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Abstract 

Previous studies have reported that there is a relationship among gold and oil prices. This research analyses how 

gold and oil prices variables interact focusing on different Global financial crisis (GFC) phases, we adopt a 

multivariate asymmetric dynamic conditional correlation GARCH framework, during the period spanning from 

January 1st, 2000 until December 31th, 2017. Our empirical results suggest correlations’ asymmetric responses 

among them. Moreover, the results indicate a correlations increase of gold and oil, during the crisis periods, 

suggesting different prices vulnerability.  
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1. Introduction   

Dynamic analysis of precious commodity such as gold and oil has received a lot of financial time series experts’ 

attention, especially when research focuses on their prices multivariate analysis. Gold and oil multivariate analysis 

results will get so considerable interest of investors and financial analysts. Thus, investors will include gold 

because of its durability and its divisibility in their portfolio. In addition, they will prefer gold as a hedge or a 

"refuge" from the fluctuation of certain financial assets such as oil. Analysts growing interest is also due to the 

fact that oil prices increase or gold prices increase often pushes inflation rate on the rise, which therefore increases 

gold demand and as a result jacked up its prices on the market (Zhang and Wei, 2010). Oil prices have been 

considered as a major indicator in the global economy (Norden Amano, 1998). When oil prices rise, companies 

will suffer from profits losses. Such an increase may also lead to a decrease in disposable income and cause 

inflation that is impeding the steady economic growth (Wang, Lee and Nguyen, 2013). Nevertheless, imminent 

inflation will increase gold prices, because investors think that gold is a hedge against inflation. Narayan et al. 

(2010) improve on the cointegration approach and analyze the long-run relationship between gold and oil futures 

prices over the period 1963–2008 at different levels of maturity in order to gauge differences in hedging behavior. 

The results indicate that the gold and oil markets are cointegrated, which is presented as evidence of joint market 

inefficiency. The fact that annual data are employed for the analysis precludes the more detailed and 

comprehensive results that could be inferred from data of higher frequencies. Bampinas and Panagiotidis (2015) 

inspected the causal relationship among gold spot prices and crude oil prices before and after the latest financial 

crisis. In the pre-crisis period, causality was linear and unidirectional from oil to gold. In the post-crisis period, a 

bidirectional non-linear causality relationship emerged. Volatility spillovers come to light as the non-linearity 

source during this period. The causal linkages time path for both returns and levels (cointegration) assessed via 

dynamic bootstrap causality analysis. Their results found that the causal linkage from gold to oil is time dependent 

and that the non-Granger causality null hypothesis rejection rate increased considerably in the post-financial crisis 

period. The probability of gold Granger causing oil in the short-run, increased by further than 30% throughout the 

recent financial and euro crisis. Mo, He and Jiang (2017) examined the dynamic linkages among gold prices, US 

dollars and crude oil market and found that the dynamic gold-oil relationship is always positive. After early 2009, 

US gold prices dropped suddenly and incoherent from world oil prices (Asche et al., 2012; Erdős, 2012; Øglend 

et al., 2015). Sephton and Mann (2018) examined how a shock to oil prices disturbs gold prices, with the impacts 

exposed to depend on mutually the shock size and the region within which the system lies when the shock had 

occurred. 

These results allow us to conclude that if there is a relationship among oil and gold prices. Based on the 

analysis above, this paper aims to offer a novel perspective to explore the dynamic relationships between gold and 

oil prices to broaden the previous studies. Our study contributes to the literatures through investigating the long-

term relationship by the time-varying DCCs that are captured from a multivariate student-t-FIAPARCH-DCC 

model which takes into account long memory behavior, speed of market information, asymmetries and leverage 

effects to examine the effect of the 2009 global financial crisis on the long-term interdependence. 

