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Abstract 

Lack of access to safe drinking water and basic sanitation facilities suggests that water resources management is 

not at its optimal level in Nigeria. Also, literature indicates transformation in the approaches of water resources 

management from the more traditionally approach which rely largely on physical solutions, to a new concept that 

blends resource development with ecological concerns. However, the trade-offs in the transformation requires 

more detailed geo-hydrological data in its implementation. Hence, the aim of this paper is to demonstrate the 

importance of the need for acquisition of continuous and consistent geo-hydrological data for the development of 

sustainable framework for water resources in Nigeria. The methodology adopted is to compare the development 

of two MODFLOW based groundwater flow model scenarios for Lagos metropolis, Nigeria, and Birmingham, 

UK; evaluate the sufficiency of the required input data, and assessed the emanating implications for the model 

outputs. The results showed that Lagos metropolis model was plagued with dearth of the required geo-

hydrological data and this greatly limited the reliability and prediction capability of the model. 

Recommendations include wide availability of quality assured, retrievable and accessible data, effective 

coordination and interactions between the various relevant government agencies, and Water Resources Bill that 

mandates professionals to submit all data acquire from government and privately funded projects and researches. 

Others include pro-active engagement between professional bodies and government agencies, as well as 

implementation and enforcement of the existing regulations. 
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1 Introduction 

Historically, availability of water resources has played major role in ancient civilization, and has underpinned the 

rate of growth of socio-economic development as well as the resulting quality of life (Priscoli, 1998; De Feo et 

al., 2011; Flores et al., 2011). However, in the contemporary Nigeria, water resources management is not at its 

optimal level. According to the WHO/UNICEF Joint Monitoring Programme (WHO/UNICEF, 2012), 

approximately 109 million Nigerians lack access to basic sanitation facilities, and 63 million are not within the 

reach of improved source of safe drinking water. Diarrhoea in children constitutes the second main cause of 

infant mortality (after malaria), and the third main cause of under-five mortality in Nigeria. Therefore, effective 

and efficient water resources management will play a significant role in the development of sustainable 

framework for a healthy society.   

 

Literature (Melloul and Collin 2003; McClain, 2012) indicates that the approaches to management of water 

resources is widely varied, and are also being transformed from the more traditionally approach which rely 

largely on physical solutions to a new concept that blends resource development with ecological concerns. The 

traditional water resources management approach which solely relies on sourcing of new reserves to mitigate 

increasing water demands caused by population increase and technological advancement (among others) is 

facing increasing opposition and claims of derogation (Oladeji et al., 2012; Asiwaju-Bello and Oladeji, 2001). 

Conversely, the new approach incorporates environmental restoration and ecological design programs into the 

water resources management policy, and thereby it is considered to provide more efficient use of the resource.  

 

However, the trade-offs in the transformation of the management options is that the newer approach requires 

more detailed geo-hydrological data in the understanding of the environment. These requirements include the 

need for detailed characterization of the spatial and temporal variability of the resource, exploring efficiency 

improvement in water use, implementing options for managing demands, as well as resource re-allocation to 

ensure sustainable use. In order to achieve these requirements, a tool with simulating and predictive capabilities 
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for characterizing and understanding the environmental systems, its behavior, as well as for assessing ecological 

responses to the management of the resource is required. 

 

A major tool in the assessment of water resources management scenarios is a model, due to its capability to 

enable decision makers to compare alternative actions and take management decisions to achieve efficiency 

goals without violating specified constraints. However, the accuracy of any solution produced by a model is 

directly dependent on the input of the geo-hydrologic data and other boundary conditions that characterize the 

domain and the problem being solved. The reliability of the solution increases with increasing model 

discretization, but the detail and amount of the input data requirements also proportionally increases greatly. 

Hence, the aim of this paper is to demonstrate the importance of the need for acquisition of continuous and 

consistent geo-hydrological data for the development of sustainable framework for water resources in Nigeria.  

