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Abstract 

This article studies the extend of change in latent classes, relating to students, which were calculated using DINA 
and Generalized-DINA(G-DINA) Models under different distributions and sub-sample sizes which were 
calculated using DINA and Generalized-DINA(G-DINA) Models. Main focus of this study is the results of 
practical application rather than statistical structure of Cognitive Diagnostic Models (CDM). The attribute the 
individuals master that take the test in CDM are determined categorically. For this reason, both the fit of Q 
matrix with data and the effect of sample size are searched in modelling the students’ category. In the case of low 
model data fit and inadequate sample size, the findings of this research will be a guide in  how the decisions 
change about which attribute a student master or not. To this end, a mathematic test consisted of 18 multiple 
choice questions taken by a group of 1000 examinee was employed. Analyses were carried out using 5 different 
Q-Matrices, for which relations between test items and attributes were determined by experts, and latent classes 
determined by both DINA and G-DINA models were compared. Comparisons were made with a view to 
accuracy of values between classes associated with examinees in different sample sizes drawn from the same 
population and values obtained for population. Thus, for both models, whether they lead to independent results 
from the samples was tested for sample sizes of 30, 50, 100, 200 and 400 and effects of Q matrix- data fit on 
analysis results were determined. Results of analysis showed Q-matrix – data fit had significant impact on 
decisions about students for both models.  

Keywords: Cognitive Diagnostic Models, DINA model, G-DINA model, Q Matrix 

 

1. Introduction 

Cognitive Diagnostic Models (CDM) have received ever increasing attention after “No Child Left Behind” Act 
of 2001 in USA. Main objective of this approach is to provide cognitive feedback about students to students, 
teachers, and families (Embretson, 1991, 1998).  

CDM is based mainly on latent class analysis. Latent class analysis is a statistical method determining sub-
groups using multivariable categorical data and utilizing interrelations (Cheng 2010). CDM was developed to 
measure specific knowledge structures or skills the student mastered, and provides information about their 
cognitive strengths and weakness (Leighton and Gierl, 2007).  

CDM is designed to discriminate students according to latent classes based on two parameter attributes. 
Attributes, represented by latent variables constituting a vector determining expertise, define skill set underlying 
diagnostics for students. Latent variables denoted as “attributes” here, may be defined as traits, competencies, 
task, sub-task, cognitive process or skill (Tatsuoka, 1995a). 

In a test developed by CDM, instead of total score or subscale scores, which skills, each individual taking the 
test, mastered and which non-mastered were analyzed. In this regard, results of CDM analysis will not only 
allow assessment process but also help in determining education needs for each student (de la Torre, 2009a). 

CDM is more convenient for cases the test measures more than one interrelated structures. Each item in test is 
designed to measure those structures or cognitive components. Each item in CDM may measure more than one 
aspect to be assessed by the test (Rupp & Templin, 2008). CDM determines student's performance on each 
cognitive item instead of focusing on students’ skills levels in latent scale. Probabilities thus obtained may be 
transformed so as to profile the skills student mastered. In CDM, items are matched with attributes to be 
measured by Q-Matrix (K. Tatsuoka, 1985).  

In Q matrix, each column is a vector of attribute or skill and each row represents an item. Attributes are traits, 
procedures, method of discovery, strategies, skills and other cognitive components determined by experts of the 
field (Embretson, 1984). Q matrix will show whether any attributes exist for item by binary coding using 1-0 
(Tatsuoka, 1990). This coding approach initially was denoted as “weighting” by Fisher (1973) and if attribute k 
exists for item i, it was coded as 1 and if does not exist it takes 0.  
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Q matrix with 3 attributes and 5 items are show in Table 1.1. As it was shown in Q matrix it requires the first 
attribute to correctly answer the 1st item. For the second item, students must have attributes 1 and 2.  

Table 1. 
Q Matrix Example 

items α1 α2 α3 

1 1 0 0 

2 1 1 0 

3 1 1 1 

4 0 1 1 

5 0 0 1 

 

Q matrix above indicates α1 attribute is required for correct answering of item 1 and both  α1 and  α2 attributes 
are required for correct answering of item 2.   2k  latent classes are defined for k attributes in Q matrix. As a 
result of analysis based on Q matrix example, respondents shall be placed in 23 latent classes. 

