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Abstract 
In this paper, a brief historical review on sequence stratigraphy from the renaissance, 1681 A.D., to the present 
day concepts and practices was attempted. Sequence stratigraphy integrates time and relative sea-level changes 
to track the migration of sedimentary facies. The strength of this technique lies in its potential to predict facies 
within a chronostratigraphically constrained framework of unconformity-bound depositional sequences. 
Sequence Stratigraphy can be used to study sedimentary rock relationships within a time-stratigraphic 
framework of repetitive, genetically related strata bounded by surfaces of erosion or non-deposition, or their 
correlative conformities. The application of sequence stratigraphy provides the potential for chronostratigraphic 
correlation within and among growth-faulted sub-basins, thus improving prediction of stratigraphic and areal 
distribution of deeply buried lowstand reservoirs. Sequence stratigraphy provides a guide to potential 
combination traps and the opening of a window on exploration for deep, unexpanded sub-fault reservoirs and 
traps, thereby enabling explorationists to properly place a given sub-basin into a petroleum system framework in 
a cost-effective manner. 
Keywords: sequence stratigraphy, systems tract, sequence boundary, biostratigraphy 
 
1. Introduction 
Sequence stratigraphy integrates time and relative sea-level changes to track the migration of facies. Sequence 
stratigraphy is rooted mainly in seismic stratigraphic sequence analysis, and its strength lies in its potential to 
predict facies within a chronostratigraphically constrained framework of unconformity-bound depositional 
sequences. Sequence stratigraphy is done using outcrops, well logs or cores, and interpretations may depend on 
rather different sets of data. However, the basic geometrical criteria remain the same. Using the methodology 
developed for seismic sequences by Vail et al. (1977), interpreters analyze seismic reflections to describe stratal 
geometry and delineate the systematic patterns of lap-out and truncation of strata against chronostratigraphically 
constrained surfaces. In this manner, they establish the presence of unconformity-bound depositional sequences, 
deduce relative sea-level changes, and describe the depositional and erosional history of an area. Sequence 
stratigraphy can be used to study sedimentary rock relationships within a time-stratigraphic framework of 
repetitive, genetically related strata bounded by surfaces of erosion or non-deposition, or their correlative 
conformities (Posamentier et al., 1988; van Wagoner et al., 1988). Rock stratigraphic sections are divided into 
sequences, parasequences and or their associated system tracts. 
   
2. Introduction 
Holy sea level change  

�  (Noah, Anebi Nuhu in Holy Bible and Al-Koran) 

� The Renaissance 

� 1681: Barnet “Sacred Theory of the Earth” 

� 1748: De Maillet “Telliamed” 

• Spawned the Neptunists 

1788: Hutton and the concept of the unconformity 
� Basalt, cross-cutting relationships and the sinking of the Neptunists 

Early ideas for mechanisms of sea level fluctuation 
� 1835: Lyell and raised beaches 

� 1842: MacLaren and glacial advances and 1840: Agassiz 

� 1864: Croll and orbital cycles 
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Early ideas on sea level and stratigraphic control 
� 1898 and 1909: Chamberlain and world-wide “diastrophic control” on stratigraphy 

� 1906: Suess and eustasy 

� 1906: Grabau and concepts of lapping relationships 

Relationship between sedimentation and time 
� 1912 and 1917: Barrell 

1935: Wanless and Shepard and Pennsylvanian “cyclotherms” 
1949: Sloss, Krumbein and Dapple the interregional unconformity, and the “Sequence” 
1958: Wheeler and the “Wheeler diagrams” 
1963: “Sloss Sequences” from Larry Sloss 
Late 1960’s and early 1970’s:  seismic stratigraphy 
1974: Frazier named a unit bounded by “marine starvation surface” which is today’s maximum  
         flooding surface a complex sequence. 
1975: Chang (1975) renamed Sloss et al. (1949)’s sequence as “synthem”. 
1977: the research group at Exxon, Peter Vail and AAPG Memoir 26 (Payton, 1977; Vail et al., 1977). 