 

2. Econometric Methodology 

2.1 Univariate FIAPARCH (p, d, q) Model 

The AR (1) process is one of the most common models for describing a time series �� of price returns. Its 
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formulation is given as: 
�1 − ����� = 
 + �� , � � ℕ                                                  (1) 

With 

�� = Ζ��ℎ�                                                              (2) 

where |�| < 1 , |
| ��0 +∞� and �Ζ�� are independently and identically distributed (i.i.d.) random variables with 

Ε�Ζ�� = 0. The variance ℎ� is positive with probability equal to unity and is ameasurable function of Σ���which 

is the  −algebra generated by�����, ����, … �. Therefore, ℎ� denotes the conditional variance of the returns ����, 

that is: 

Ε���/Σ���# = 
 + �����                                                   (3) 

Var���/Σ���# = ℎ�                                                         (4) 

Tse (1998) uses a FIAPARCH(1,d,1) model in order to examine the conditional heteroskedasticity. Its 

specification is given as: 

�1 − '��(ℎ�) *⁄ − ,- = ��1 − '�� − �1 − .���1 − ��/#�1 + 01��|�2|)       (5) 

where , � �0, ∞� , |'| < 1, |.| < 1,0 ≤ 4 ≤ 1,1� = 1 if �� < 0 and 0 otherwise, �1 − ��/ is  

the financial differencing operator in terms of a hypergeometric function (Conrad et al. 2011),0 is the leverage 

coefficient, and 5 is the power term parameter (a Box–Cox transformation) that takes (finite) positive values. 

A sufficient condition for the conditional variance ℎ� to be positive almost surely for all t is that  0 > −1and 

the parameter combination �7, 4, '�  satisfies the inequality constraints provided in Conrad and Haag (2006) and 

Conrad (2010). When 0 >0 , negative shocks have more impact on volatility than positive shocks. 

The advantage of this class of models is its flexibility since it includes a large number of alternative GARCH 

specifications. When 4 = 0, the process in Eq. (5) reduces to the APARCH(1,1) one of Ding et al. (1993), which 

nests two major classes of ARCH models. In particular, a Taylor/Schwert type of formulation (Taylor 1986; 

Schwert 1990) is specified when 5 = 1and a Bollerslev (1986) type is specified when 5 = 2.When 0 = 0 and 5 =
2, the process in Eq. (5) reduces to the FIGARCH (1, d, 1) specification (Baillie et al. 1996; Bollerslev and 

Mikkelsen 1996) which includes Bollerslev’s (1986) GARCH model (when 4 = 0) and the IGARCH specification 

(when 4 = 1) as special cases. 

 

2.2  Bivariate FIAPARCH model with dynamic conditional correlations 

In what follow, we introduce the multivariate FIAPARCH process (M-FIAPARCH) taking into account the 

dynamic conditional correlation (DCC) hypothesis (see Dimitriou et al., 2013) advanced by Engle (2002). This 

approach generalizes the Multivariate Constant Conditional Correlation (CCC) FIAPARCH model of Conrad et 

al. (2011). The multivariate DCC model of Engle (2002), Tse, and Tsui (2002) involves two stages to estimate 

the conditional covariance matrix  9�.  

In the first stage, we fit a univariate FIAPARCH(1,d,1) model in order to obtain the estimations of �ℎ::�  The 

daily  data are assumed to be generated by a multivariate AR(1) process of the following form:              

;����� = <= + ��                                                               (6) 

<==><=,:?:@�,…A : the B −dimensional column vector of constants; 

 C<=,:C ∈ �0, ∞� ; 
;��� = 4EFG�H���� : an B × B diagonal matrix ; 

 H��� = �1 − H:�#:@�,…,A;     
  |H:| < 1 

�� = >�:,�?:@�,…J : the B −dimensional column vector of returns; 

�� = >�:,�?:@�,…J :       the B −dimensional column vector of residuals.  

The residual vector is given by:             

         �� = K�⨀ℎ�
∧� *N

                                                                            (7) 

⨀: the Hadamard product; ⋀: the elementwise exponentiation. 

