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Abstract 

A huge amount of energy is used for air-conditioning in residential buildings in hot climates. Passive design 

features such as shading and advanced glazing can help to reduce energy use and carbon emissions, and thus 

mitigate the impact on climate change. This paper aimed at demonstrating how the application of selected 

modification devices such as solar films and shading devices affects the energy consumption patterns and levels 

in a residential building. A model of a building was constructed with VE using “Model IT” module, which was 

then analysed in a variety of different ways. A Virtual Integrated Environmental Solutions (IES-VE) was used to 

assess the energy gain and consumption parameters such as solar gains, shading devices, solar cloud and chilli 

clouds in residential buildings in Tripoli, Libya. The findings indicate that the best way to control and reduce the 

energy gains pattern in a building is to introduce energy modification devices such as shading device, solar films, 

emissivity paints and roof slab absorbers among others. In specific terms, the best device would be the 

application of external solar film, follow by shading device and internal solar film. An application of emissivity 

paints and roof slab absorbers does not contribute significantly to the energy reduction in the building. The study 

concludes that the application of modification devices in buildings can reduces the heat gain significantly. This 

study underscores the need and importance of the applications of energy modification devices in buildings in 

order to reduce their energy gains in the context of tropical regions. Though the climatological characteristics of 

tropical regions are similar, the generalisation of the findings in this study requires caution since the findings are 

limited in geographical context. Future research should also explore the impact of urban forms, street layout and 

orientation on solar penetration and energy use in buildings. 
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1. Introduction 
The issue of energy gains and use in buildings in the built environment are teething issues which has gained a 

wider global attention (cf. Santamouris et. al., 2001; Torcellini et.al., 2006; Rijal et. al., 2007; du Can and Price, 

2008). In the tropical regions such as Tripoli in Libya, there is a growing concern about energy use in buildings 

and its likely adverse effect on the environment ((Ealiwa et.al., 2001; El-Osta and Kalifa, 2003; Chowdhury 

et.al., 2008). Although Libya has a lot of indigenous fuels of her own and need not rely on imported fossil fuels 

such as coal, natural gas and oil products, the increase in economic growth has been marked with an increase in 

energy consumption. Buildings, in addition to offering shelter and fulfilling aesthetic requirements, should 

provide conditions of comfort for their occupants. During summer, especially in hot climate, buildings are 

exposed to high intensities of solar gain, which may result in over-heating, causing discomfort to users. Under 

such conditions, energy conservation in the building is very important. The energy conservation processes can 

include diverse measures from simple natural cooling techniques, evaporative cooling and natural ventilation, to 

mechanical cooling systems (Santamouris and Asimakopoulos, 1996). Natural energy conservation systems 

which involved natural methods such as breezes flowing through windows, water evaporating from trees and 

fountains, as well as large amounts of stone and earth absorbing daytime heat are well known methods used 

particularly in developing countries. These ideas were developed over thousands of years as an integral part of 

all building designs and are known by many (cf. Givoni, 1991; Santamouris and Asimakopoulos, 1996; Breesch 

et. al., 2005; Hatamipour and Abedi, 2008) as “passive cooling”. These researchers further argue that by 

engaging passive cooling techniques in new buildings, the designer can often eliminate the need for mechanical 

cooling or at least reduce the size and cost of the cooling equipment and therefore reduce the overall cost of the 

cooling and energy conservation bill. 

Despite these cost effective natural systems of energy conservations as suggested earlier by (Watson, 
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1979; Fathy, 1986), modern building designers often use a wide range of technologies to reduce the amount of 

energy that buildings need for cooling and energy conservation (Florides et.al., 2002; Hughes et.al., 2011). 