� The “Slug Diagram” and the transgressive/regressive and chronostratigraphic framework 

� The “Vail Curves” of absolute sea level 

1984: AAPG Memoir 36, sequence stratigraphy ideas were expanded 
1987: publication of Haq et al. (1988) Chart 
1988: Jervey’s model used sea-level change, subsidence and constant sediment supply as input. 
1988: Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication 42 “Sea  
         Level  
         Changes: An Integrated Approach”  (Wilgus et al., 1988) 

� Spelled out detailed mechanisms of sequence stratigraphy 

� New concepts such as parasequences and accommodation space were introduced. 

� Opened sequence stratigraphy to non-industry scrutiny 

� 1991: Miall’s attacks on the Vail Curves 

� Modified for non-shelf setting, non seismic data sources and impractical assumptions 

1990's:  Many publications questioning certain aspects of sequence stratigraphy, or validity of inter- 
            basinal  

       correlations, or alternative models for the development of sequences 
� High-resolution, sub-seismic scale sequence stratigraphy both in siliciclastic and carbonates.  

Milankovitch theory of orbital forcing was revived to explain the origin of high-frequency 
subsequence scale cycles 

� Computer modeling packages developed to replicate and analyze the sedimentary fill of 
sedimentary basins (e.g., SEDPAK, Mr. Sediment…) 

1994: Biddle et al. and Inverse seismic modeling based on physical properties.  
 
3. Principles of Sequence Stratigraphy 
Sequence stratigraphy is the study of genetically related facies within a framework of chronostratigraphically 
significant surfaces (van Wagoner et al., 1990). Sedimentary facies is defined as the sum total of the lithological 
and paleontological aspects of a stratigraphic unit in a particular place. The parameters of facies are geometry, 
lithology, paleontology (including ichnofossils), sedimentary structures and paleocurrent patterns (Reijers, 
1996). Vertical facies analysis must be done within conformable strata packages to accurately interpret coeval, 
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lateral facies relationships along a single depositional surface (Walther, 1894; Walker, 1984). Walther’s (1894) 
Law states that a vertical succession of facies, a facies sequence, reflects a similar lateral succession of facies, 
facies belts, provided that the facies transitions are gradual (Reijers, 1996; Emery and Myers, 1997). 
 
3.1 Accommodation Space  
According to Holland (2008), accommodation space is the space available for sediments to accumulate at any 
point in time, and it is controlled by base level. Accommodation space can be filled with sediments or water. The 
distance between the sediment/water interface and the sea surface is known as water depth. The accommodation 
space not filled with water is filled with sediment (Fig.1). 
 

 

 

                 

 

               

 

 

Fig.1. Diagrammatic representation of accommodation space (Source: Holland, 2008) 

3.2 Geometric Analysis of a Depositional Sequence  
3.2.1 Unconformities 
Definition of unconformity:- An unconformity is a surface of erosion or non-deposition that separates younger 
strata from older rocks and represents a significant hiatus. Unconformities are classified on the basis of the 
structural relationships between the underlying and overlying rocks. They represent breaks in the stratigraphic 
sequence, that is, they record periods of time that are not represented in the stratigraphic column. Unconformities 
also record a fundamental change in the environment (from deposition to non-deposition and/or erosion) which 
generally represents an important tectonic event. The recognition and mapping of unconformities are the first 
steps in understanding the geological history of a basin or a geological province - whether recognized in seismic 
lines, outcrops or well data. Unconformities are used as boundaries of stratigraphic units. There are four types of 
unconformities, namely: nonconformity, angular unconformities, disconformity, and paraconformity. 
 
