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Abstract 

In the rapidly evolving digital era, cultivating innovative talents with the ability to solve complex real-world 
problems has become a strategic priority for global education reform. As a ubiquitous problem-solving 
methodology, Computational Thinking (CT) serves as a vital cognitive bridge between digital technologies and 
human reasoning. Computational Thinking is globally recognized as a critical competency for the 21st century 
and a cornerstone of STEM education. However, current K-12 programming instruction often suffers from a 
"syntax-driven" approach and knowledge fragmentation, where novice learners experience cognitive overload 
when facing authentic problems. This creates a barrier to the transfer of algorithmic skills. To address these 
challenges, this study proposes a holistic instructional design framework based on the Four-Component 
Instructional Design (4C/ID) model. We constructed a theoretical mapping between the cognitive mechanisms of 
CT and the four components of the model. Specifically, Learning Tasks provide the authentic context for 
problem decomposition; Supportive Information scaffolds non-recurrent cognitive strategies, including 
abstraction, generalization, and iteration; while Procedural Information and Part-task Practice facilitate the 
automation of recurrent skills such as algorithms and debugging. By integrating these components, the 
framework effectively manages cognitive load and shifts the pedagogical focus from isolated coding drills to 
deep, transferable problem-solving capabilities. This study provides a systematic blueprint and theoretical basis 
for educators to design effective, whole-task CT instruction. 
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1. Introduction 

In the digital age, Computational Thinking is widely regarded as an essential component of Science, Technology, 
Engineering, and Mathematics (STEM) learning, holding irreplaceable value particularly in K-12 education 
(Palop et al., 2025). CT not only enables students to solve problems effectively and efficiently, transferring 
solutions across different contexts, but also fosters creative and constructive thinking when exploring complex 
issues. Reflecting this global educational trend, China’s Curriculum Schemes and Standards for Compulsory 
Education (2022 Edition) has established CT as a core competency in information technology courses, 
emphasizing a transition from mere skill acquisition to competency-oriented development. 

However, current teaching practices face significant challenges. A common misconception equates 
"programming education" with "code syntax education," often neglecting the cultivation of higher-order thinking 
skills such as decomposition, abstraction, and iteration (Selby, 2014). This fragmented teaching mode often leads 
to a failure in knowledge integration: students struggle to apply isolated knowledge to systematically solve 
complex, real-world problems. Fundamentally, CT is a complex cognitive skill, and its learning process is 
associated with high cognitive load. Promoting the integration of knowledge, skills, and attitudes without 
exceeding students' cognitive capacity remains an urgent problem to be solved. 

To address this issue, introducing the Four-Component Instructional Design (4C/ID) model holds significant 
theoretical and practical value. As a holistic instructional design theory tailored for complex learning, the 4C/ID 
model has been proven effective in supporting the acquisition of complex knowledge and skills. By designing 
"whole-task" sequences and providing "supportive information," the model effectively manages learners' 
cognitive load, showing particular advantages in fostering analogical reasoning and systems thinking (e.g., in 
clinical reasoning and circuit analysis). Furthermore, the model addresses learners' motivational characteristics, 
enhancing cognitive engagement and learning outcomes through authentic contexts and timely feedback 
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mechanisms. 

Although the effectiveness of the 4C/ID model has been verified in professional domains, its application 
framework for K-12 CT cultivation has not yet been systematically constructed. Therefore, this study aims to 
build a CT instructional framework for K-12 students based on the 4C/ID model and Cognitive Load Theory. By 
integrating the theoretical architecture of Van Merriënboer and Kirschner (2018), this framework attempts to 
resolve the traditional dichotomy between "thinking" and "skills," providing a viable path for cultivating critical 
thinkers and innovators for the future society. 