 

2 Methodology 
The approach adopted in this paper is to compare the developments of two groundwater flow model scenarios 

developed for Lagos metropolis, Nigeria, and Birmingham, UK. Groundwater model is used to demonstrate the 

concept presented in this paper because models integrates large amount of geo-hydrologic data that are required 

in most water resources development projects. In addition, calibrated models are used to evaluate management 

policies prior to their actual field implementation. The numerical code adopted for this work is MODFLOW 

2000 (Harbaugh et al. 2000).  The preparation of the input data and the presentation of the modelling output 

were facilitated by ArcGIS 9.1 and GRASS GIS 5.7 software, and complimented by customized FORTRAN 

utility programs, Microsoft Excel and MS WordPad.   

 

2.1 Birmingham model 

The model area covers approximately 221 km
2
, and presented in Figure 1. Powell et al. 2000 showed that the 

area is underlain by Sherwood sandstone Group overlying the Westphalian Formations. These constitute the 

aquifer and impervious horizons, respectively. The constituent geological strata for the Sherwood Group are 

Kidderminster, Wildmoor, and Bromsgrove sandstone Formations.  A major geological structure is the 

Birmingham Fault that juxtaposes the Triassic mudstone to the east against the Sherwood (Triassic) sandstone to 

the west (Figure 1).  The flow model was setup and calibrated under transient conditions covering 20 years from 

January 1970 to December 1989.   

 

The average length of the stress period was 90 days, making a total number of 80 stress periods.  Each stress 

period was in turn divided into nine time steps, corresponding to approximately 10-day time step.  The total 

number of time step was 720.  In order to validate the model output and for future predictions, the model was 

further setup to run for a period of 30 years from March 1985 to February 2015, with the simulation length 

consisting of 120 stress periods.  The length of each stress period varies between 90 and 91 days.  The spatial 

discretization of the model was setup using 760 rows and 600 columns, with cell dimensions (∆y and ∆x) of 25 x 

25 m, making a total of 456,000 nodes.  The model was set up as three layers representing the constituent aquifer 

horizons namely, Bromsgrove, Wildmoor and Kidderminster Formations, corresponding to model layer 1, 2 and 

3, respectively. 

 
 
Conceptually, the flows across the eastern and the southern boundaries of the aquifer geometry were restricted 

by imposing low hydraulic conductivity values along the fault paths. The presence of the Westphalian 

Formations along the western parts of the area supports the choice of the defined no-flow cells along the western 

boundary of the model.  The northern boundary of the model was also defined as no flow boundary because of 

the presence of a groundwater divide. The initial conditions of the groundwater heads, aquifer properties and 

abstraction rates were obtained from the measured spatial and temporal field data. Distributed recharge values 

were computed for each model cell using series of spreadsheet calculations based Food and Agricultural 

Organisation methodology (FAO, 1998). The model was calibrated by minimizing the residuals between the 

observed and the simulated groundwater head data, coupled with graphical analysis of the model fit and 

constrained by the conceptual understanding of the study area.  The convergence criterion for the hydraulic head 

observations was set to 0.01 m. The major geo-hydrological input data requirements in this model include 

geology for aiding the conceptual understanding and boundary conditions (Figure 1) and groundwater levels for 

head transient calibration (Figure 2). Data used for calculation of distributed recharge flux are precipitation (01 

January 1961 – 10 January 2010) and evapo-transpiration (31 December 1969 – 29 November 2009), as well as 

soils, landuse, and vegetation cover types.  The final calculated recharge flux for each stress period of the model 
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simulation is presented in Figure 3. Simulation of external stress was based on records of groundwater 

abstractions (Figure 4) and aquifer characterization was based on field test data. 

 

 

 

Figure 1. Birmingham model area 

 

2.2 Lagos Metropolis model 

 

The Lagos metropolis groundwater flow model area covering approximately 3672 km
2
 is presented in Figure 5. 