ℎ� = >ℎ:,�?:@�,…J is Σ��� measurable and the stochastic vector K� = >K:,�?:@�,…J is independent and identically 

distributedwith mean zero and positive definite covariance matrix 

 

 P = >P:Q�?:,Q@�,…J with P:Q = 1 for = V . Note that W���/ℱ���� = 0 and 

 9� = �����Y/ℱ���� = 4EFG Zℎ�
∧� *N [  P diagZℎ�

∧� *N [   is the vector of conditional variances and 

  P:,Q,� = ℎ:,Q,�/�ℎ:,Q,�ℎ:,Q,�  ∀ E, V = 1, … , B  are the dynamic conditional correlations.  

The multivariate FIAPARCH(1,d,1) is given by: 
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                      ]��� Zℎ�
∧) *N − ,[ = �]��� − ∆���Φ���#�`J + Γ�#|��|∧)                               (8) 

where|��| is the vector �� with elements stripped of negative values. 

Besides,]��� = 4EFG�'���� bE�ℎ'��� = �1 − ':#:@�,..,J and |':| < 1. 

Moreover, Φ��� = 4EFG�.���� bE�ℎ .��� = �1 − .:#:@�,..,J and |.:| < 1. 

In addition, , = �1 − ,:#:@�,..,J bE�ℎ  ,: ∈ �0, ∞�  et ∆��� = 4EFG�4����  with 4��� = ��1 − ��/d#:@�,..,J∀ 0 ≤
4: ≤ 1. Finally, Γ� = 4EFG�0⨀1��  withe 0 = �1 − 0:#:@�,..,J  and 1� = �1:�#:@�,..,J  where 1:� = 1 if �:� < 0 and 0 

otherwise. 

In the second stage, we estimate the conditional correlation using the transformed stock return residuals, 

which are estimated by their standard deviations from the first stage. The multivariate conditional variance is 

specified as follows:       

            9� = e�f�e�                                                    (9) 

Where e� = 4EFG(ℎ���� *⁄ , … , ℎJJ�� *⁄ -  denotes the conditional variance derived from the univariate AR(1)-

FIAPARCH(1,d,1) model and f� = �1 − g� − g*�f + g�H��� + g*f��� is the conditional correlation matrix1. 

Engle (2002) derives a different form of DCC model. The evolution of the correlation in 

DCC is given by:                    h� = �1−∝ −'�hj + kK��� + 'h���                                     (10) 

 In addition, g�and g* are the non-negative parameters satisfying �g� + g*� < 1 and R= lP:Qm is a time-invariant 

symmetric B × B positive definite parameter matrix with P:Q = 1 and H��� 

is the B × B correlation matrix of �n  for o = � − p, � − p + 1, … , � − 1. The E, V − �ℎ element of the matrix 

H���is given as follows: 

H:Q,��� = ∑ rd,stuvw,stuxuyz
{|∑ rd,stu}xuyz ~ |∑ rw,stu}xuyz ~

,      1 ≤ E ≤ V ≤ B                                       (11) 

Where K:� = �:�/�ℎ::� is the transformed stock return residuals by their estimated standard deviations taken from 

the univariate AR(1)-FIAPARCH(1,d,1) model. 

The matrix H���could be expressed as follows: 

H��� = ]����� ��������Y ]�����                                                                                                (12) 

Where ]���  is a B × B   diagonal matrix with E − �ℎ  diagonal element given by (∑ K:,���*��@� - and ���� =
�K���, … , K���� is a B × B  matrix, K� = �K�� , … , KJ��′. 
To ensure the positivity of H���  and therefore of f�  a necessary condition is thatp ≤ B.Then f�  itself is a 

correlation matrix if f���is also a correlation matrix. The correlation coefficient in a bivariate case is given as: 

P�*,� = �1 − g�g*�P�* + g*P�*,� + g�
∑ rz,stuv},stuxuyz

{(∑ rz,stu}xuyz - (∑ r},stu}xuyz -
                                (13) 

 

3. Data and preliminary analyses 

The data comprises daily gold prices and oil (wti) prices. All the data are taken from DataStream. The study period 

spans from 01/01/2000 until 31/12/2017, leading to a sample size of 8274 observations. For each gold and oil 

prices, the continuously compounded return is calculated as 









1

ln*100
t

t
t

P

P
R , where tP  is the price on day t  

and 1tP   is the price on day 1t . 