 

2. Conceptual Definition and Theoretical Basis 

2.1 Deconstructing Computational Thinking 

2.1.1 The Definition and Core Elements of Computational Thinking 

The concept of CT has evolved with the digital era. In her seminal work, Wing (2006) defined CT as a series of 
thought processes involved in formulating problems so their solutions can be represented as computational steps 
and algorithms. She emphasized that this is a universally applicable thinking style, not just a skill for computer 
scientists. Building on this, Khine (2018) added that the core of CT lies in formulating ambiguous problems into 
executable steps. From operational and cognitive perspectives, Tedre and Denning (2016) defined CT as a set of 
computational concepts and thinking patterns derived from programming, software design, and simulation. 
Rojas-López and García-Peñalvo (2018) further pointed out that it is essentially a cognitive process of generating 
solutions through abstraction, decomposition, and algorithmic design skills.  

 
Figure 1. The six elements of CT 

 

To implement CT cultivation in teaching practice, this study deconstructs it into six core elements, as shown in 
Figure 1. Specifically, decomposition refers to breaking down large, complex problems into smaller, manageable 
parts to reduce cognitive difficulty. Abstraction involves extracting key information from specific problems 
while ignoring irrelevant details to build general models. Algorithms involve designing precise steps, methods, 
or rule sequences to solve problems. Debugging is a metacognitive process of systematically finding and fixing 
errors during program execution. Iteration emphasizes refining solutions through repeated testing and 
modification until the expected goal is reached. Finally, generalization refers to transferring a solution or pattern 
from a specific problem to other similar contexts. These six elements are intertwined, constituting a complete 
closed loop from problem analysis to solution optimization. 
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2.1.2 The Definition and Core Elements of Computational Thinking 

CT plays an irreplaceable role in K-12 education, widely considered a core 21st-century skill that profoundly 
impacts students' creativity and problem-solving abilities. Grover and Pea (2013) emphasize that CT has become 
a key component of STEM education, crucial for developing logical analysis capabilities. It not only helps 
students solve specific problems efficiently but also, through mechanisms of generalization and transfer, enables 
them to reuse solutions across different contexts, thereby stimulating constructive higher-order thinking. 
Furthermore, the educational value of CT extends far beyond programming skills; its core lies in promoting 
comprehensive cognitive development. As Wing (2008) noted, cultivating students' CT is essentially guiding 
them to "think like computer scientists"—using abstraction, recursion, and logical reasoning to handle 
information-based problems. Barr and Stephenson (2011) added that this thinking mode has significant 
interdisciplinary attributes, enhancing students' ability to apply computational tools in fields such as physics, 
mathematics, and social sciences. Through such interdisciplinary practice and creative activities, CT education 
not only stimulates learning motivation but also equips students with key skills to navigate career challenges in 
an increasingly digitized future. 

2.2 Theoretical Architecture of the 4C/ID Model 

2.2.1 The Definition and Core Elements of Computational Thinking 

The 4C/ID model, proposed by Van Merriënboer et al. (2002), is a holistic design framework specifically built 
for the acquisition of complex skills. Unlike traditional approaches that fragment complex tasks into isolated 
knowledge points, this model is based on Cognitive Load Theory, emphasizing whole-task learning and effective 
management of cognitive load. As shown in Figure 2, the model consists of four interrelated components: 
learning tasks, supportive information, procedural information, and part-task practice. These components work 
synergistically to promote the integration of knowledge, skills, and attitudes, enabling learners to solve complex 
problems in authentic contexts. Table 1 further illustrates these four components and their corresponding ten 
design steps. 

 
Figure 2. The 4C/ID instructional design model 

 

The specific mechanisms of the components are as follows: 

Learning Tasks serve as the core vehicle of the 4C/ID model, aimed at integrating non-recurrent and recurrent 
skills. These are not abstract exercises but concrete, whole-task experiences based on real-life situations. To 
prevent cognitive overload in novices, task design follows a simple-to-complex principle, organizing tasks into 
different task classes. Within each class, scaffolding provided by teachers fades as learners' expertise increases. 
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Table 1. The four components and ten steps of the 4C/ID model 

Four components Ten steps 

Learning tasks 

Design learning tasks 

Sequence task classes 

Set performance objectives 

Supportive information 

Analyze cognitive strategies 

Analyze mental models 

Design supportive information 

Procedural information 

Analyze cognitive rules 

Analyze prerequisite knowledge 

Design procedural information 

Part-task practice Design part-task practice 

 

Supportive Information is designed to address the challenge of knowledge transfer, primarily supporting the 
learning of non-recurrent skills such as reasoning, decision-making, and design. Usually provided before task 
execution, it helps learners construct mental models and cognitive strategies for the domain. It explains how the 
domain is organized and how to approach problems systematically, bridging prior knowledge and new tasks to 
facilitate deep understanding. 