Latent classes are determined as (000), (100), (010), (001), (110), (101), (011) and (111). Latent classes exactly 
represent which attributes student mastered and which non-mastered. A student classified under (000) in latent 
classes defined in the above example possesses no attributes. Similarly under (100) latent class only students 
having attribute α1 were assigned whereas under (011) class students who have no α1 attributes but possess α2 
and α3 were classified. 

This explains diagnostic function of CDM. In this respect, test analyzed with CDM will not only allow 
assessment process but also help determine each students' educational needs (Cheng & Chang, 2007; Huebner, 
2010). De la Torre and Douglas (2004) maintained that specification of Q matrix directly determines prediction 
of students’ skills profile.   

Several different CDMs were developed in recent years. Reviews by Junker (1999), diBello, Roussos,and Stout 
(2007), Roussos et al. (2007), and Rupp et al. (2008) provide exhaustive reviews of different CDMs and their 
statistical qualities. non-compensatory Deterministic inputs noisy and-gate (DINA) and Noisy-input 
deterministic-and-gate (NIDA) models (e.g. Macready et al., 1977, Haertel, 1989; Junker & Sijtsma, 2001; de la 
Torre, 2009b)are mostly used. Deterministic inputs noisy or-gate (DINO) and Noisy-input deterministic-or-gate 
(NIDO) models (e.g. Maris, 1999). Hartz (2002) developed the Fusion model which is also known as reduced re-
parametrized unified model (RUM) (Roussos et al., 2007).  

Some frameworks such as, the flexible family of general diagnostic models (GDM, van Davier, 2005, 2007), the 
generalized DINA Model (de la Torre, 2008), as well as the log-linear framework for CDMs (Henson, Templin, 
& Willse, 2009).were proposed for CDMs. Additionally, some extensions of CDMs for multiple-choice items 
were proposed in the literature of CDM (e.g. Bolt & Fu, 2004 for the fusion model; de la Torre, 2009b for the 
DINA model).  

 

1.1. DINA model 

DINA model was developed by Haertel (1989). DINA model (deterministic inputs, noisy “and” gate) is one of 
models developed for cognitive diagnostics (Junker & Sijtsma, 2001). This model is a latent class analysis 
similar to binary skills model. DINA model is closely related to Item Response Theory (IRT) (Haertel, 1989). 
Nevertheless DINA model, differing from IRT models, does not assume continuous distribution of different skill 
sizes of students. Instead, students are dichotomously assigned to small number of latent classes. DINA model 
classifies respondents into two dimensional classes for each attributes. First class is “Non-Mastery”, namely 
class of respondents lacking specified trait, and the other is "Mastery", namely class of respondents possessing 
the specified trait. As is understood, DINA model does not define attributes that students possessed as continuous 
variables but as a categorical variable.  

DINA model can be simply defined as follows: Let Xij  denotes response of respondent i to item j, and i= 1,…,I 
and  j= 1,…, J. Denote respondent’s binary attributes vector as αi={ αik }, for  k= 1,…,K  when respondent’s kth 
entry is 1  it will denote kth  attribute possessed and when it is 0, not possessed (de la Torre 2009a).  

Item Response function for DINA model is given by:  

P�α��∗ � = 	 g�																						if	α��∗ ≺ 1��∗1 − s�																otherwise					 
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Where 1K is a vector of K�∗ gj is the probability that individuals who lack at least one of the prescribed attributes 
for item j will guess correctly, and 1−sj is the probability that individuals who have all the required attributed will 
not slip and get the item wrong (de la Torre 2011). 

Main difference of DINA model from other CDMs, is classifying a respondent under Non-Mastery class even if 
respondent does not posses only one attributes prescribed for an item. In other words, only the respondent who 
mastered all attributes to answer correctly has correct answering probability near to 1. Function of correct 
answering probability of an individual who possess all attributes is given by: 

� ����	 = 1 η�� , "� , #�$ = �1 − "��η%&#�
'(η%& 

Where P is the probability of a student who possess all prescribed attributes to answer correctly η�� is latent 
answer, determined by α, and attribute for item i and a vector of qj. Row of item j in Q matrix can be shown as: 

η�� = ) ∝�+
,&-.