  

 

Figure 2: Groundwater monitoring data for model calibration 
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Figure 3: Groundwater recharge flux for stress periods 

 

Figure 4: Groundwater abstraction data 

 
Figure 5: Lagos metropolis model area 
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Figure 6: Transmissivity coefficient distribution of Lagos model area 

 

 

Figure 7: Storage coefficient distribution of Lagos model area 

Available model data include borehole locations and logs, pumping test data and static water levels acquired 

from drilling contractors and well owners. Hydrostratigraphic model was developed by delineation of subsurface 

geologic horizons into aquifers and aquicludes. Transmissivity and Storage coefficients of the pumped aquifers 

were estimated from the analysis of the pumping tests data, using Aquiferwin 32 software. The study area was 

discretized into 403 nodes. The problem of dearth of data required extensive extrapolation and interpolation of 

the available data in order to fill the data gap. The spatial distribution of the interpolated Transmissivity and 

Storage coefficient values are presented in Figures 6 and 7, respectively. The input data for the two models are 

summarized and presented in Table 1. 
 
3 Results and Discussion 

 

The available required input data for each scenario were considered, evaluated their sufficiency, and emanating 

implications for the model outputs were assessed.  

 

3.1 Birmingham model 

 

The plot of the simulated groundwater head against the observed values is presented in Figure 8.  
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Table 1: Summary of model input data 

 
S/N Parameter Birmingham Model Lagos Model 

1 Elevations (m OD) Distributed values (Shapefiles) Interpolated Values 

2 Boundary Conditions No flow conditions  (
†
FBI)   

Assumed no flow 

conditions  

3 Geometry 
3 Layer model; 1: Bromsgrove sst Fm; 2: 

Wildmoor sst; 3: Kidderminster  Fm  

1 Layer model 

(though geology 

shows 3 layers) 

4 Spatial discretization 
No of rows: 760; No of columns: 600; ∆x=25 m; 

∆y=25 m 

No of rows: 13; No 

of columns: 31; 

∆x=4 km; ∆y=2.5 

km 

5 No of abstraction BHs 12, with time varied abstraction rates  (
†
FBI) 

9, with assumed 

constant flow rate  

6 Observation boreholes  31 boreholes (see Figure 1 for locations). 

None with temporal 

groundwater level 

data 

7 River bed cond. (m/s) Initial:1.296 x 10
-5

;  Final: 9.2593 x 10
-6

   (
†
FBI) 

Assumed none 

required 

8 Recharge rate (m/s) Distributed values (modelled) (
†
FBI) Gross Estimation 

9 
Horizontal hydraulic 

conductivity (m/s) 

Bromsgrove Fm =5.787x10
-6

; Wildmoor sst Fm 

=2.315x10
-5

; Kidderminster Fm =3.472x10
-5

  

(
†
FBI) 

1.08x10
-5

 – 4.68x10
-4

 

10 
Vertical hydraulic 

conductivity (m/s) 

Bromsgrove Fm =5.787x10
-8

; Wildmoor sst Fm 

=1.157x10
-7

; Kidderminster Fm =5.787x10
-8

  

(
†
FBI) 

Not computed 

11 Specific yield 
Bromsgrove Fm = 0.12; Wildmoor sst Fm = 0.10; 

Kidderminster Fm = 0.12  (
†
FBI) 

Not required 

12 Specific storage 
Bromsgrove =1x10

-4
; Wildmoor Fm =5x10

-4
; 

Kidderminster = 1x10
-4

  (
†
FBI) 

1.90x10
-4

 – 2.87x10
-3

 

13 KBirmingham Fault (m/s) Initial:1.0 x 10
-12;  

(
†
FBI); Final: 1.0 x 10

-9
 Not required 

†FBI: Field Based Information 

  
Also, the observed groundwater head values against the corresponding residuals are presented in Figure 9. The 

respective final horizontal hydraulic conductivity values for the Bromsgrove, Wildmoor and Kidderminster 

sandstone Formations were 5.787x10
-6

, 2.315x10
-5

, and 3.472x10
-5

 m/s.  The corresponding values for vertical 

hydraulic conductivity were 5.787x10
-8

, 1.157x10
-7

, and 5.787x10
-8

 m/s, respectively.  The final horizontal 

conductivity values are within the same ranges compared to the values obtained by Allen et al. (1997) and Jones 

et al. (2000) from field test data, for the respective aquifer horizons, as well as to those values obtained by Knipe 

et al. (1993).  