Procedural Information supports the learning of recurrent skills, such as specific rules and operational procedures, 
to help learners achieve proficiency. Unlike supportive information, procedural information is presented just-in-
time during task execution. It explicitly specifies routine aspects of task completion, such as specific code syntax 
or software steps. As expertise grows, this information is gradually removed via a fading strategy. 

Part-task Practice aims to help learners achieve a high level of automation for specific recurrent skills. When 
certain sub-skills (e.g., typing, specific algorithmic syntax) require high proficiency to release working memory 
resources, intensive repetitive practice is necessary. Crucially, part-task practice does not start immediately but is 
introduced only after the skill has been presented within a whole-task context, ensuring learners understand the 
background and significance of the practice. 

2.2.2 Advantages and Applicability of the 4C/ID Model in the Field of Education 

The 4C/ID model provides a systematic educational blueprint for acquiring complex skills by fusing the 
situational view of social constructivism with the sequencing strategies of cognitivism. Its core advantage lies in 
managing intrinsic cognitive load through whole-task design, thereby solving the pain point where fragmented 
knowledge fails to transfer in traditional teaching. This advantage is particularly evident in medical education, 
where Postma and White (2015) showed that the model significantly improved students' clinical reasoning 
abilities by providing authentic clinical tasks, managing cognitive load, and implementing effective assessment 
feedback. This reasoning ability shares a high degree of cognitive isomorphism with debugging and algorithmic 
design in CT, both of which are non-recurrent complex problem-solving skills. 

Regarding multimedia learning and cognitive principles, the model aligns closely with Cognitive Load Theory. 
Low and Sweller (2005) pointed out that rational multimedia presentation principles, such as integrating context 
and knowledge, can effectively reduce extraneous cognitive load, promoting inductive learning and conscious 
abstraction. This is critical for cultivating abstraction and modeling capabilities in CT, as they often involve 
translating concrete code logic into general mental models. Furthermore, the model's applicability in teacher 
professional development and K-12 education is supported by empirical evidence. Frerejean et al. (2021) found 
that the model improved teachers' differentiation skills in mathematics and enhanced student outcomes. In 
primary education, Zhou et al. (2020) applied the 4C/ID model to oral English teaching, effectively narrowing 
the achievement gap and improving autonomous learning capabilities. This demonstrates the model's robustness 
and adaptability across different age groups and disciplinary backgrounds. 

 

3. Adaptability Analysis of Applying 4C/ID to CT Cultivation 

Literature analysis indicates that the 4C/ID model, as a representative of holistic instructional design, is highly 
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compatible with the nature of CT as a complex cognitive skill. Hsu et al. (2018) point out that effective 
instructional design is key to enhancing CT, whereas isolated code training often fails. The 4C/ID model, by 
focusing learning tasks on authentic contexts, effectively bridges the gap between skill training and problem-
solving. This study posits that the model and CT cultivation share a deep compatibility in three dimensions: 
addressing educational demands, managing cognitive load, and mapping logical elements. 

