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Abstract 

Forest ecosystems play an important role in global change on the earth. However, continued forest degradation 
and deforestation will results in the loss of forest biomass or carbon stock. Hence, current concerns for global 
change and ecosystem functioning require accurate biomass estimation and examination of its dynamics. In this 
end we reviewed the present scenarios of above ground biomass estimation, focusing predominantly on field 
measurement (destructive and non-destructive) and remote sensing (optical remote sensing, radar and light 
detection and ranging (LiDAR)) biomass estimation methods and identifying some important point or research 
findings  in detail. In addition, we discuss the critical uncertainties or the source of errors in all methods.  In the 
field methods the source of error encountered  mainly  from sampling error, measurement error and statistical or 
model error. In the remote sensing methods; optical sensor data is not suitable for estimation of vertical vegetation 
structures such as canopy height, Radar have the following uncertainty: costly data, no time-composite data as the 
case for optical data, limited area coverage and LiDAR also faces the following challenges spatially limited, data 
intensive, and expensive, can't applied extensively to larger areas, limited usage in harsh weather. Finally, we 
suggest that using both field measurement and remote sensing methods will increase the accuracy of biomass 
estimation.  
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1. Introduction 

Woody biomass is the accumulated mass, above and below ground, of the roots, wood, bark, and leaves of living 
and dead woody shrubs and trees. Biomass generally includes all live and dead material in all forms of vegetation 
(trees, shrubs, vines, etc.),or the trees and woody plants, including limbs, tops, needles, leaves, and other woody 
parts, grown in a forest, woodland, or rangeland environment (MacDicken 2015). Biomass of forests is very 
relevant for issues related to global change. For example, the role of tropical forests in global biogeochemical 
cycles, especially the carbon cycle and its relation to the greenhouse effect, has increasing interest in estimating 
the biomass density of tropical forests (Houghton 2005). 

Forest ecosystem constitute large amount of biomass and thus it play a major role in carbon sequestration and 
global climate regulation (Houghton 2005;Lü et al. 2010). It can stabilizing atmospheric carbon dioxide 
concentrations through sequestration of 2-4 Gt of atmospheric carbon annually (Houghton 2005;Lü et al. 2010; 
Qureshi et al. 2012;Hansen et al. 2013).  However, continued forest degradation and deforestation will results in 
the loss of forest biomass or carbon stock magnifying the negative effects of global climate change (Frolking et al. 
2009; Hansen et al. 2013). Hence, Current concerns for global change and ecosystem functioning require accurate 
biomass estimation and examination of its dynamics (Shepardson et al. 2011) and which is important for 
quantifying carbon stock and sequestration rates, assessing potential impacts due to climate changes (Houghton 
2007).  

Different approaches have been applied to forest biomass estimation. Field measurements method is the most 
accurate to estimate forest biomass but it is time-consuming and labor-intensive, and it is impossible to cover large 
areas (Mutanga et al. 2012; Seidel et al. 2011). Remote sensing enables the estimation of forest biomass at multiple 
scales with large spatial and temporal coverage. It offers an efficient and economical means for monitoring AGB 
by facilitating forest type and canopy density stratification, which greatly helps in field inventory (Bortolot and 
Wynne 2005). Recently, with the ability to detect the structures of forest, RADAR and LiDAR remote sensing are 
also used to estimate forest biomass. However, there remain limitations in typical study areas and they have not 
been applied extensively to large scale studies because of cost constraints, saturation problem and environmental 
factors (Ji et al. 2012; Rauste 2005). 

A major sources of error in the field measurement methods comes from; sampling selection, measurement 
and statistics or model (Temesgen et al. 2015). And also the source of error in remote sensing methods emanate 
from: knowledge and skill on image processing software and models (Lu et al. 2014; Skowronski et al. 2014). 
Given this, the main purposes of this paper is to review different forest AGB estimation methods (field 
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measurement and remote sensing) and their challenges or uncertainty during implementation 
 

1.1. Methods  

To do this specific review, we try to read and review different articles and books that related to each individual 
biomass estimation methods and their limitation or uncertainty.  
 