+/'  

Main advantage of DINA model over other CDMs, is both application and interpretation processes involved 
lower level of complexity. Yet, De la Torre and Douglas (2004, 2008) showed DINA model achieved higher 
model-data fit and facilitated easy adaptation to different strategies with some modifications. Besides, de la Torre 
maintained that there is a high level similarity between DINA model results and new and more complex CDMs’ 
results (de la Torre, 2008b, 2009b; de la Torre & Liu, 2008; de la Torre, 2013). As well, the studies on dina 
model applications have proceeded for ex. Differential item functioning in DINA (Feming li, 2008; Hou 2013) 
and natural network with CDM (Lamb, Annetta, Vallett, & Sadler, 2014; Shu, Henson, & Willse, 2013) etc. All 
those accounts pinpoint outstanding importance of DINA model among all other CDMs and constituted main 
starting point in selecting DINA model in this study.  

1.2.G- DINA model 

G-DINA model is a generalization of the DINA model with more relaxed assumptions. As many cognitive 
diagnostic models, this model is also based on JxK Q matrix. G-DINA model discriminates latent classes into  

2.&∗  latent groups. Each latent group is reduced to a skill vector represented by∝1�∗ . Each latent group has 

probability of correct answering represented by ��∝1�∗ � (de la Torre, 2011). 

The original formulation of the G-DINA model based on ��∝1�∗ �can be decomposed into the sum of the effects 
due the presence of specific attributes and their interactions. Probability formula for G-DINA model is given by: 

��21�∗ � = 3�4 + 6 3�+21+ + 6 6 3�++,	
.&∗('

+/'

.&∗

+7 /+8'

.&∗

+/'
21+21+, … .+3�';…..&∗ )21+

.&∗

+/'
 

3�4 = is the intercept for item j 
3�+ = is the main effect due to αk 
3�++ , = is the interaction effect due to αk and αk 
3�';…..&∗ 	= is the interaction effect due to α1,...,.,2.&∗  
Estimation code of G-DINA is an implementation of EM algorithm. In analysis procedure, first	��∝1�∗ � values 
with standard errors are calculated, then posterior probabilities of skills are determined and latent classes of 
students and goodness of fit statistics for item and test are calculated according to those probabilities. 
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Figure 1 

Above Figure 1 shows distribution of success probabilities against levels of attributes mastered for DINA and G-
DINA. For three attributes probability of correct answer is maximum only for students who mastered all three 
attributes and for all other cases probability is at minimum level. In G-DINA model contribution of each 
attributes to probability of correct answering is different and in case student mastered one or more attributes 
probability of correct answering depends on weight of the attribute. In G-DINA model probabilities for each ��∝1�∗ � case which respondent may have are calculated.  

 

 
Figure 2 

Figure 2 below shows 3 values for each items determined by G-DINA model. 

As shown in graphics, contributions of attributes to probability that a student gets the item correct are not equal. 
As an example, in columns 110 and 101, probability that students get item correct if they have first two attributes 
is higher than probability that students get the item correct if they have attributes first and third(de la Torre, 
2011). 

Purpose of this study is to determine impact of changes in Q matrix, which determines interrelations among 
measured attributes and items in CDM, on skills estimation power of models. Recent studies on CDMs have 
focused on new method searches to increase level of representation of items in the test by Q matrix (DeCarlo, 
2011; Close et al., 2012; de la Torre, 2008a; de la Torre et al. 2010; Rupp & Templin, 2008; Chen, de la Torre, & 
Zhang, 2013). This study focuses on finding convincing evidences of conformity between Q matrix and the test. 
In addition, effects of sample size on skill estimation of models and on changes brought about by 
misspecification of Q matrix were investigated. To this end, this paper illustrates, using real data, practical results 
about Q matrix which is keystone for CDM. 
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2.Method 

This paper focuses on practical issues, using real data, on model misspecification of Q matrix and investigates 
solutions to remedy Q-matrix. 