3.2.2 Relationships of Strata to Sequence Boundaries 
A seismic sequence is a depositional sequence identified on a seismic section (Obaje, 2013). It is a relatively 
conformable succession of reflections interpreted as genetically related strata. It is bounded at its top and base by 
surfaces of discontinuity marked by reflection terminations interpreted as unconformities or the correlative 
conformities. A seismic sequence consists of genetically related strata. Because it is determined by a single 
objective criterion such as the physical relationships of the strata themselves, the depositional sequence is useful 
in establishing a framework for stratigraphic analysis. The concept of sequence stratigraphy was initially 
developed in 1977 at Exxon by Vail and his colleagues and diffused with the publication of AAPG Memoir 27. 
The definition of depositional sequence was modified by Vail et al. (1984; 1977), Posamentier and Vail (1988) 
to include systems tracts. A system tract is associated with a segment of the eustatic curve and its timing in any 
given basin will depend on local subsidence and sediment supply. 
 
3.2.3 Sequences  
Sequence - “a stratigraphic unit that is defined on the basis of bounding unconformities.” An unconformity is a 
composite surface of erosion and/or non-deposition separating older from younger sediment or rock bodies. Two 
type of sequence are recognized, one descriptive (stratal sequence), and the other interpretive, involving 
bounding unconformities of specific character (depositional sequence). Stratal sequence – “a stratigraphic unit 
that is defined exclusively with reference to bounding unconformities without regard to their character.” A stratal 
sequence is an unconformity-bounded unit equivalent to the synthem and approximately equivalent to the 
allostratigraphic unit of the North American Commission on Stratigraphic Nomenclature (NACSN) in 1983. An 
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allostratigraphic unit is bounded by stratigraphic discontinuities that are commonly but not necessarily 
unconformities according to the way in which the term unconformity is conventionally used. 
Depositional sequence – “a relatively conformable succession of strata bounded by unconformities of subaerial 
erosion/nondeposition or their submarine equivalents and by genetically correlative conformities.” The intent of 
this definition is to permit the extension of a depositional sequence beyond the point at which one or both 
boundaries cease to be unconformable. The interpretation of a depositional sequence does not require correlative 
conformities to be present within a particular area of study. A depositional sequence is an unconformity-related 
unit, and essentially the sequence upon which modern sequence stratigraphy is based (van Wagoner et al., 1990).  
According to Berggren et al. (2001), the sequence terminology dilemma was resolved by the NASCN Working 
Group’s recognition that the sequence of Sloss, the allostratigraphic units and the synthems are identical types of 
units, while on the other hand, the sequences of seismic and sequence stratigraphy differ from the others only in 
that they may be extended beyond the basinward termination of the bounding unconformities. 

The NASCN Working Group has abandon the use of the terms “allostratigraphic units” and “synthem” and 
unified the terminology of unconformity-related units to the preferred single term “sequence” for all such units.  
A sequence is defined as "a relatively conformable succession of genetically related strata bounded at its top and 
base by unconformities and their correlative conformities. It is composed of a succession of systems tracts and it 
is interpreted to be deposited between eustatic fall inflection points". 

Sequence bounding unconformities are initiated at times when the rate of sea level fall exceeds the rate of 
subsidence. As subsidence rates increase seaward on most platforms, the unconformities pass downdip into 
correlative conformities. Sequence stratigraphy may be applied at several scales, and in this sense it is fractal in 
nature (meaning that at any scale sequences have the same characteristics). Phanerozoic history is comprised of 
first-order eustatic sequences. First-order sequences are called megasequences by Haq et al. (in SEPM Special 
Publication 42) and are equivalent to the cratonic sequences of Sloss. Eras are comprised of second-order 
eustatic sequences (supersequences of Haq et al.). Seismic stratigraphy normally is concerned with third-order 
sequences (1 - 5 MY duration), and it is this level that is the subject of AAPG Memoir 26. Geologic studies of 
well log cross sections, outcrops, and cores deal with third, fourth (105 years duration) and fifth-order (104 years 
duration) sequences, and these are the subject of van Wagoner et al. (1988).   