Summary statistics of gold and oil prices are displayed in Table 1. From this table, gold and oil prices are 

volatile, as measured by the standard deviation of 2.0556% and 2.7614%,. Besides, we note that gold and oil prices 

have the highest level of kurtosis, indicating that extreme changes tend to occur more frequently for gold and oil 

markets. 

As well, gold and oil prices exhibit high values of excess kurtosis. To accommodate the existence of "fat 

tails", we assume T-Student distributed innovations. Furthermore, the Jarque-Bera statistic rejects normality at the 

1% level for all gold and oil prices. 

 

 

 

 

 
1 h = (�:Q�- B × N  time-varying covariance matrix of K�, hj = W�K�K�′# denotes the � × � unconditional variance matrix of K�, while k  and '  

are nonnegative parameters satisfying �k + '� < 1. Since h�ne possède généralement pas d'unités sur la diagonale, la matrice de corrélation 

conditionnelle f�  is derived by scaling h� as follows:  f� = (4EFG�h��-�� *⁄ (4EFG�h��-�� *⁄
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Table 1 : Descriptive statistics 
 Mean Maximum Minimum Std.Deviation Skewness Excess Kurtosis Jarque-Bera 

GOLD -0.0228 9.8206 -8.6251 2.05564 -0.483*** 4.37*** 13310.83*** 

WTI 0.0101 16.4141 -17.0923 2.7614 -0.482*** 7.882*** 27661.81*** 

Notes: The superscripts ***, ** and * denote the statistical significance at 1%, 5% and 10% levels, 

respectively. 

In Table 2 which displays the results of Serial correlation and LM-ARCH Test, the Ljung-Box test for 

correlating series rejects the null hypothesis of autocorrelations at 1%, 5% and 10% levels, respectively. 

Table 2 : Serial correlation and LM-ARCH Test 

 Serial Correlation LM-ARCH 

LB(20) LB2(20) ARCH(10) 

GOLD 108.3413*** 2048.4024*** 88.9581*** 

WTI 283.1034*** 4501.3217*** 91.2396*** 

Notes: The superscripts ***, ** and * denote the statistical significance at 1%, 5% and 10% levels, 

respectively. 

Engle and Ng (1993) propose a set of volatility asymmetry tests, known as the sign and size of bias tests. 

Engle and Ng tests should be used to decide if an asymmetrical model is necessary for a given series or if the 

symmetrical GARCH model can be judged adequate. In practice, Engle and Ng tests are generally applied to the 

residue of a GARCH adjustment to the return data. 

Defining �����  as variable indicators model as: 

����� = �1 K̂��� < 0
0 ��ℎ��bE1��                                                        (14) 

The test of bias sign is based on the importance or not ∅�in the following regression: 

K̂�* = ∅= + ∅������ + ��                                                     (15) 

Where �� is an independent and identically distributed error term. If positive and negative shocks on K̂���. The 

impact of conditional variance is different, so ∅� will be statistically significant. 

It could also be the case that the greatness or the size of the shock will affect whether or not the volatility 

answer to shocks is symmetrical. In this case, a test of negative size bias would be made, based on a regression 

where �����  is used as a binary variable. 