These modern technologies includes the application of shading device, external solar film, internal solar film, 

emissivity paints, roof slab absorbers among others. In the case of Tripoli during the summer, various sources of 

heat gain have to be dealt with, which includes direct solar radiation from outside, ventilation, and internal heat 

gains from inside the building such as lighting and other equipment. The estimation of the energy gains and 

consumption of buildings has received significant attention in the past few years, with the dual goal of reducing 

energy cost (cost concerns), and reducing the amount of greenhouse gases released in the atmosphere 

(environmental concerns). However, there is also limited research into how these heat or energy gains could be 

minimise to make occupants not only comfortable but less costly to them. Several methods and tools can be used 

to evaluate the energy gains and consumption in buildings, ranging from simple spreadsheets to full computer 

simulation programs. Also, there is still limited research in the context of Libya about the solar gains on an 

existing building.  

  

2. Building Energy Conservation Strategies in Architecture 

The issue of energy conservation is important in architecture simple because it is the greater consumer of the 

energy used throughout the world (Li and Colombier, 2009; Dixit et. al., 2010). In the most advanced countries, 

from 35% to 40% of the total overall main use of energy is spent in buildings, a figure which approaches 50% 

when taking into account the energy costs of building materials and the infrastructure to serve building (Aitken, 

2003). Buildings have traditionally been seen as energy and resource consumer. However, a new view is 

emerging in which newly designed buildings aim at making them a net contributor to the energy supply system 

by dropping their energy demand and act as energy supply source (Pitts, 2008). Langston, (2012) suggests that 

the main energy used in buildings is for heating, cooling and lighting. Meanwhile, Jarmul, (1980) suggests 

earlier that one major challenge facing designers and users of buildings is how to contain or prevent both heat 

lose and gains through the building envelope. This is especially during winter and summer periods. The energy 

consumption pattern in building are affected by so many factors and variables such as its design, the 

environment in which it is located and the way in which it is being use and operated. 

In order to achieve the heating, cooling and lighting goals of buildings, there are three require 

perspectives that come into consideration. These are architectural design, natural energy, and mechanical 

equipment requirement perspectives. The architectural design perspectives of the building are concern with the 

minimization of heat loss during winter, heat gain in the summer and the use of light efficiently throughout the 

life span of the building. Any poor or unprofessional design decisions taken at this stage can easily double or 

triple the cost and the size of mechanical equipment requirement in particular and the energy requirement and 

usage in the building. The second perspective involves the use of natural energy conservation methods such as 

passive heating, cooling, and daylighting systems. A good decision at this point can greatly reduce the 

unresolved problems arising from the architectural design perspectives. The mechanical equipment requirement 

perspectives are achieved through the adaptation of non-renewable energy sources to handle the loads that 

remain after the two perspectives described above to reduce the loads as much as possible (Pehnt, 2006) 

There are so many main sources of factors influencing the energy use in buildings in the built 

environment. These are factors arising from the building services, building envelope, the climate and human 

factors as showed in figure 1. Whiles the building envelope is influenced by factors such as location, orientation, 

size, built form, shape/layout, the building services are influenced by the type and size of systems, type of energy 

need and supply, plant efficiency, plant control, operating regime among others. Human factors include comfort 

requirements, occupancy regime, human activities, management and maintenance. The energy used in building is 

central to any strategy adopted to conserve the energy supply and demand with the aim of contributing to the 

current effort of reducing global warming.  Many have therefore suggested that, the impacts of buildings upon 

the energy consumption and global warming comes in four separate folds. These are the production of materials 

and products used in constructing the building, the fabrication and construction process, the heating, cooling, 

ventilation, and lighting of the buildings in use (Edwards, 1995). The most important drivers of growth in energy 

gains and consumption in buildings are population growth (which effects on total consumption) poor residential 

building design increased interest of energy appliances in households to improve amenity (Price et .al., 1998; 

Roth et.al., 2002). Such practices are very prevalence in Libya. 

 

2.1 The Building as an Energy System 

A building can be describe in several ways including its being a concrete blocks insulation with windows, 

heating, cooling and ventilation systems. Its energy system requirement must consider the social interactions 

between the occupants, environment and the building. The activities that take place in and outside the building 

either generate or gain heat through so many ways. For instance, (Liu and Harris, 2013) suggests that heat 

transfer particularly convective heat is influence by the temperature, the speed and direction of the wind of the 
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building surroundings. The influential factors influencing the thermal performance of a building are as shown in 

figure 2. These factors inevitably need careful considerations during the design, construction and maintenance 

period of the building. 