2. Forest Biomass estimation methods  

Logical estimation methods for aboveground biomass and carbon stocks on forest land are increasingly important 
given concerns of global climate change, carbon sequestration protocols for the voluntary and timber extraction 
(Zhou and Hemstrom 2009). For this specific review we will see each biomass estimation methods, and their 
uncertainty during application. 
2.1. Field measurements      

Field measurements is a measurements that measure directly tree biomass using tools and equipments. Based on 
the level of impacts on the tree field measurement divided in to two: Destructive methods and Non-destructive 
methods. 
2.1.1. Destructive Methods  

Destructive estimation method entails harvesting trees like tree trunk, leaves and branches. sometimes also known 
as the harvest method, drying them, and weighing the biomass. It comprises field (site preparation, measurement 
of felled trees, weighing of logs and take sampling for laboratory) and laboratory (dry biomass, density and  volume) 
measurement Operations (Ravindranath and Ostwald 2008; Picard et al. 2012)(Photo 1-3). While this method is 
the most direct and accurate method for quantifying biomass within a small unit area, it can be time and resources 
consuming and not feasible at large scale. As a result, it is often used for specific research purposes and for 
developing biomass equations for estimating biomass on large scale (Navar 2009; Ravindranath and Ostwald 2008; 
Segura and Kanninen 2005).   
Photo 1: Stands were cut at height of 40cm diagonally (source melese et al 2013) 

 
 
  



Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online)  

Vol.9, No.8, 2019 

 

14 

Photo 2: Fresh biomass measuring of biomass components (source melese et al 2013)   

 
                a) Biomass compartments        b) Stem 

 
                        c) Branch       d) Leaves  
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Photo 3: Biomass sampling and drying (source melese et al 2013)   

 

 
Note: Biomass sampling, drying and laboratory measurement are; 10 bundle of leaves, 5 cm thick disks from stem, 
5 cm length disks form each branch, air-dried for one week oven dried for 24 hours at 70 0c in lab and laboratory 
measurement   
2.1.2. Non-destructive Methods 

Non-destructive method is sampling measurements that do not require total felling of the trees, only the small 
branches are affected (Picard et al. 2012). It is applicable the ecosystems with rare or protected tree species where 
harvesting of such species is not practical or feasible (Montes et al. 2000). Estimating the above-ground forest 
biomass by non-destructive method is by climbing the tree to measure the various parts or by simply measuring 
the diameter at breast height, height of the tree, volume of the tree and wood density (Aboal et al. 2005; Liu and 
Westman 2009; Ravindranath and Ostwald 2007). According to Montes et al 2000 findings using non-destruction 
methods for biomass estimation can leads to 2.5-7.5 % per tree error. In Ethiopia defferent researcher used or using 
non destructive methods. However, these methods can also involve a lot of labor, time and climbing can be 
troublesome (abiye and teshome, 2017).   
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Photo 1: Measure DBH in all compartment (source: Tagegn 2018) 

 
 
Photo 2: Fresh biomass measuring of biomass components (source Tagegn 2018; Damena 2016 )   

 
 
Photo 3: Biomass sampling drying and laboratory measurement (source Tagegn 2018)     

 
By using destructive and non destructive method biomass equations (BE) or allometric equations can be 

developed for a single species or for a whole ecosystem type. Estimate biomass is using an appropriate Biomass 
Equation (BE) that can estimate tree biomass using easily measured parameters from forest inventories like DBH 
alone or including H together and others. Several researchers developed generalized and/or site specific multi-
species or single species equations for different forest types. These equations are developed through creating 
relationships between different parameters of trees like DBH of the stem, total height of the tree, crown diameter 
etc. (Basuki et al. 2009; Brown 1997; Chave et al. 2014; Condit 2008; Djomo et al. 2010; Henry et al. 2013; 
Ngomanda et al. 2014; Rutishauser et al. 2013).   