3.2.4 Parasequences  
Parasequence are defined as a relatively conformable succession of genetically related beds or bedsets bounded 
by marine flooding surfaces and their correlative surfaces. In addition to these defining characteristics, most 
parasequences are asymmetrical shallowing-upward sedimentary cycles (Fig. 2).  These parasequence cyclic 
stacking patterns are commonly identified on the basis of variations in grain size and when these fine upwards 
are indicated by triangles whose apex is up while those that coarsen upwards are indicated by inverted triangles 
whose apex is down. By genetically related, it is meant that all facies within a parasequence were deposited in 
lateral continuity to one another, that is, Walther's Law holds true within a parasequence. So, for a typical 
siliciclastic wave-dominated shoreline, a particular suite of facies should occur in a predictable order.  In both 
clastics and carbonates the second and often co-incident step, in the interpretation of well logs and cores, is the 
use of parasequence stacking patterns (the vertical occurrence of repeated cycles of coarsening or fining upwards 
sediment). The parasequences are used to identify the systems tracts. 

3.2.5 Lowstand Systems Tract 
The LST is formed by sediments that accumulate after the onset of relative sea-level rise, during normal 
regression, on top of the FSST (Fig. 3) corresponding to an updip subaerial unconformity stacking patterns of 
clinoforms may forestep, and aggrade, particularly in siliciclastic systems, thicken downdip, with a topset of 
fluvial, coastal plain and/or delta plain deposits. LST sediments often fill or partially infill incised valleys that 
were cut into the underlying HST and other earlier deposits, during the forced regression. This systems tract has 
also been termed the late lowstand systems tract (Posamentier et al. 1988; Posamentier and Allen 1999) or the 
lowstand prograding wedge systems tract (Hunt and Tucker 1992). According to SEPM STRATA (2013), earlier 
papers recognized the ‘shelf margin systems tract’ as the lowermost systems tract associated with a 'type 2 
‘sequence boundary’ (Posamentier et al., 1988). The distinction between types 1 and 2 sequence boundaries has 
been dropped (Posamentier and Allen 1999; Catuneanu 2006), and the facies are now considered to be part of the 
LST. The LST is a time-based systems tract (Emery, 2009). 
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Fig. 2. Parasequence (Source: Holland, 2008) 

3.2.6  Transgressive Systems Tract 
The TST is formed by sediments that accumulated from the onset of transgression until the time of 
maximum transgression of the coast, just prior to the renewed regression of the HST. The TST lies directly on 
the maximum regression surface formed at the end of regression (also termed a transgression surface) (Fig. 
3).  A transgressive systems tract is overlain by the maximum flooding surface (MFS) formed when marine 
sediments reach their most landward position. The stacking patterns show backstepping, onlapping, 
retrogradational clinoforms that, particularly in siliciclastic systems, thicken landward. In cases where there is a 
high sediment supply the parasequences may be aggradational (SEPM STRATA, 2013). Emery (2009) defined 
the TST as material-based systems tract, and it was originally defined by van Wagoner et al. (1988). 

3.2.7  Highstand Systems Tract 
The HST includes the progradational deposits that form when sediment accumulation rates exceed the rate of 
increase in accomodation during the late stages of relative sea-level rise (SEPM STRATA (2013)). The HST lies 
directly on the MFS formed when marine sediments reached their most landward position. This systems tract is 
capped by the subaerial unconformity and its correlative conformity sensu Posamentier and Allen (1999). The 
stacking patterns show prograding and aggrading clinoforms that commonly thin downdip, capped by a topset of 
fluvial, coastal plain and/or delta plain deposits. Emery (2009) defined the highstand systems tract (HST) as a 
component unit of a sequence defined by a maximum flooding surface and its correlative surfaces as the lower 
boundary and a basal surface of forced regression (BSFR) and its correlative surfaces as the upper boundary 
(Fig. 3). The HST is a time-based systems tract. 
 