 

2.2 The Energy consumption pattern in Libya 

Libya’s consumption of electrical energy in particular is distributed into four major sectors: the industrial sector, 

the agricultural sector and the residential and commercial sectors as shown in figure 3. Close to 40% of the total 

primary energy in Libya is used in power generation and almost 100% of the fuel used to generate power is from 

fossil fuel and 0% renewables (GECOL, 2013). It is well recognized from the above figures that residential and 

industrial buildings account for a large percentage of all delivered energy consumption in the country. Although 

Libya is an oil producing country, there is an energy crisis in Libya for many reasons that include extensive use 

of conventional energy sources which are leading to their depletion, and the increase in the individual annual 

consumption of electrical energy. Again, most of the energy consumption is of non-renewable sources while the 

use of renewable sources is still in the foundation stages. There is inefficiency in electricity generation, which 

could lead to depletion of oil reserves in the near future. The total CO2 emissions in Libya are around 60 million 

tonnes CO2 per year (55% due to oil and 45% due to Natural gases) (GECOL, 2013) as shown in figure 4.  

 

2.3 Climatological analysis of the city of Tripoli  

The city of Tripoli lies on the far north of the continent of Africa overlooking the Mediterranean Sea. The 

ordinates of the city are within latitude 32
o 
47” N and longitude 13

o 
04” E respectively. The city is classified as a 

hot dry climate usually being found around latitudes 20° and 35°. The main shelter challenges facing inhabitant 

in such regions is overheating. The mean summer temperatures are around 25
o
C but can reach a maximum of 

45
o
C. However, clear nocturnal skies sometimes cool the temperatures down to as low as -10°C. The building 

studied is located in the city of Tripoli, which incidentally is only 21Km north of the area where the hottest air 

temperature ever recoded of 58°C (Hocine and Sharples, 2010). Table 1 show the yearly temperature condition 

readings for the average minimum and average maximum daily temperatures of the city where the building is 

located.  

 

2.4 The effects of solar gains, chiller clouds and CO2 on the building 

In a tropical region such as Tripoli, the indoor comfort depends largely on so many factors such as air 

temperature, air humidity and air movement. The convective heat removed makes up the sensible cooling load, 

and the excess water vapour removed constitutes the latent cooling load. The cooling load of the space within a 

building according to (Zain-Ahmed et. al., 2002.p.1725) is the heat that must be removed by mechanical means 

to maintain the space at the desired conditions. They further argue that whiles the external heat gains in building 

consist of the solar radiation conducted through the opaque building materials and transparent openings, the 

internal heat loads are caused by the occupants, artificial lighting and mechanical and electrical equipment  

The importance and paybacks on light roof colour has gain the attention of many especially in areas 

where the sun is right overhead single story buildings (Eilert, 2000). Also, Parker et.al., (1996) Parker et.al., 

(1997) demonstrates in a study of Florida homes in which after the application of a reflective roof coatings the 

space cooling requirements decreased by 19% and the interior comfort was also improved after the grey bitumen 

roof surface was painted white. In another study (Suehrcke, 2001) also demonstrate with the use of numerical 

simulation that the peak values of heat flow from a roof could be reduce by as much as 60% when a white 

surface replaces a corroded galvanised one. It has been argue that the thermal performance of a building is 

affected by the solar absorptance of the roof and other parts of the building. Suehrcke et.al., (2008.p.2224) 

supports this argument that during clear sky conditions up to about 1 kW/m
2
 of solar radiation can be incident on 

a roof surface, and between 20% and 95% of this radiation is typically absorbed. Black surface with low visible 

reflectance often suggests a high solar absorptance and this indicates that the colour of roof gives an indication 

of the value of solar absorption in buildings. The above studies attest to the fact that heat flow from roof can be 

significantly reduces by the application of modification devices. 