Whereas the applicability of the equation for single or mixed tree species and for specific or large-scale area 
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depends on the employed data used to construct it (Somogyi et al. 2007). Consequently in order to achieve the 
maximum possible accuracy of these methods, applying the correct BE for the appropriate tree species and/or 
forest type is very crucial (Henry et al. 2011). Thus based on their agro ecological area of development origin and 
their recommended range of applicability both in forest type and input data requirement, the following published 
allometric equations are reviewed in the following tables. 
Table 1: List of reviewed biomass equation and used methods 

Researchers   Tropical forest  Equation  Methods they 

used 

 (Brown et al.) Wet M=e(-2.409+0.952(ρwD2H)  Destructive  
(Brown 1997) Dry  M=34.47-8.0671D+0.6589D2 Destructive 

Moist  M=e(2.134+2.53*ln(D))   Destructive  
(Velazquez-Martinez et al. 
1992) 

Dry  M=10**(-0.5352+Lo g (BA)   Destructive 

 (Návar-Cháidez 2010) Dry  M=0.08479(pw 0.55255 D 2.2435 H 
0.4773)  

Destructive  

All  M=(38.36*B -6.9045)D(B=d+hB*) Non-Destructive  
(Chave et al. 2005) 
 

Dry  M=0.112*(ρwD2 H)0.916 Destructive  
Moist  M=0.0509*( (ρwD2 H) Destructive  
Wet  M=0.0776(ρwD2H)0.94 Destructive  

(Abiye and Teshome 2017) For (Millettia 
ferruginea) 

ln(TB)=ln(-2.588)+ 2.404 
ln(DBH) 

Non-Destructive 

 
2.2. Remote sensing technique and its application in biomass estimation 

Remote sensing technique developed rapidly in the late twentieth century, and remote sensing data with high 
spatiotemporal resolution, wide coverage, and timely updates has been widely used in the assessment of forest 
biomass and carbon stock on various scales (Lu 2006; TSITSI 2016). At this time, Remote sensing based methods 
of AGB estimation in forest ecosystems have gained attention, and substantial research has been conducted in the 
past three decades (Aricak et al. 2015; He et al. 2013; Liu et al. 2017; Sun et al. 2011; Urbazaev et al. 2018; Zheng 
et al. 2004).  

Data from Remote Sensing satellites are available at various scales, from local to global, and from a number 
of different platforms and hence we are expected to provide information which can be related directly, and in 
different ways, to biomass information (Foody 2003; Rosenqvist et al. 2003). Although remote sensing technology 
cannot be used for underground biomass estimation, it has the ability to provide important information for 
aboveground biomass (AGB) (Lu 2006). 

The advantages of remote sensing include the ability to obtain measurements from every location in the forest, 
the speedy in data collection and processed, the relatively low cost of many remote sensing data types, and the 
ability to collect data easily in areas complex to access on the ground (Bortolot and Wynne 2005). There are three 
different types of remote sensed methods such as optical remote sensing, radar and light detection and ranging 
(LiDAR) each methods have their own advantages and uncertainty in estimation of above ground biomass (Kumar 
et al. 2015; Sharma and Chaudhry 2015)  
2.2.1. Optical Remote Sensing  
The estimation of forest biomass by means of optical satellite data is very frequent used for biomass estimation. 
Most likely provides the best alternative to biomass estimation through field sampling due to its global coverage, 
repetitiveness and cost-effectiveness. The most common optical remote sensing data source for biomass estimation 
are: Land sat (TM, ETM+ OLI) IKONOS, Quick bird, Worldview, SPOT, and MODIS (Baccini et al. 2004; Lu et 
al. 2012; Thenkabail et al. 2004; Zheng et al. 2004). Optical remote sensing sensor categorized in to three based 
on their spatial resolution such as: fine spatial resolution data (< 5 m) IKONOS, Quick Bird, Worldview, medium-
spatial resolution data (10-100 m) Land sat 4 5 7 TM⁄Enhanced TM+ and coarse-spatial resolution data (> 100m) 
MODIS, SPOT (Kumar et al. 2015). 