3.2.8  Falling Stage Systems Tract (FSST) 
Forced regressive (falling stage) systems tract (FRST, or FSST) is a unit of a sequence defined by a basal surface 
of forced regression (BSFR) and its correlative surfaces as the lower boundary and a correlative conformity (CC) 
and its correlative surfaces as the upper boundary (Fig. 3). The FSST is a time-based systems tract (Emery, 
2009). According to SEPM STRATA (2013), the FSST is formed by forced regressive deposits that accumulated 
after the onset of a relative sea-level fall and before the start of the next relative sea-level rise. The FSST lies 
directly on the sequence boundary sensu Posamentier and Allen (1999) and is capped by the overlying lowstand 
systems tract (LST) sediments.  

3.2.9  Sequence Models  
There are four main types of sequence models in sequence stratigraphy in practice. These are Exxon/van 
Wagoner et al. (1988), Embry (1993), Hunt & Tucker (1992), modified by Helland-Hansen and Gjelberg (1994) 
and Posamentier & Allen (1999) sequence model, respectively. The schematic of the different sequence models 
is shown in Fig. 4, wherein red color is used for the sequence boundaries, while blue color is used to depict the 
internal systems tract boundaries.  

 
3.3   Surfaces 
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3.3.1  Sequence Boundary 

The sequence boundary is a subaerial unconformity (SU) up-dip and a correlative conformity (CC) down-dip. 
Where it is an unconformity, it is a surface of subaerial exposure and erosion; however, the expression of those 
features in an individual outcrop may or may not be obvious. In places, an unconformity may be marked by 
obvious erosion, such as a major incised channel or a beveling of structurally tilted underlying strata. Regionally, 
unconformities may display up to tens or sometimes hundreds of meters of relief. In siliciclastic systems, this 
relief is generated principally by down-cutting rivers. In the undissected regions between rivers, called 
interfluves, paleosols may mark an unconformity, and their presence may be indicated by caliche nodules or 
rooted horizons. Down-dip at its correlative conformity, a sequence boundary is commonly marked by an abrupt 
basinward shift in facies. This abrupt shift is called a forced regression by some workers to distinguish it from a 
normal regression in which a shoreline moves seaward simply due to sedimentation. An abrupt basinward shift 
of facies is manifested in an outcrop by an abrupt shallowing, such as shoreface sediments directly overlying 
offshore sediments or mid-fan turbidites directly overlying basinal shales. As facies above and below such a 
basinward shift in facies commonly represent non-adjacent environments, this surface is abrupt and Walther's 
Law cannot be applied across it. Minor submarine erosion may be associated with this abrupt basinward shift of 
facies. Farther downdip, the correlative conformity may display no obvious facies contrast or other unusual 
features; the position of the sequence boundary in these cases can only be approximated (Fig. 3). Sequence 
boundaries are generated by a relative fall in sea level. As this is a relative fall in sea level, it may be produced 
by changes in the rate of tectonic subsidence or by changes in the rate of eustatic rise, as long as those changes 
result in a net loss of accommodation space. Early models of sequence boundary formation argued that the 
sequence boundary formed at the time of maximum rate of fall, but subsequent models suggest that the age of 
the sequence boundary can range in age from the time of maximum rate of fall to the time of eustatic lowstand.  

3.3.2  Basal Surface of Forced Regression (BSFR) 
The Basal surface of forced regression (BSFR) was first defined by Hunt and Tucker (1992) as the surface that 
underlines the marine sedimentary wedge that builds seaward during a forced regression of the shoreline. 
According to Catuneanu (2006), BSFR of the FSST of Helland-Hansen and Gjelberg (1994) is also called the 
early lowstand systems tract of Posamentier and Allen (1999) (Figs. 3 and 4). 