Negative size bias is argued to be present if ∅� is statistically significant in the following regression: 

K̂�* = ∅= + ∅������ ;��� + ��                                      (16) 

Finally, we define ����� = 1 − ����� , so that �����  selects its comments with positive innovations. Engle and Ng 

(1993) propose a test for partiality cause of bias signs and size based on the following regression: 

K̂�* = ∅= + ∅������ + ∅*����� ;��� + ∅������ ;��� + ��                                   (17) 

∅� significance indicates the existence of signs bias, where positive and negative shocks have different effects on 

the future volatility, compared to the symmetrical response required by the standard formulation of GARCH. 

However, the meaning of ∅*or of  ∅� suggests the existence of size bias, where not only the sign, but the magnitude 

of the shock is important. A common test statistic is formulated in standard mode by calculating �f* regression, 

which will be asymptotically follow a �* distribution with 3 freedom degrees under the null assumption of no 

asymmetric effect. 

Table 3 : Tests for Sign and Size Bias 

Variables GOLD WTI 

∅= 
1.0273*** 

(0.0000) 

1.0751*** 

(0.0000) 

∅� 
-0.4305*** 

(0.0004) 

0.0981 

(0.7734) 

∅* 
0.1053** 

(0.0443) 

0.0628 

(0.4041) 

∅� 
-0.196*** 

(0.0008) 

-0.4031*** 

(0.0002) 

�*�3� 
44.338*** 

(0.0000) 

21.7551*** 

(0.0000) 

Notes: The superscripts ***, ** and * denote the statistical significance at 1%, 5% and 10% levels, 

respectively. 

The results in Table 3 show that symmetric GARCH model residues for oil price do not suffer from sign 

biases and have negative size biases. But they display a positive size bias. These results also show that symmetric 

GARCH model residuals for gold price variable exhibit sign bias, negative size bias and positive size bias. The 

joint effect χ2 (3) at significant values of 1% for all these variables, which demonstrates a rejection of the null 
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hypothesis of non-asymmetries. The overall results would therefore suggest a motivation for estimating an 

asymmetric volatility model for these variables. 

Table 4 : Long Memory tests 

GPH test-d 

Estimates 

Squared  returns              Absolute returns 

m=T0.5 m=T0.6 m=T0.5 m=T0.6 

GOLD 101.3418*** 3248.1128*** 0.2965* 0.4513* 

WTI 201.9279*** 3021.4019*** 0.2397* 0.4589* 

Notes: The superscripts ***, ** and * denote the statistical significance at 1%, 5% and 10% levels, 

respectively. 

Long memory tests results are displayed in Table 4. Based on these results, we reject the null hypothesis of 

no long memory for absolute and squared returns at 1% significance level. Subsequently, all volatilities proxies 

seem to be governed by a fractionally integrated process. Thus, FIAPARCH seem to be an appropriate 

specification to capture volatility clustering, long-range memory characteristics and asymmetry. 

 
Figure 1. Oil (WTI) behavior over time 

 
Figure 2. Gold behavior over time 

Figures 1 and 2. above, plots the evolution of gold and oil prices behavior over time and thus during the 

period from 01/01/2000 until 31/12/2017. The figures show significant variations in the levels during the turmoil, 

especially at the time of Lehman Brothers failure (September 15, 2008). Specifically, when the global financial 

crisis triggered, there was a decline for all prices. 

 

4. Crisis Periods Specification 

Recent crises have some unique characteristics, such as length, reach and origins of crisis. Many studies use key 

economic and financial events to define crisis duration and beginnings (Forbes and Rigobon, 2002; Chiang et 

al., 2007). Nevertheless, other studies follow a statistical approach using the Markov regime change processes to 

identify endogenously the crisis period (Boyer et al., 2006; Rodriguez, 2007). We should note that economic and 

statistical approaches are at least partly arbitrary. Some studies help to avoid discretion in defining the crisis period 

by using discretion in choosing the econometric model to estimate the position of the crisis period over time. Baur 
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(2012) used key financial and economic events, he estimated excessive volatility to identify the crisis period, and 

he studied the transmission of the global financial crisis from the financial sector to the real economy. 

