of the transformed differenced series cuts-off after lag 

1 with few significant spikes at other non-seasonal lags. Thus, different ARIMA (p, d, q)(P, D, Q)12  models 

were fitted to the transformed data and the best model was selected based on the minimum values of AIC, AICc, 

and BIC. 

From Table 1, ARIMA (1, 0, 0)(0, 1, 1)12 and ARIMA (0, 0, 1)(0, 1, 1)12 were the top two competing models 

because they have the least values of AIC, AICc and BIC. These two models were again compared based on the 

in-sample and out-of-sample forecast performance. From Table 2, ARIMA (0, 0, 1)(0, 1, 1)12 appears to perform 

better than ARIMA (1, 0, 0)(0, 1, 1)12 for both in-sample and out-of –sample forecasting performance. Thus, the 

parameters of ARIMA (0, 0, 1)(0, 1, 1)12 were then estimated. As shown in Table 3, all the parameters were 

significant. In addition, the model was diagnosed to see how well it fits the data. It can been from Fig 5 that the 

ACF of the model residuals were white noise despite the few significant spikes at lag 6 and lag 12 which could 

be attributable to random factors. Also, the Ljung-Box statistic shown in Table 4, indicates that ARIMA (0, 0, 

1)(0, 1, 1)12 is appropriate for modelling the rainfall data. 

Finally, the correlation matrix of ARIMA (0, 0, 1)(0, 1, 1)12 model was examined. As shown in Table 5, the 

correlation between the parameters of the model was a weaker one. This means that all the parameters are 

important in fitting the model. Thus, the fitted model is given by   �1 − ���
�� = �1 + 0.1798�
�1 −

0.9403���
�� . 

1.1.3 Conclusion 

In this study, the rainfall pattern of Navrongo Municipality was model using the seasonal autoregressive 

integrated moving average model. The model identified to be best for the rainfall data was ARIMA (0, 0, 1)(0, 1, 

1)12. The model was diagnosed to check if it is adequate for modelling the rainfall pattern. The Ljung-Box 

statistic indicated that the model was adequate for modelling the rainfall pattern. 
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Table 1: Suggested models for the Rainfall pattern 

Model AIC AICc BIC 

ARIMA (1, 0, 0)(1, 1, 1)12  593.17 593.3 608.27 

ARIMA (0, 0, 1)(1, 1, 1)12 592.80 592.93 607.90 

ARIMA (1, 0, 1)(0, 1, 1)12 593.00 593.13 608.10 

ARIMA (1, 0, 0)(0, 1, 1)12 591.42 591.50 602.75 

ARIMA (0, 0, 1)(0, 1, 1)12 591.03 591.10 602.35 

 

Table 2: In-Sample and Out-of-Sample comparison of top two competing models 

Model   IN-SAMPLE   OUT-OF-SAMPLE 

  RMSE MAE MAPE RMSE MAE MAPE 

ARIMA (1, 0, 0)(0, 1, 1) 0.5542 0.3805 10.8993 0.2214 0.1260 3.500 

ARIMA (0, 0, 1)(0, 1, 1) 0.5539* 0.3800* 10.8736* 0.2181* 0.1177* 3.1476* 

*: Means best based on the measure of accuracy 

 

Table 3: Estimates of parameters of ARIMA (0, 0, 1)(0, 1, 1)12 model 

Type coefficient Standard Error T-statistic P-value 

MA 1 -0.1798 0.0552 -3.26 0.001 

SMA (12) 0.9403 0.0308 30.56 0.000 

 

     Table 4: Ljung-Box test statistic for model diagnostics 

Lags Test statistic p-value 

lag 12 20.800 0.230 

lag 24 32.800 0.065 

lag 36 43.900 0.119 

 

    Table 5: Correlation matrix of  ARIMA (0, 0, 1)(0, 1, 1)12 model parameters 

Parameter MA1 SMA (12) 

MA 1 1 -0.033 

SMA (12) -0.033 1 
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Fig 1: Time series plot of Rainfall data 

 
Fig 2: Correlogram (ACF and PACF) of Rainfall data 
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Fig 3: Seasonal first difference of Rainfall data 

 

 
Fig 4: Correlogram (ACF and PACF) of seasonally first differenced Rainfall data 
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Fig 5: ACF of ARIMA (0, 0, 1)(0, 1, 1)12 model residuals 
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