The issue of carbon dioxide (CO2) emission has become a major concerned for researchers and policy 

makers in both developed and developing countries all over the world. It is reported that in 2004, the total 

emissions of CO
2 
from residential and commercial buildings were 2236 million metric tons which was more than 

either the transportation or industrial sectors in USA (USGBC, 2008; Hartgen et.al., 2011). It is again projected 

that in the next 25 years, CO
2 

emissions from grow faster than any other sector, with emissions from commercial 

buildings projected to grow the fastest. Modern technology has made it possible for the easy quantification of the 

amount of CO2 as a gauge to enable and ensure ventilation systems are design and delivered to the recommended 

minimum quantities of outside air to the building’s occupants (Prill, 2000). 
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3. Methodology  

The paper adopted computer simulation software that was validated via comparison between the field 

measurements and the simulation results for the hot period. The calibration model shows that the difference 

between them was less than 1°C. Virtual Environment by Integrated Environmental Solutions (IES-VE) is a 

modern example of dynamic building energy simulation software which was used for the simulation. IES-VE 

consists of a suite of integrated analysis tools, which can be used to investigate the performance of a building 

either retrospectively or during the design stages of a construction project figure 6. IES enables the specific 

understanding of the site to automatically outline suitable bioclimatic architecture strategies for the project; such 

as pre-design sustainability direction among others. The selected building was a renovated project which enables 

IES-VE to identify the best passive solutions, comparing low-carbon technologies, and drawing conclusions on 

energy use, CO2 emissions, occupant comfort, light levels, and much more. IES-VE for engineers also allows 

easily visualising and communicating results at a highly detailed level. A carefully and cautiously building 

details and materials where used in the construction of the building where input to the IES software for the 

dimensions of windows, openings, which were all incorporated in the program as shown in figure 7. 

Calculations were done for the position of the sun in the sky, tracks solar penetration throughout the 

building interior and shadows were all done. Using a central simulation process enables the user to assess every 

aspect of the thermal performance as well as share results and input across a wide variety of other VE 

engineering modules. The building was modelled by IES software as far as possible exactly as it was on the site 

with no major changes, except those inevitably required by the conditions of modelling. Once the base model 

was simulated and validated, modifications to the building were simulated through four steps. The first step 

involves the provision and application of shading device on both sides of the east and west elevations of the 

building. This was followed by placing an external and internal solar film on the glazing with low transmission 

ones. Thirdly the roof was painted with white lower emissivity paints and finally a concrete roof slab insulation 

absorber was added to the roof slab. Figure 9 show the building after the addition of 700 x 700 x 100mm 

thickness horizontal and vertical shading devices.   

 

4. Discussions of the simulation results  

4.1 Solar gain result 

Figure 10 show the south, east, north, west and roof simulation results for the outer surface solar gain in 

KWh/m
2
. The east façade was in the average of 3.81KWh/m

2
, while the ground floor on the south façade was 

less than the first floor with 1.25KWh/m
2
 compared to the first floor with 2.28KWh/m

2
. The roof is the biggest 

absorber of heat gain in the building with figures above 7.61KWh/m
2
. The North façade has the lowest heat 

absorption among all the elevations with less than 0.76KWh/m
2
, and the west façade had almost the same as the 

east façade with 3.81KWh/m
2
. After simulating the building to ascertain the solar gains for the whole year and 

comparing the figures with the modification simulation figures as depicted in table 2. It shows that the building 

for the period of summer, solar gains was above 4.5MW/h. It’s also shows the solar gains of 51.4697 MW/h 

presumably this is 100% into the building. However, after the additions of the modification mechanisms, the 

results shows that 18.5% of solar gain could be reduce by just adding a shading device on the eastern and 

western facades of the building. Also, the impressive results shows that by adding an external solar film to the 

glazing width can reduce the solar gains by 62%. Moreover, painting the roof with white colour paints and 

adding roof slab absorber could not change the results in any significant way. Additionally, an application of an 

internal solar film on the glazing also reduces the solar gains by extra 3% bringing the total solar gains reduction 

to about 65%. Table 1 depicts the simulation results for the solar gain figures for each additional modification 

device to the building. To make it more clear figure 11 shows a significant impact on reducing the solar gains of 

the various measures and modification mechanisms.  