2.1.Data  

Data for this study is taken from yearly OKS examination (elementary school student selection and 
placement examination) taken by primary school 6, 7, 8 grade students. OKS is an achievement test consisting of 
Mathematics, Science, Turkish Language, Social Sciences and English Language sub-tests. Data of this study are 
responses of randomly selected 1000 examinees who got grade 8 Mathematic sub-test in OKS 2008 examination. 
Mathematical test used in the study is in the form of 18 multiple choice items. Sample size of 1000 examinees is 
preferred to ease comparison of latent classes that examinees are classified.  

2.2.Procedure 

In this study, 5 different Q matrices with different model data fits were employed to compare latent classes under 
which students were classified for different sample sizes. To implement analysis first Q matrices are determined. 
As real data were used in this study help of field expert was obtained for determination of Q Matrix pertaining to 
Mathematics sub-test items of OKS examination. Field experts first determined attributes measured in the test. 
Field experts divided the test into “numbers” (α1), “geometry” (α2), “probability- statistics” (α3) and “algebra” 
(α4) learning fields. In the next step, experts determined requisite attributes to answer an item correctly. Q 
matrices determined by field expert is given in Table 2. 

Table 2.  
 5 Q matrices specified by expert opinion 

Q1  Q2  Q3  Q4  Q5 

α1 α2  α3  α4    α1 α2  α3  α4    α1 α2  α3  α4   α1 α2  α3  α4   α1 α2  α3  α4  
0 1 0 0  0 1 0 0  0 1 0 0  0 1 1 0  0 1 1 0 
1 0 0 0  1 0 0 0  1 0 0 0  1 0 0 1  0 1 0 1 
1 0 0 1  1 0 0 1  1 0 0 1  1 0 1 1  1 0 1 0 
1 0 0 0  1 0 0 0  1 0 0 0  1 1 0 0  1 1 0 1 
1 0 0 1  1 0 0 1  0 0 0 1  1 0 0 1  0 1 1 0 
1 1 1 0  1 1 1 0  1 1 1 0  1 1 1 0  1 1 1 1 
1 0 1 0  1 0 1 0  0 0 1 0  1 0 0 0  1 0 1 0 
0 1 0 1  0 1 0 1  0 1 0 1  0 0 1 0  0 0 0 1 
0 1 1 1  0 1 1 1  0 1 1 1  1 0 0 0  0 0 1 1 
1 1 0 0  1 1 0 0  1 1 0 0  1 1 0 0  1 1 0 0 
1 1 0 0  1 1 0 1  0 1 0 1  1 1 0 1  1 0 0 1 
0 1 0 0  0 1 0 0  1 1 0 0  0 1 0 0  0 1 1 1 
0 1 1 0  0 1 0 0  0 1 1 0  0 1 0 0  0 1 1 0 
0 0 1 0  0 0 1 0  0 0 1 0  0 0 1 0  1 0 1 0 
0 0 0 1  0 0 0 1  0 0 0 1  0 1 0 0  0 1 1 1 
0 0 1 0  0 0 1 0  0 0 1 0  0 0 1 0  1 0 0 0 
0 0 1 1  0 0 0 1  0 0 1 1  0 0 1 1  0 0 1 0 
1 0 1 0  1 0 0 1  1 0 1 1  0 0 1 0  1 0 1 0 

 
Model data fit indices for five different Q matrices calculated as a result of analysis using DINA and G-DINA 
models are given by Table 3. 

Table 3.  
Test-Level Fit Statistics for Q matrices determined by Expert Opinion 

DINA G-DINA 

-2LL AIC BIC -2LL AIC BIC 

Q1 18136,0493 18238,0493 18488,3448 17753,7869 17885,7869 18209,6987 

Q2 18597,7407 18699,7407 18950,0362 18238,5150 18370,5150 18694,4268 

Q3 18553,8703 18655,8703 18906,1659 18542,1316 18650,1316 18915,1504 

Q4 20522,5875 20624,5875 20874,8830 19635,9509 19763,9509 20078,0472 

Q5 21011,5629 21113,5629 21363,8584 19784,7675 19948,7675 20351,2034 
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Q matrices are in descending order from higher fit to lower fit in Table 3. Comparing DINA and G-DINA model 
results it is observed that fit statistics had similar orders for DINA and G-DINA models. Moreover G-DINA 
model fit statistics are lower comparing to DINA model. Lower values in fit statistics indicate better model fit. 