3.3.3  Regressive Surface of Marine Erosion (RSME) 
Regressive surface of marine erosion (RSME) is usually formed during a time of base-level fall when the inner 
part of the marine shelf in front of the steeper shoreface is sometimes eroded. This area of inner RSME may be a 
few tens of kilometres wide, migrates basinward and it is a highly diachronous surface. RSME can potentially be 
quite widespread both along strike and down dip. Erosion beneath the RSME is minor and localized and thus it is 
almost always a diastem and not an unconformity (Emery, 2006). 
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Fig. 3. Four systems tracts based on Hunt and Tucker (1992) model (Source: Emery, 2009) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 4. Schematic of different sequence models (after Emery, 2006; Catuneanu, 2006) 
 
 

3.3.2  Basal Surface of Forced Regression (BSFR) 
The Basal surface of forced regression (BSFR) was first defined by Hunt and Tucker (1992) as the surface that 
underlines the marine sedimentary wedge that builds seaward during a forced regression of the shoreline. 
According to Catuneanu (2006), BSFR of the FSST of Helland-Hansen and Gjelberg (1994) is also called the 
early lowstand systems tract of Posamentier and Allen (1999) (Figs. 3 and 4). 

3.3.3  Regressive Surface of Marine Erosion (RSME) 
Regressive surface of marine erosion (RSME) is usually formed during a time of base-level fall when the inner 
part of the marine shelf in front of the steeper shoreface is sometimes eroded. This area of inner RSME may be a 
few tens of kilometres wide, migrates basinward and it is a highly diachronous surface. RSME can potentially be 
quite widespread both along strike and down dip. Erosion beneath the RSME is minor and localized and thus it is 
almost always a diastem and not an unconformity (Emery, 2006). 
 
3.3.4  Maximum Regressive Surface (MRS) 
The main characteristic for identification of an MRS in marine clastic strata is it is a conformable horizon or 
diastemic surface which marks a change in trend from coarsening-upward to fining-upward. The MRS is never 
an unconformity. Over most of its extent, the MRS also coincides with a change from shallowing-upwards to 
deepening-upward and this criterion is very helpful, especially in shallow water facies (Fig. 3). In deeper water, 
high subsidence areas, the change from of shallowing to deepening may not coincide with the MRS as defined 
by grain size criteria. In nonmarine siliciclastic strata, the change from coarsening to fining is also applicable for 
objectively identifying an MRS. In carbonate strata the change from shallowing upward to deepening upward is 
usually the most reliable and readily applicable criterion for identifying an MRS. Maximum regressive surface 
(MRS) is shown in Figs. 3 and 4. 

3.3.5  Maximun Flooding Surface (MFS) 
In marine siliciclastic strata, the MFS marks the change in trend from a fining upward trend below to a 
coarsening upward trend above (Embry, 2009). In nearshore areas, this change in trend coincides with a change 
from deepening to shallowing. Farther offshore, this relationship does not hold and the deepest water horizon 
sometimes can lie above the MFS. In terms of stacking pattern, the MFS is underlain by a retrogradational 
pattern which displays an overall fining upward and is overlain by a prograding one which records an overall 
coarsening upward (van Wagoner et al., 1990). In carbonate strata, the MFS also marks a change in trend from 
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fining to coarsening. Notably, in a shallow-water carbonate-bank setting, the MFS will mark the horizon of 
change between deepening upward to shallowing upward and this criterion, which employs facies analysis, can 
often be more reliable than grain-size variation for its delineation in such a setting. In deeper water, carbonate 
ramp settings, the MFS marks a change from decreasing and / or finer carbonate material to increasing and/or 
coarser carbonate material. The MFSs have been placed at the change in gamma log trend from increasing 
gamma ray to decreasing gamma ray. This change in gamma ray trend is interpreted to reflect a change from 
fining and deepening-upward (increasing clay content) to coarsening and shallowing-upward (decreasing clay 
content). The MFS overlies the SU/SR-U/MRS surfaces (Figs. 3 and 4) and, as shown, represents the change in 
trend from fining to coarsening. The surface develops close to the time of onset of regression when the shoreline 
begins to move seaward and coarser sediment arrives at a given locality on the shelf. In distal areas, the MFS can 
be an unconformity due to starvation and episodic scouring and it is downlapped by prograding sediment. On 
seismic data the MFS is represented by a reflector often referred to as a “downlap surface” (Emery, 2009). MFS 
is marked by the change from fining upward to coarsening-upward. Thus, the MFS is interpreted to be generated 
very near the time of start of regression. 
 