 

4.2 Chillers louds  

One of the largest energy user units in a typical building is air-conditioning. Figure 12 shows how the changes 

can affect the chiller loads which could lead to savings on energy consumption of varying degrees according to 

the modifications made to the building. Table 2 shows the total chiller load for each month during the year, 

which indicates the building uses 56.94MW/h before the modification. However, after the addition of the 

shading devices, the chiller loads reduces by 15.8% of the total chiller load. Therefore, for the best savings to be 

achieved, an addition of an outside solar film on the glazing saves up to 45.2% of the total chiller loads. 

Furthermore, adding to the roof lower emissivity paints and slab absorber would add not more than 1% extra 

savings. While 2% more can be saved by adding internal solar film on glazing, this is probably not worth doing 

since the impact of natural lighting to the building could also offsets such gains.  

 

4.3 CO2 produced by the building 

From global viewpoint, the most important aspect or concern was to analyse how much the building under study 
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could make some savings in the production of CO2. Figure 13 clearly indicates how much savings of CO2 in Kg 

each month that could be made on the building for the whole year. It is clear that summer times are the peak CO2 

production time simple because the building uses air-conditioning more than the rest of the year. The higher the 

temperature increase during such periods the more the production of CO2 and this often results in a positive 

relationship. Table 4 shows the total amount of CO2 in Kg for each month during the year. The results show that 

the building produced 62995Kg CO2 yearly. However, after the addition of the shading devices, it became 

60644Kg, indicating a reduction of 3.8% less than the total. It also reduces by 11.20% to become 55951Kg, after 

adding external solar film. Moreover, the rests shows that adding roof lower emissivity, roof lower slab absorber, 

and solar film inside the glazing could not change more than even 0.5%.   

 

4.4 Chiller energy 

Figure 14 shows the chiller energy for the whole year, illustrating that the greatest use of energy is in summer 

time, especially July to October. The energy consumption starts from March and increase gradually to reach the 

peak in August, and then retreats gradually until October and falls in November. In winter time it starts from 

December to February and chiller energy is almost non-existent or insignificant compared to the summer 

months. Chiller energy is one of the things that the study was able to reduce approximately by half of the total. 

Table 4 shows the simulation results for the whole year. Before the application of the devices, the building uses 

22.78MWh/year and after the application of the shading devices it became 19.25MWh/year, representing a 

15.6% reduction. Huge reduction was achieved after placing solar films on the lower transmission outside the 

glazing with 45.20% to 12.49MWh/year. For more reduction solar film can be placed inside the glazing and this 

could reduce it by extra 2%.  

 

5. Conclusion  

In order to measure the energy use in a building, the chiller energy use has often been used as the main 

benchmark. From the simulations results as compare with that of the unstimulated, the following conclusions 

could be made. It could be concluded that the best way to control, reduce the energy consumption pattern in a 

building is to introduce energy modification devices such as shading device, external solar film, internal solar 

film, emissivity paints, roof slab absorbers among others. In specific terms, the best device for reducing solar 

gains would be the application of external solar film, follow by shading device and internal solar film. An 

application of emissivity paints and roof slab absorbers would amount to waste of resources. Similarly for chiller 

louds reduction, the best device would still be the application of external solar film, follow by shading device 

and internal solar film. An application of emissivity paints and roof slab absorbers would still not add much and 

therefor would consider as waste of resources. 

External solar film devices are again suitable mechanism for the reduction of CO2 in buildings. This is 

followed by shading device and the rest may not contribute and significant values in this regards. Surprisingly 

internal film device stand out to be the best device for chiller energy reduction in buildings. This is also followed 

by external solar film and shading device. The contribution of emissivity paints and roof slab absorbers are again 

insignificant. Finally and more importantly, the application of both external solar film and shading devices 

would together reduce the effects of energy consumption in buildings significantly. How, an addition of internal 

solar film device would complete in some cases particularly in the reduction of solar gains and chiller energy. 