3.1 International Consensus and Challenges in the Development of Computational Thinking 

Since Wing (2006) proposed CT, the international education community generally agrees that its core is not just 
the instrumental application of computer science, but a universal problem-solving mindset. To implement this in 
K-12 education, Barr and Stephenson (2011) clarified the operational definition of CT, emphasizing capabilities 
like data analysis, abstraction, and algorithmic automation rather than mere syntax acquisition. However, strictly 
"coding" is not equivalent to CT. As programming tools evolve rapidly, specific language environments become 
obsolete. Therefore, Grover and Pea (2013) emphasize that CT education should shift from specific 
programming skills to the "transfer of thinking". Educators urgently need a model that helps students strip away 
linguistic appearances to master the transferable core of CT. Current K-12 programming education faces the dual 
dilemmas of being syntax-driven and fragmented. Traditional bottom-up paths sever internal knowledge 
connections, preventing students from integrating rules to solve real problems. Meanwhile, existing Project-
Based Learning (PBL) often faces a trade-off between authenticity and operability: simplified projects fail to 
stimulate deep thinking, while complex whole tasks can lead to cognitive overload in novices. 

3.2 Cognitive Load Reduction in Complex Computational Thinking Tasks via the 4C/ID Model 

In terms of cognitive mechanisms, the learning process of CT involves the concurrent processing of 
decomposition, abstraction, and algorithm design. According to Cognitive Load Theory, this easily overloads the 
extraneous cognitive load of novices. The 4C/ID model offers a unique load-reduction mechanism. Unlike 
traditional linear teaching, it uses sequenced whole-task design, providing high-intensity scaffolding initially and 
fading it as competence grows. Van Es and Jeuring (2017) confirmed in Scratch teaching that 4C/ID-based 
design significantly reduces extraneous load during complex programming, allowing students to invest limited 
cognitive resources into logical construction rather than syntax error correction. 

3.3 Classification Support for Recurrent and Non-recurrent CT Skills via the 4C/ID Model 

Another advantage is the precise distinction between recurrent and non-recurrent skills. Vandewaetere et al. 
(2015) noted that effective design must provide differentiated support based on skill attributes. Specifically, CT 
includes non-recurrent skills like algorithmic design and logic debugging, which rely on problem contexts. The 
4C/ID model supports these via supportive information, helping students build cognitive schemas and mental 
models. Conversely, for recurrent skills like code syntax, the model provides procedural information and part-
task practice to promote automation. This mechanism effectively resolves the confusion between strategic 
knowledge and rule-based knowledge. 

3.4 Deep Integration of the Four Components of 4C/ID and the Six Elements of Computational Thinking 

Beyond cognitive load and skill classification, the 4C/ID model provides precise anchor points for the six core 
elements of CT. As shown in Figure 3, this study constructs a logical mapping between the four components of 
4C/ID and the six elements of CT. Learning tasks serve as the core vehicle, where decomposition corresponds to 
the decomposition capability in CT—the logical starting point for reducing load. Supportive information 
supports non-recurrent high-order thinking: abstraction requires extracting key variables, generalization requires 
transferring patterns, and iteration is repositioned as a metacognitive strategy. Procedural information provides 
specific coding rules. Following these rules corresponds to executing algorithms and performing debugging 
operations. Concurrently, part-task practice ensures the automation of these basic skills, releasing working 
memory resources to ensure the effective implementation of upper-level thinking strategies. 
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Figure 3. The correspondence between the four components and the six elements 

 

4. Construction of the CT Cultivation Framework Based on 4C/ID 

4.1 General Framework Structure 

Based on the 4C/ID theoretical architecture and CT cognitive characteristics, this study constructs a hierarchical 
CT cultivation framework, as shown in Figure 4. The framework consists of four layers from bottom to top: 
Theoretical Foundation Layer, Instructional Design Layer, Learning Activity Layer, and Assessment & 
Reflection Layer. These layers interact dynamically to serve the Goal Layer—the comprehensive enhancement 
of students' CT competency. The framework integrates Holism, Complexity Theory, Situated Learning Theory, 
and Collaborative Learning Theory. Guided by holistic theory, teaching goals are viewed macroscopically; 
complexity theory ensures scientific differentiation of task sequences; situated learning emphasizes the 
connection to social practice; and collaborative learning guides the fusion of individual and group tasks. 