To investigate effects of model-data misfit on latent classes to which students are classified, samples in different 
sizes were drawn from data. Sub-samples were generated in 30, 50, 100, 200 and 400 examinee groups randomly 
selecting from the data of 1000 examinees. Total of 25 sub-samples were used in analyses drawing 5 samples for 
each of other group sizes. For example, 5 samples of 30 examinees were drawn (30a, 30b, 30c, 30d, 30e). Sub-
samples were analyzed separately by using Q1, Q2, Q3, Q4 and Q5 matrices for DINA and G-DINA models. 

Means and standard deviations pertaining to specified groups in different sample sizes are given in Table 4. At 
the first row of Table descriptive statistics for the data of 1000 examinees were provided. 

Table 4.  
Descriptive statistics for sub-samples drawn for different sample sizes 

 N 
 

Mean Std. Dev. Skewness Kurtosis 

population 1000 
 

6,92 3,60 0,82 0,57 

Sample 

30 

a 6,80 3,40 0,98 0,87 

b 6,71 3,60 0,66 1,31 

c 6,47 2,89 0,70 -0,06 

d 6,77 3,79 0,64 0,23 

e 7,03 4,03 0,85 0,60 

50 

a 6,64 3,49 0,46 -0,29 

b 6,94 4,00 0,60 -0,16 

c 6,44 3,42 0,35 -0,11 

d 6,84 3,59 0,86 0,47 

e 7,24 3,87 0,63 0,24 

100 

a 6,97 3,59 0,68 0,54 

b 6,78 3,75 0,75 0,23 

c 7,32 3,49 0,69 0,48 

d 7,23 3,61 0,83 0,51 

e 6,57 3,41 0,97 1,02 

200 

a 6,96 3,45 0,72 0,48 

b 6,90 3,75 0,86 0,49 

c 6,66 3,40 1,05 1,19 

d 6,92 3,63 0,92 0,66 

e 6,81 3,72 0,77 0,44 

400 

a 6,72 3,57 0,97 0,94 

b 6,85 3,60 0,89 0,65 

c 6,89 3,64 0,79 0,58 

d 6,76 3,47 0,83 0,73 

e 6,99 3,54 0,85 0,65 

 

As shown in Table 4, means and standard deviations for sub-samples take on values close to population 
distribution of 1000 examinees. Means varied in the range of 6,44 to 7,32 in the sub-samples whereas standard 
deviations varied between 2,89 and 4,00. This indicates sub-sample distributions are drawn from the same 
population. 

Analysis results of latent classes pertaining to students determined by each sub-sample were compared with 
analysis results of latent classes of students determined by population. For example, Students’ latent classes are 
determined by analysis performed using Q1 matrix for the first sample of 30 students. Then latent classes 
pertaining to the same students using Q1 matrix in the distribution of  1000 examinees are determined. In this 
case, two latent classes for each student in the group of 30 examinees were obtained using DINA model for Q1 
matrix. The same procedure was repeated for five different Q matrices and for each sub-sample set both using 
DINA and G-DINA models.  

In this study, for sample selection and descriptive statistics SPSS software package was used whereas estimation 
of DINA and G-DINA model parameters were made using codes running under OX EDIT software. 
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3.Results 

Firstly this study investigated extends of impacts of different Q matrices on decisions made about students. To 
this end, changes in 5 different Q matrices due to DINA and G-DINA classifications pertaining to data of 1000 
examinees were calculated. To this end, classification accuracy of results of highest fit Q1 matrix with other 
matrices were determined. Result of analysis is given in Table 5. 