In this study, we specify the duration of global financial crisis and their phases according to economic and 

statistical approaches. We follow a statistical approach based on a Markov-dynamic regression model (MS-DR), 

which takes into account the endogenous structural breaks and thus allows us defining the beginning and the end 

of each crises phase. 

 
Figure 3. Regime classification of Oil conditional volatilities 

 

 
Figure 4. Regime classification of Gold conditional volatilities 

Figures 3 and 4 above, show regime classification of oil and gold conditional volatilities. Regime 0, in light 

blue, that matches up to periods of stable and low volatility. Regime 1, in grey, denotes periods of rising and 

persistent volatility returns. The red columns indicate the smoothed regime probabilities, while the grey shaded 

spaces are the regimes of excess volatilities according to MS-DR model.  
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5. Estimation results 

   Table 5. Univariate FIAPARCH (1, d, 1) Model 

    GOLD OIL 

   ESTIMATION Coeff t-prob Coeff t-prob 

   CST(M) 0.0019    0.0000 -0.0046 0.4312 

   AR(1) 0.0044    0.0000 0.0042 0.7918 

   CST(V) 0.0151   0.4689 0.0014 0.2601 

   d 0.5531    0.0000 0.8605 0.0000 

   ARCH(Phi1) 0.2912    0.0000 0.1710 0.0003 

   GARCH(Beta1) 0.7406    0.0000 0.9579 0.0000 

   APARCH(Gamma1) -0.3840    0.0000 -0.0583 0.4635 

   APARCH(Delta) 1.6827     0.0000 1.7862 0.0000 

   (df) 8.8146*** 0.0000 6.1827*** 0.0000 

In table 5 the ARCH and GARCH parameters (Phi1 and Beta1) are statistically significant and non-negative 

for all the returns of the oil and gold which justifies the relevance of the specification FIAPARCH (1, d, 1). The t-

student degree of freedom parameter (df) is very significant for all returns. This result confirms our preliminary 

analysis and, subsequently, the choice of t-student as an appropriate distribution. In addition the term (γ) leverage 

estimates are statistically significant, indicating an asymmetric response of volatilities to positive and negative 

shocks. Estimates of the power term (δ) are very significant for prices. 

Conrad, Karanasos and Zeng (2011) show that when the series is very likely to follow a non-normal error 

distribution, the superiority of a squared term (δ = 2) is lost and other power transformations can be more 

appropriate. In addition, all currencies display a significant fractional (4) parameter, which indicates a high degree 

of persistence behavior. This implies that the impact of negative shocks and their persistence on the conditional 

volatility of oil and gold returns. Table 6 reports the estimation results of the bivariate FIAPARCH (1, d, 1)-DCC 

model. The ARCH and GARCH parameters of the DCC (1,1) model capture, respectively, the effects of 

standardized lagged shocks and the lagged dynamic conditional correlations effects on current dynamic conditional 

correlation. They are statistically significant. Moreover, they are non-negative, justifying the appropriateness of 

the FIAPARCH model.  

Table 6 : DCC- FIAPARCH (1, d, 1) Model 

Estimation Results 

Variables GOLD /WTI 

Panel A 

Rho 0.0413 0.3632 

Alpha 0.0021 0.0764 

Beta 0.6817 0.0000 

� 8.6185 0.0000 

Panel B 

9�1�E�G(20) 342.089 1.0000 

9�1�E�G2(20) 530.901 0.0000 

�E - p
���4(20) 341.051 0.0000 

�E – p
���42(20) 729.343 1.0000 

As shown in Table 6, the estimated coefficients are significantly positive for the pair of GOLD /WTI. Besides, 

the t-student freedom degrees parameters are highly significant, supporting the choice of this distribution. The 

statistical significance of the DCC parameters reveals a considerable time-varying co-movement and thus a high 

persistence of the conditional correlation. This implies that the volatility displays a highly persistent manner. 