3.3.6 Transgressive Surface 
The lowstand systems tract is commonly capped by a prominent flooding surface called the transgressive 
surface. The transgressive surface represents the first major flooding surface to follow the sequence boundary 
and is usually distinct from the relatively minor flooding surfaces that separate parasequences in the lowstand 
systems tract.  The transgressive surface may be accompanied by significant stratigraphic condensation, 
particularly in nearshore settings, which may be starved of sediment because of sediment storage in newly 
formed estuaries. Typical features indicating condensation are discussed in more detail below. Following the 
relatively low rates of accommodation during the lowstand systems tracts, relative sea level begins to rise at an 
increasing rate. When this long-term rise is coupled with the short-term rise that forms a parasequence boundary, 
a major flooding surface is formed. The first of the series of these flooding surfaces is called the transgressive 
surface. In updip areas characterized by subaerial exposure and erosion during the lowstand systems tract, the 
transgressive surface and sequence boundary are merged into a single surface. Such situations are common in 
slowly subsiding regions such as in cratonic regions and the landward areas of passive margins.  
 
3.4 Seismic Stratigraphy 
According to Catuneanu et al. (2009), in seismic stratigraphy, there are four stratal terminations that can be used 
to identify sequence stratigraphic surfaces. There are two occurring above a surface known as onlap and 
downlap, while the remaining two occur below a surface are called truncation and toplap (Fig. 5). In addition, 
offlap is a key stratal stacking pattern that affords the recognition of forced regressions and the delineation of 
subaerial unconformities and their correlative conformities. Such lapouts are useful to the interpretation of 
depositional trends, and hence systems tracts. Stratal geometries, together with stratal terminations, can be used 
to define surfaces and systems tracts, and also to infer accommodation conditions at the time of deposition 
(Catuneanu et al., 2009).  
 
 
 
 
 

 
 
Fig. 5. Seismic stratal terminations (After Catuneanu, 2002 quoted in SEPM STRATA, 2013) 
 
3.5 Biostratigraphy  
Biostratigraphy is the study of rock strata using fossils (Giwa, et. al, 2006). The best sequence stratigraphic 
models of the sedimentary fill of basins are provided by a combination of seismic data, well logs and cores and 
outcrop studies in conjunction with biostratigraphy. The cores and well logs and outcrop studies provide access 
to a detailed vertical resolution of sedimentary sections while seismic and outcrop studies provide the lateral 
continuity to the sequence stratigraphic framework and the biostratigraphy provides the time constraints. All 
these different sequence stratigraphic techniques can be used independently of each other to produce accurate 
interpretations of the depositional histories of the sedimentary fill of a basin but the best models come from a 
mix of all three. Sequence stratigraphy is best determined when well logs are tied to biostratigraphic markers. 
Subsurface rock samples are usually obtained from ditch cuttings, sidewall or core samples. Mega-fossils are 
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usually grounded; however, microfossils are preserved in their natural state. In biostratigraphic studies, the three 
basic disciplines studied are micropaleontology, nannopaleontology and palynology. Biostratigraphy has proven 
itself to be a major tool in developing an understanding of reservoir architecture and continuity, and in 
developing strategies to maximize petroleum production. At the same time, the high resolution biozonation 
schemes that are developed are useful for wellsite work, especially if the wells are being drilled horizontally to 
maximize recovery of hydrocarbons. Such a well is said to be “biosteered” using high resolution biozonation 
schemes. (Shipp & Marshall, 1995). 
 