Future research should also explore the impact of urban forms, street layout and orientation on solar penetration 

and energy use in buildings. 
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Table 1: The simulation results for the building solar gain. 

Solar Gain (MWh) 

Date 

Before shading 

devices 

After 

shading 

Glazing outside lower 

Transmission (solar Film) 

Roof lower emissivity 

(paint white) 

Roof lower 

slab absorb 

Glazing inside lower 

transmit (solar film) 

Jan 01-

31 3.6635 2.9811 1.3679 1.3679 1.3679 1.2625 

Feb 01-

28 4.2717 3.3177 1.5138 1.5138 1.5138 1.3960 

Mar 01-

31 4.6725 3.6413 1.6920 1.6920 1.6920 1.5662 

Apr 01-

30 4.6347 3.7567 1.7473 1.7473 1.7473 1.6167 

May 01-

31 4.5811 3.9543 1.8370 1.8370 1.8370 1.7001 

Jun 01-

30 4.5549 4.0155 1.8561 1.8561 1.8561 1.7174 

Jul 01-

31 4.5493 3.9519 1.8455 1.8455 1.8455 1.7092 

Aug 01-

31 4.6540 3.7503 1.7717 1.7717 1.7717 1.6424 

Sep 01-

30 4.6060 3.5556 1.6666 1.6666 1.6666 1.5436 

Oct 01-

31 4.8113 3.6846 1.7467 1.7467 1.7467 1.6213 

Nov 01-

30 3.5165 2.8613 1.3301 1.3301 1.3301 1.2295 

Dec 01-

31 2.9544 2.4766 1.1675 1.1675 1.1675 1.0814 

Total 51.4697 41.9468 19.5420 19.5420 19.5420 18.0863 

% 100% -18.5% -62.00% -62.00% -62.00% -64.86% 

 

Table 2: Chillier load figures for each additional adding on the building. 

Chiller Load (MWh) 

Date 

Before 

shading 

devices 

After 

shading 

Glazing outside 

lower Transmission 

(solar Film) 

Roof lower 

emissivity (paint 

white) 

Roof 

lower 

slab 

absorb 

Glazing inside 

lower transmit 

(solar film) 

Jan 01-31 0.6647 0.4506 0.0379 0.0379 0.0379 0.0379 

Feb 01-28 1.0130 0.6003 0.1039 0.1039 0.1039 0.0939 

Mar 01-31 2.5839 1.6763 0.5394 0.5423 0.5359 0.5004 

Apr 01-30 3.9747 3.0220 1.2925 1.2620 1.2608 1.1799 

May 01-31 5.3953 4.6359 2.5902 2.5644 2.5526 2.4252 

Jun 01-30 6.2117 5.5248 3.4344 3.3687 3.3590 3.2363 

Jul 01-31 8.1078 7.3182 5.2971 5.2414 5.2319 5.1029 

Aug 01-31 8.9501 7.8493 5.9582 5.9058 5.9002 5.7843 

Sep 01-30 8.5826 7.4236 5.6161 5.5920 5.5812 5.4678 

Oct 01-31 7.8018 6.6190 4.7862 4.7794 4.7714 4.6475 

Nov 01-30 3.1922 2.6099 1.4557 1.4692 1.4666 1.4229 

Dec 01-31 0.4602 0.3398 0.1044 0.1044 0.1044 0.1004 

Total 56.9381 48.0697 31.2159 30.9714 30.9058 29.9993 

% 100% 

-

15.6%% -45.2% -45.6% -45.7% -47.3% 
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Table 3: CO2 figures for each additional modification devices to the building  

Total system CE (kgCO2) 

Date 

Before 

shading 

devices 

After 

shading 

Glazing outside lower 

Transmission (solar 

Film) 

Roof lower 

emissivity (paint 

white) 

Roof lower 

slab absorb 

Glazing inside 

lower transmit 

(solar film) 