The multivariate FIAPARCH-DCC model is so important to consider in our analysis since it has some key 

advantages. First, it captures the long range dependence property. Second, it allows obtaining all possible pairwise 

conditional correlation coefficients for GOLD /WT in the sample. Third, it is possible to investigate their behavior 

during periods of particular interest, such as the global financial crises period. Finally, it is crucial to check whether 

the selected GOLD /WTI display evidence of bivariate long memory ARCH effects and to test ability of the 

bivariate FIAPARCH specification to capture the volatility linkages between gold and oil. In our study, we refer 

to the most broadly used diagnostic tests, namely the Hosking's and Li and McLeod's Multivariate Portmanteau 

statistics on both standardized and squared standardized residuals. According to Hosking (1980), Li and McLeod 

(1981) and McLeod and Li (1983) autocorrelation test results reported in Table 5 (Panel B), the multivariate 
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diagnostic tests allow accepting the null hypothesis of no serial correlation on both standardized and squared 

standardized residuals and thus there is no evidence of statistical misspecification. 

 
Figure 5. DCC behavior over time (WTI/GOLD) 

Figure 5 above, illustrate the evolution of the estimated dynamic conditional correlations dynamics among 

gold and oil. Compared to the pre-crisis period, the estimated DCC show a decline during the post-crisis period. 

Such evidence is in contrast with the findings of previous research on GOLD /WTI. which show increases in 

correlations during periods of financial turmoil (Kenourgios and Padhi, 2012; Dimitriou et al., 2013; Dimitriou 

and Kenourgios, 2013). Nevertheless, the different path of the estimated DCC displays fluctuations for GOLD 

/WTI during the global financial crises phases, suggesting that the assumption of constant correlation is not 

appropriate. The above findings motivate a more extensive analysis of DCC, in order to capture contagion 

dynamics during different phases of the two crises. 

 

6. The DCC behavior during crisis periods 

We next provide further results on the contagion effects during the crises. Using various dummy variables allows 

us to identify which of the sub-periods exhibit contagion effects of gold and oil price. We create dummies, which 

are equal to unity for the corresponding crisis phase and zero otherwise, to the following mean equation in order 

to describe the behavior of DCCs over time: 

P:Q,� = 
= + ∑ H���@� P:Q,��� + ∑ '���@� 4�����,��:Q,�                       (18) 

 

where 
= is a constant term, P:Q,� is the pairwise conditional correlation  

k =1… λ is the number of dummy variables corresponding to crises, which are identified based on an economic 

and a statistical approach. Furthermore, the conditional variance equation is assumed to follow an asymmetric 

GARCH(1,1) specification of Glosten, Jagannathan and Runkle (1993) including the dummy variables 

identified by the two approaches : 

ℎ:Q,� = k= + k�ℎ:Q,��� + ∑ ����@� 4�����,� + ���:Q,���* + k*�:Q,���* `(�:Q,��� < 0-            (19) 

As the model implies, estimated dummy coefficients significance indicates structural changes in mean or/and 

variance shifts of the correlation coefficients due to external shocks during the crises. According to Dimitriou and 

Kenourgios (2013), a positive and statistically significant dummy coefficient in the mean equation indicates that 

the correlation during a specific phase of the crisis is significantly different from that in the previous phase, 

supporting the existence of spillover effects among gold and oil prices. Furthermore, a positive and statistically 

significant dummy coefficient in the variance equation indicates a higher volatility of the correlation coefficients. 