Table 5. 
Q matrices interrelations in DINA and G-DINA models 

  
Q2 Q3 Q4 Q5 

DINA 
Latent Class 16 16 14 8 

Classification 
accuracy 

85,4 84,6 54,4 13,4 

G-DINA 
Latent Class 16 16 16 13 

Classification 
accuracy 

90,9 87 81,2 13,6 

 

Number of latent classes, DINA and G-DINA models assigned students to, are  shown in latent class row in 
Table 5. As there are four attributes in the test for both models, there are 24 = 16 latent classes. An examination 
of Table reveals that in DINA model Q2 and Q3 matrices placed students in 16 classes but for Q4 and Q5 matrices 
the same students are assigned to less number of classes. For G-DINA model less variability was observed. 
Determination of probabilities for less number of latent classes can be interpreted as diminished sensitivity on 
discriminating individual differences. Classification accuracy rows of Table show the concordance between 
classes assigned by models using Q1 matrix and other matrices. As it is readily seen changes in matrices have 
significant impacts on decisions about students.   

3.1.Findings regarding Different Sample sizes:  

Correlations between calculated fit statistics pertaining to results of all analyses implemented by this study and 
classification accuracy percentages are investigated. Results were given in Table 6. 

Table 6. 
Fit statistics and classification accuracy percentage correlation. 

N Fit İndex DINA G-DINA 

30 

-2LL -,855** -,427* 

AIC -,855** -,657** 

BIC -,855** -,716** 

50 

-2LL -,869** -,522** 

AIC -,869** -,566** 

BIC -,869** -,598** 

100 

-2LL -,667** -,779** 

AIC -,667** -,819** 

BIC -,667** -,777** 

200 

-2LL -,659** -,744** 

AIC -,659** -,746** 

BIC -,659** -,760**  

400 

-2LL -,755** -,756** 

AIC -,755** -,770** 

BIC -,755** -,779** 

 

For five different Q matrices and five different samples drawn randomly for each sample size, individual 
analyses were implemented. For each analysis between data and test, 2 log likelihood (-2LL), Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BIC) were calculated. There is high negative 
relation between fit statistics and classification accuracy percentage as shown in Table 6. This indicates that as 
model-data fit deteriorates, classifications accuracy decreases.  
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Table 7 shows results of DINA model analyses for different sample sizes. 

Table 7.  
Classification accuracy percentage of latent classes determined by DINA model for different Q matrices and 
sample sizes. 

    DINA 

N  
30 

M of 
%* 

50 100 200 400 Toplam 

Q1  
82,0 86,8 91,4 94,1 94,5 89,76 

Q2  
75,3 86,4 85,6 90,6 92,5 86,08 

Q3  
74,0 81,6 83,6 89,9 91,5 84,12 

Q4  
31,3 52,4 67,4 86,6 86,5 64,84 

Q5   29,3 25,6 55,0 60,7 65,5 47,22 

• Average of 5 samples for each sample size 

5 Different Q matrices used in analyses are denoted as Q1, Q2, Q3, Q4 and Q5. Symbols 30, 50, 100, 200 and 400 
denote classification accuracy averages of five different groups determined for each sample size. For example 
analysis with Q1 in sample sizes of 30 examinees averagely resulted in 82% accuracy in 5 samples for the 
decisions made about the same students. In other words, the same 30 students are placed, in a rate of 82%, in the 
same classes as DINA model evaluated them both in the group of 1000 students and in sample size of 30 
students.  

As Table 7 indicates, differences among classifications get higher as Q matrix fit for each sample size 
deteriorates. Although classification accuracy rises as sample size increases, when Q5 matrix, which gave lowest 
data fit, was used, differences between classifications increased to significant levels. 

Table 8.  
Classification accuracy percentage of latent classes determined by G- DINA model for different Q matrices and 
sample sizes. 

    G-DINA 

N 
30  

M of 
%* 

50 100 200 400 Toplam 

Q1  
81,3 85,6 91,8 92,9 96,6 89,6 

Q2  
74,0 82,4 88,8 90,5 94,3 86,0 

Q3  
79,3 79,2 83,8 87,0 90,0 83,9 

Q4  
78,0 76,8 82,8 84,7 92,0 82,9 

Q5   26,0 68,4 52,4 53,7 90,3 58,2 

• Average of 5 samples for each sample size 

Tables 8 shows classification accuracy of decisions made about students between sub-groups and data of 1000 
students by results of analyses for G-DINA model with 5 different Q matrices. An examination of Table reveals 
that G-DINA model gave highest classification accuracy with Q1 matrix. On the other hand, poorest 
classifications accuracy in G-DINA model, was obtained using Q5 matrix. Besides, for  G-DINA 
model ,accuracy percentage increases as n becomes larger. 