 
Figure 4. A framework for the development of computational thinking based on the 4C/ID model 
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4.2 Instructional Design Layer 

As the core engine, the instructional design layer strictly follows the four components of 4C/ID. The primary 
task is to establish performance objectives, integrating knowledge, skills, and attitudes into a whole-task 
objective, replacing fragmented goals. Learning task design serves as the core vehicle, with principles 
emphasizing inductive learning. Tasks follow a simple-to-complex sequence (task classes). This sequence helps 
students acquire knowledge through continuous decomposition practice, promoting deep integration and transfer 
of CT. This approach has been proven to significantly promote the deep integration and transfer of complex 
cognitive skills such as CT. 

Supportive information design targets non-recurrent complex skills, such as reasoning and decision-making. In 
CT, this directly corresponds to abstraction, generalization, and iteration. Lye and Koh (2014) suggest that 
explicit cognitive strategies are crucial in programming. These strategies, serving as mental models, are provided 
before the task, guiding students to establish systematic problem-solving schemas. Procedural information and 
part-task practice design focus on recurrent skills. Procedural information is presented just-in-time (e.g., syntax 
guides). Concurrently, part-task practice provides intensive repetition for specific algorithms and debugging 
steps. This automation releases working memory, allowing students to allocate resources to high-order thinking, 
such as abstraction and modeling, achieving a transition from skill proficiency to deep thinking. 

4.3 Learning Activity Layer 

This layer maps the design into student behaviors during the inquiry phase. The process begins with task analysis 
and decomposition, where learners analyze the problem structure using cognitive strategies from supportive 
information. This is followed by modeling and solution design, where students work collaboratively to design 
solutions. The next stage is coding and implementation, which involves creating artifacts to externalize thinking. 
Finally, in the testing and optimization stage, students iterate their solutions based on feedback. 

4.4 Assessment & Reflection Layer 

This layer combines formative and summative assessment. Formative assessment (self, peer, teacher) tracks 
engagement and CT application during the process. Summative assessment evaluates final artifacts and 
theoretical mastery. Crucially, this layer encourages reflection, helping students identify knowledge gaps and 
optimize future strategies. 

 

5. Discussion and Conclusion 

5.1 General Framework Structure 

This study addresses the skill fragmentation and transfer difficulty in current K-12 CT education by constructing 
a systematic framework based on the 4C/ID model. The core theoretical contribution lies in clarifying the deep 
cognitive mapping between CT elements and 4C/ID components. Unlike previous studies that view CT as mere 
coding, this study innovatively defines iteration, abstraction, and generalization as metacognitive strategies 
(supported by supportive information) and algorithms and debugging as operational skills (supported by 
procedural information and part-task practice). This structured design, based on Cognitive Load Theory, provides 
a logical whole-task solution for moving CT from abstract concepts to concrete implementation. 

5.2 Implementation Challenges 
Practical implementation in K-12 faces challenges. First is ecological adaptation: The 4C/ID model requires 
long-term project-based learning, demanding high-performance facilities and flexible curriculum structures. 
Second is teacher PCK transformation: Teachers must transition from lecturers to instructional designers. The 
most critical challenge is the dynamic management of scaffolding. As Kalyuga (2007) noted, the timing of 
fading is critical: too early leads to overload; too late causes the "Expertise Reversal Effect". 

5.3 Limitations and Future Prospects 

This study is primarily theoretical. Future work should focus on technological integration, such as developing 
adaptive learning systems that use AI to track cognitive states and automate the fading of support, addressing the 
difficulty of differentiated instruction in large classes. Additionally, there is a need for interdisciplinary 
expansion to apply CT beyond IT to STEM fields. Weintrop et al. (2016) emphasized that CT is a core tool for 
modern scientific and mathematical exploration. Future research should develop 4C/ID-based interdisciplinary 
task banks (e.g., 3D printing, environmental monitoring) to verify transfer effectiveness. Finally, establishing 
multi-dimensional evaluation systems that track the trajectory of students' thinking processes over long periods is 
essential for longitudinal assessment. 
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