Jan 01-31 3997 3998 4058 4050 4052 4072 

Feb 01-28 3731 3670 3697 3696 3697 3714 

Mar 01-31 4645 4367 3980 3981 3979 3972 

Apr 01-30 4999 4728 4148 4136 4136 4104 

May 01-31 5580 5368 4729 4722 4719 4675 

Jun 01-30 5701 5512 4873 4852 4849 4810 

Jul 01-31 6403 6184 5575 5561 5557 5517 

Aug 01-31 6649 6344 5776 5762 5761 5726 

Sep 01-30 6405 6085 5543 5536 5532 5497 

Oct 01-31 6282 5954 5406 5403 5401 5361 

Nov 01-30 4721 4552 4174 4178 4177 4164 

Dec 01-31 3881 3882 3993 3978 3981 3999 

Total 62995 60644 55951 55856 55842 55611 

% 100% -3.8% -11.2% -11.3% -11.4% -11.7% 

 

Table 4: Shows chillier energy simulation results 

 

 

Chiller Energy (MWh) 

Date 

Before 

shading 

devices 

After 

shading 

Glazing outside lower 

Transmission (solar 

Film) 

Roof lower 

emissivity (paint 

white) 

Roof lower 

slab absorb 

Glazing inside lower 

transmit (solar film) 

Jan 01-31 0.2659 0.1802 0.0152 0.0152 0.0152 0.0152 

Feb 01-28 0.4052 0.2401 0.0416 0.0416 0.0416 0.0375 

Mar 01-31 1.0336 0.6705 0.2158 0.2169 0.2143 0.2002 

Apr 01-30 1.5899 1.2088 0.5170 0.5048 0.5043 0.4719 

May 01-31 2.1581 1.8544 1.0361 1.0257 1.0210 0.9701 

Jun 01-30 2.4847 2.2099 1.3738 1.3475 1.3436 1.2945 

Jul 01-31 3.2431 2.9273 2.1188 2.0966 2.0928 2.0411 

Aug 01-31 3.5801 3.1397 2.3833 2.3623 2.3601 2.3137 

Sep 01-30 3.4330 2.9694 2.2465 2.2368 2.2325 2.1871 

Oct 01-31 3.1207 2.6476 1.9145 1.9118 1.9086 1.8590 

Nov 01-30 1.2769 1.0440 0.5823 0.5877 0.5866 0.5692 

Dec 01-31 0.1841 0.1359 0.0418 0.0418 0.0418 0.0402 

Total 22.7753 19.2279 12.4864 12.3886 12.3623 11.9997 

% 100% -15.6% -45.2% -45.6% -54.8% -47.3% 
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Table 5: Summary of the results after application of the modification devices 

Modification devices 

Before 

Solar gains reduction Chiller louds 

reduction 

CO2 

reduction 

Chiller 

energy 

51.47MW/h 56.94MW/h 62995Kg 22.78MW/h 

Shading device 18.50% 15.80% 3.80% 15.60% 

External solar film 62.00% 45.20% 11.20% 45.20% 

Internal solar film 3.00% 2.00% 0.50% 47.30% 

Emissivity paints 0.00% 1.00% 0.50% 0.00% 

Roof slab absorber 0.00% 1.00% 0.50% 0.00% 

 

 
Figure 1: Key factors influencing energy use in buildings 

 

 
Figure 2: Different aspects and their effect on the energy need of a building 

 

 

 
Figure 3: Electricity consumption per sector and by fuel type in Libya, Source: GECOL, (2013) 
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Figure 4: CO2 emissions in Libya, Source: (GECOL, 2013) 

 

 
Figure 5: Ambient temperature in Tripoli, Source: World Meteorological Organization, (2014) 

 

 
Figure 6: How the IES program works 



Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online) 

Vol.5, No.8, 2015 

 

68 

 
Figure 7: South and east and north and west elevations of the building after modelling it with IE 

 

 
Figure 8: The building while the sun cast is calculated 

 

 
Figure 9: The south and east, north and west elevations of the building after adding shading 
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Figure 10 South and East, North and West and roof solar gain simulation result 
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Figure 11: The building monthly solar gain. 
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Figure 12: Building chiller loads per MWh 
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Figure 13: The total CO2 produced by the building 

 

 
Figure 14: shows the chillier energy for the whole year 
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