This suggests that the stability of the correlation is less reliable, causing some doubts on using the estimated 

correlation coefficient as a guide for portfolio decisions. 
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Table 7. Tests of changes in dynamic correlations during the crisis 

 ��� ¡/¢£¤ 

Mean Eq Coeff Signif 


= 0.0088 0.0001 

H� 0.9131 0.0000 

'� 0.0036 0.0517 

'* 0.0071 0.9113 

'� 0.0065 0.0356 

Variance Eq. - - 

k= 0.0003 0.0000 

k� 0.1019 0.0000 

�� 0.4861 0.0000 

k* 0.0058 0.0000 

�� 0.0729 0.0000 

�* 0.0681 0.0013 

�� 0.0863 0.0001 

�¥ 0.0613 0.0000 

Diagnostics - - 

LB(20) 22.4577 0.2681 

LB2(20) 10.6071 0.8665 

Table 7 shows the estimations of the mean and variance equations, setting a dummy variable for each crisis 

phase according to the economic approach. The constant terms 
= and the autoregressive term (H� ) are both 

statistically significant for all DCCs, with the latter taking values close to unity, indicating a strong persistence in 

the conditional correlations among the examined prices. For the mean equation, dummy coefficient '� for the 

global financial crisis phase 1 is positive and significantly. This evidence suggests that the DCCs between gold 

and oil have amplified during phase 1, supporting the existence of a difference in prices vulnerability. At the global 

financial crisis phase 2, the dummy coefficient '* is positive and not statistically significant for the GOLD /WTI 

prices, supporting a decrease in DCCs. 

This suggests that the relationship between gold and oil prices actually decreased during this phase. We could 

define this finding as a “currency contagion effect”. During the global financial crisis phase 3, positive and 

statistically significant dummy coefficient '�  exists for only the prices pairs, implying an increase of DCCs. 

Finally, the variance estimations have been reported in Table 7. The dummy coefficients ��,�where k = 1, 2, 3, 4 

for gold and oil are positive and statistically significant across several crisis phases. This finding means that the 

volatility of correlation coefficients is increased, implying that the correlations stability is less reliable for 

investment strategies implementation. 

 

7. Conclusion 

Whereas time fluctuating correlations of gold and oil prices have seen large research, reasonably little attention 

has given to correlations dynamics within a market. This research analyses how gold and oil prices variables 

interact with each other. In this paper, we evaluate the dynamic conditional correlation between the within gold 

and oil markets by means of the Dynamic Conditional Correlation (DCC-FIAPARCH) model. We used this model 

to examine and analyze contagion risk between them. Our empirical results point out that gold and oil prices 

exhibit asymmetry in the conditional variances. For that reason, the results point to the importance of applying a 

suitably flexible modeling framework to truthfully estimate the interaction between them. 

The conditional correlation surrounded by pairs gold and oil displays higher dependency when it was driven 

by negative expansions to variations than it is by positive improvements. In addition, market correlations turn out 

to be more volatile throughout the global financial crisis. The time-varying correlation coefficients empirical 

analysis, during the main crisis periods, provides contagion approval evidence. Our empirical results seem to be 

essential to researchers and practitioners and mainly to active investors and portfolio managers who include gold 

and oil in their equities portfolios. Actually, the high correlation coefficients, during crises periods, involve that 

the international diversification advantage, by holding an involving diverse portfolio from the contagious markets, 

drop. 

The findings lead to essential implications for investors’ and policy makers’ perception. They have a great 

consequence on international investors’ financial choices on managing their risk disclosures to gold and oil and 

on winning advantages of potential diversification opportunities that may arise due to released dependence 

amongst the market. Markets linkages’ growth correlation throughout crisis periods shows the different prices 

vulnerability and implies a portfolio diversification benefits decline, meanwhile holding a diversified portfolio 

with gold and oil will be less subject to systematic risk. As pointed out by Sephton and Mann (2018), it is very 
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important to appreciate those variables simultaneity therefore portfolio managers, investors and policy makers can 

make better decisions. Additionally, correlations’ behaviors considered as confirmation of non-cooperative 

monetary policies nearby the world and highlight the need for some form of policy organization among central 

banks. As a final point, dynamic linkages’ different patterns between gold and oil prices might influence the 

intercontinental trade flows and the multinational corporations’ accomplishments, as they generate ambiguity with 

concern to exports and imports. 
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