3.5  Carbonate Sequence Stratigraphy 
According to Catuneanu et al. (2009), the concepts of sequence stratigraphy apply to carbonate systems in much 
the same way as they do to siliciclastic or other terrigenous (e.g., detrital calcareous clastic) systems. In other 
words, carnonate stratigraphic sections share similar bounding surfaces such as subaerial unconformities, 
correlative conformities maximum flooding surfaces, flooding surfaces, maximum regressive surfaces, 
regressive surfaces of marine erosion, and transgressive ravinement surfaces. However, the difference lies in the 
physical character of these surfaces and the sediments they subdivide (Catuneanu et al., 2009). The following 
factors predicate the observed difference: “(1) in carbonate settings sediments are primarily sourced locally in 
response to the productivity of carbonate-producing organisms, forming the ‘carbonate factory’; (2) most 
carbonate production is related to photosynthesis and so water depth, either directly (in the case of  autotrophs, 
which use inorganic material to synthesize living matter) or indirectly (in the case of heterotrophs, which include 
filter feeders that are light-independent, and, consequently not controlled by water depth); (3) carbonate 
production is also related to the salinity, temperature and nutrient content of the seawater; (4) the dispersal of 
carbonate sediment is influenced by biological processes that include binding, baffling, encrusting, and 
framework-building; (5) carbonates are prone to cementation penecontemporaneous with accumulation, which 
stabilizes the sea bottom and thus restricts sediment mobility; and (6) carbonates are prone to physical and 
chemical erosion in both submarine and subaerial settings. Interpreting key surfaces in a sequence stratigraphic 
context can be particularly problematical because deposits may be erased and critical events may go unrecorded. 
It is important to remember that the influence of all these factors is related to the evolutionary and ecological 
history of the various organism groups involved, be they microbial, faunal or floral” (Catuneanu et al., 2009). 
 
4.  Applications of Sequence Stratigraphy 
Sequence stratigraphy interpreted from well logs tied to biostratigraphy is used to correlate and analyze 
sedimentary rocks from the perspective of geologic time. Well logs lend themselves to the detailed 
reconstructions of paleogeography and the generation of high frequency stratigraphic models that predict the 
distribution of sedimentary facies, particularly those associated with aquifers, sediment bound ore bodies, and 
hydrocarbon reservoirs, their source rocks and seals. Sequence-stratigraphic analysis is an appropriate method 
for identifying subtle variations exhibited in a stratigraphic succession (Brown, et al, 2004). According to Brown 
et al. (2004), application of sequence stratigraphy provides the potential for chronostratigraphic correlation 
within and among growth-faulted sub-basins, thus improving prediction of stratigraphic and areal distribution of  
deeply buried lowstand reservoirs; providing a guide to potential combination traps; opening a window on 
exploration for deep, unexpanded sub-fault reservoirs and traps; placing the sub-basin into a petroleum system 
framework; and focusing on improper correlation of genetically similar wire-line log patterns of temporally 
lithostratigraphic units. 
 

It has been established that the maximum flooding surfaces (MFS) within the marker shales are the boundaries of 
the sequences (Galloway, 1989). The sequence surfaces can be traced from seismic profiles using the approach 
of Vail (1987) and derivation from wire-line logs after Durand (1995) and using biostratigraphic data, they can 
be easily confirmed. According to Obaje (2004), sand percentages can be  derived from wire-line logs of which 
the vertical sand stacking pattern is an inversion (mirror image). Thick shales separating reservoir sands are 
candidates for MFS, the thin ones are usually interbedded in shoreface deposits and contain lower-order flooding 
surfaces (Reijers, 1996). The sequence boundaries can be identified from the wire-line logs and checked against 
the maximum depth (from seismic profiles) and biofacies abundances and diversities.  

5. Conclusion 
 Sequence stratigraphy has come of age, and it is a tool every explorationist must master. It is essential for 
regional and local exploration studies, for seismic evaluation, and for reservoir evaluation. It is a very useful tool 
for the identification of 3rd Order depositional sequences and systems tracts that are associated with potential 
hydrocarbon reservoirs, source rocks and seals in sedimentary basins 
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