 

Furthermore, the final values for the specific yield were 0.12, 0.10 and 0.12, and for the specific storage were 

1x10
-4

, 5x10
-4

, and 1x10
-4

, respectively for Bromsgrove, Wildmoor and Kiderminster Formations.  The value 

reported by Allen et al. (1997) for the specific yield of the undivided Sherwood sandstone Group is 0.12.  Knipe 

et al. (1993) and Rushton and Salmon (1993) respectively reported specific yield value of 0.15, and 0.10 for the 

Bromsgrove sandstone Formation. The values obtained in this work are similar to these referenced values. Also, 

the recharge value of 112 mm/yr obtained in this work is comparable to 115 mm/yr obtained by Knipe et al., 

(1993).  Buss et al., (2008) obtained similar value of 121 mm/yr for year 1996 and relatively higher value of 131 

mm/yr for year 2000. Generally, a sufficient degree of match was obtained between the measured head 

observations and the simulated equivalents (Figure 8).  The simulated data are within ± 2 m of the observed data. 

The percentage numerical error associated with the volumetric balance is less than 0.1 % throughout the duration 

of the simulation.  The final refined value for the hydraulic conductance along the Birmingham fault was 1.0 x 

10
-9

 m/s.  This value is less than the hydraulic conductivity values obtained for the sandstone layers (5.787x10
-6

 - 

3.472x10
-5

 m/s), and indicates that the fault acts as a barrier to groundwater flow, and not conduits.  This 

conclusion agrees with the earlier work of Knipe et al. (1993), who modelled the faults as reduced thickness to 
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achieve the required lower transmissivity value along the fault path. The spatial distribution of the calibrated and 

predicted groundwater head obtained for layer 3, and the associated drawdown values are presented in Figure 10. 

 

 

Figure 8: Field and simulated groundwater heads 

 

 

Figure 9: Residual values simulated at observation locations 
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Figure 10: Simulated and predicted groundwater head values 

3.2 Lagos Metropolis model 

 

Also, for the Lagos metropolis model, the hydrostratigraphic model showed that the area is underlain by three 

major and laterally extensive alternating sequences of aquifer and aquiclude horizons, with a near horizontal 

water table. The thicknesses of the aquifers are irregular and widely varied. However, the model was setup for 

only the first layer because there were no sufficient data available to support a three-layer model. The ranges of 

values of transmissivity and storage coefficients for the first layer are 1.08x10
-5

 – 4.68x10
-4 

m
2
/s

 
and 1.90x10

-4
 – 

2.87x10
-3

, respectively. The regional groundwater flow direction was towards the south both for the simulated 

and field conditions (Figure 11). The range of values of drawdown after 158 days of pumping is 2 m – 15 m 

(Figure 12). The coarse discretization, dearth of available initial data, non reliable borehole logs and lack of 
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temporal water level data hindered efficient model calibration process and therefore limits predictive capability 

of the flow model. 

 

 

Figure 11: Simulated regional groundwater flow pattern 

 

Figure 12: Simulated drawdown values 

4 Conclusions 

In this work, emphasis was laid on the availability of the required input data and the implications for the validity 

of the resultant solution of the models. Although flow models were developed for both the Birmingham and 

Lagos metropolis study areas, however the Lagos model was plagued with dearth of the required spatial and 

temporal geo-hydrological data and this greatly limited the reliability, possible applicability and the prediction 

capability of the model. Therefore, in order to ensure development of sustainable water resources framework for 

Nigeria, the following recommendations are made: 

 

1. Wide availability of quality assured, retrievable and accessible data (Online access). 

2. Effective coordination and interactions between the various relevant governmental agencies. 

3. Water Resources Bill that will mandate professionals to surrender / submit all data acquire from 

government and private funded projects and researches. 

4. Pro-active engagement between the professional associations and the relevant government agencies. 

5. Effective implementation and enforcement of the existing and new regulations. 
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