3.2.DINA and G-DINA models comparison results:  

Following results are obtained from comparison of classification accuracy rates of models for different sample 
sizes. 
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Figure 3 illustrates classification accuracy for students determined by DINA and G-DINA models for various 
sample sizes. First graphics in Figure 1, is based on results of analysis for 5 different Q matrices using both 
models for n=30. First points in the graphics are average of classification accuracy percentages obtained by Q1 
matrix pertaining to 5 different samples of 30 examinees. As readily observed in graphics, classification 
accuracy by DINA model significantly deteriorates with Q4 matrix. For the same matrix, G-DINA models still 
give high level classifications accuracy. For both models it can be said that there is discrepancy in decisions 
made about students using Q5 matrix. For n=50, DINA and G-DINA models achieved consistent decisions about 
students using Q1, Q2 and Q3  matrices whereas for DINA model calculations made with Q4 and  Q5 matrices 
classification accuracy significantly deteriorated. Although higher accuracy for all matrices was observed in G-
DINA model, misclassification increases as model-data fit deteriorates.  

Considering results of sample size n=100, for DINA model, significant discrepancies were observed in decisions 
about students with Q4 and Q5 matrices. On the other hand, higher accuracy results were obtained for first four 
matrices with G-DINA model but it deteriorates significantly when Q5 was used. As for averages of sample size 
n=200, both DINA and G-DINA models give similar results. Lastly for the sample size n=400, classification 
accuracy deteriorated in DINA model when Q5 matrix was used, yet, classification accuracy for all matrices in 
G-DINA was above 90%. All in all, it can be said that Q matrix changes had less impact on G-DINA than DINA 
model. However, the impacts of sample sizes on both models are similar. 

4.Conclusion 

Considering the findings of this study, significant impact of model-data fit on decisions about students in CDM 
was observed. Analyses summarized in Table 5 indicate that two students classified under “1111” class, namely 
determined as having all attributes using  Q1 for the population, were assigned to “1010” class when Q2 matrix 
was used. As matrix misfit increases, misclassification increases significantly as well. Decision made regarding 
any student changes as data-fit of Q matrix deteriorates. 

Deterioration in model-data fit lead to changes in estimated profiles for the same students with the same Q 
matrix when different sample sizes were analyzed. Results of analysis showed that a student who was classified 
as having all four attributes (1111) in the group of 1000 students, was classified as having no attributes (0000) 
when evaluated in the sub-group of 400 students. This revealed importance of Q matrix in practical applications. 
In DINA model results, classes determined by analysis for population using Q4 and Q5  matrices were observed 
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to differentiate approximately 50% in sub-samples. This differentiation was also observed in large samples of 
400 students. In other words, this rate indicates that model decisions were changed for half of the group. It can 
be said that when a Q matrix with lower data-fit was used, models cannot give sample- independent results. 

When relations between DINA and G-DINA models are considered, generally classifications by G-DINA model 
will be affected less by changes in Q matrix. This also conforms to the fact that fit-indices of G-DINA is lower 
than DINA model's as shown in this study. At this stage, it can be assumed as an indication that data and items 
studied here better fits G-DINA model.  

Determination of Q matrix- item relations by exclusively expert view may lead to thoughts that decisions made 
by CDM models on students are open to dispute. In this study, fit statistics showing data-fit of Q matrix was 
found to have high correlation with population and sub-sample classification intersections. In this sense, 
statistical evidences are needed to determine Q matrix specification. Researchers and practitioners should take 
the studies on this issue (DeCarlo, 2011, 2012; Close et al. , 2012; de la Torre, 2008a; de la Torre at al. 2010; 
Rupp & Templin, 2008) into consideration during construction of their models to ensure reliability of their 
outcomes. Those studies regarding structure of Q matrix embody milestones for “diagnostic analysis”.  

Besides, the researchers’ obtaining new findings about the model fit and sample size with the researches based 
on the real application data in the field of CDM and its appropriate usage in the educational areas will increase 
the usage of these approaches. Meanwhile, the other approaches’ comparison that developed in CDM will be 
useful for practitioners. 
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