In general, optical sensor data are suitable for examining horizontal vegetation structures such as vegetation 
types and canopy cover; but, it can't estimate vertical vegetation structures such as canopy height, which is one of 
the critical parameters for biomass estimation (St‐Onge et al. 2008). Optical sensors technology are very 
importance in estimation of  biomass and model development, however the following problems are still unsolved: 
(1) optical sensor data suffer the saturation problem such as high biomass density and (2) spectral-based variables 
are influenced by external factors such as atmosphere, soil moisture, vegetation penology, and growth vigor (Lu 
et al. 2016) 
2.2.2. Radar    

Over recent years, there has been increasing interest in synthetic aperture radar (SAR) data for aboveground 
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biomass analyses, particularly in the areas of frequent cloud conditions where obtaining high quality optical data 
is difficult. The capability of radar (Radio Detection and Ranging) systems to collect data in bad weather and night 
overcomes this issue. Furthermore, the SAR sensor can penetrate vegetation to different degrees and provides 
information on the amount and three-dimensional (3-D) distribution of structures within the vegetation (Kumar et 
al. 2015). The most common optical remote sensing data source for biomass estimation are: JERS-1 (early 1990s), 
ALOS/PALSAR 1, ALOS/PALSAR 2 (2014); ERS 1-2, Envisat 1 -2 up to 2002; Radarsat 1- (1995) RadarSat-2 
(2007) (Table 3).   

The wavelength (e.g. X, C, L, P), polarization (e.g. HH, VV, HV, VH), incidence angle, land cover, and 
terrain properties (e.g. roughness and dielectric constant) are important factors influencing the backscattering 
coefficient of land cover surfaces. Previous studies have demonstrated that Long wavelength such as L- and P-
band data (interact with branch, trunk, and ground elements under the forest canopy) and HV polarization are 
suitable for biomass estimation (High Biomass Density) than short wavelength X- or C-band (interacts primarily 
with canopy elements) and is appropriate for low biomass (Patenaude et al. 2005; Sun et al. 2002; Ghasemi et al. 
2011).  
Table 2: Characteristics of space born SAR  

Satellite  Years  Agency  Frequency - polarization  Resolution-swath 

ERS-1 1991-2000 ESA C-VV 25 m-100km 
JERS 1992- 1998 NASDA L-HH 25 m-100 km 
ERS-2 1995 ESA C-VV  25 m-100 km 
RADARSAT-1 1995 CSA C-HH 10-100, 45-500km 
ENVISAT-ASAR 2002 ESA C-HH/VV/HV 25-1000m, 50-500km 
ALOS-PALSAR-1 2006 JAXA L-Polarimetric  10-100m, 100-350km 
TerraSAR-X 
Cosmo-Skymed 

2007 DLR Italy  X-Polarimetric 1m 

RADARSAT 2 2007 CSA C-Polarimetric < 10 m 
ALOS/PALSAR 2 2014 JAXA L-in all Polarization  1-3 m, 25-490 km 

Source: Le 2007; Sun 2018  
A large number of recent studies have explored the use of radar data for above-ground biomass estimation 

(Ghasemi et al. 2011; Patenaude et al. 2005; Sun et al. 2002; Sun et al. 2011; Zheng et al. 2004). There are a 
number of advantages to radar remote sensing compared to optical remote sensing in terms of its utility in biomass 
estimation. The ability of radar to penetrate cloud, rain and haze makes it especially useful in the tropics. 
Furthermore, radar based sensors are active and have a controlled power outlet, which ensures consistent transmit 
and return rates (Collins et al. 2009). However there are a number of difficulties to estimate biomass; it can't 
distinguishing vegetation types, because radar data reflect the roughness of land-cover surfaces instead of the 
difference between the vegetation types, the accuracy affected during high wind speed, moisture, and temperature, 
thus resulting in difficulty of biomass estimation (Li et al. 2012).  
2.2.3. LiDAR  

The two-dimensional (2-D) nature of optical remote sensing data limits its use in direct quantification of some 
vegetation characteristics like tree height, canopy height, volume, etc. Light Detection and Ranging (LiDAR) is a 
relatively new and sophisticated technology that helps to overcome this limitation due to its ability to extend the 
spatial analysis to a third dimension. Its systems send out pulses of laser light and measure the signal return time 
to directly measure the height and vertical structures of forests (Vashum and Jayakumar 2012). 

There are two types of LiDAR in function: i) small footprint (discrete return LiDAR) and ii) large footprint 
(full waveform LiDAR) (Todd et al. 2003). Both are generally operate in the 900- to 1064-nm wavelengths where 
vegetation reflectance is highest (Chen 2013; Dubayah and Drake 2000; Lefsky et al. 2002; Saatchi et al. 2011). 
Discrete return airborne LiDAR systems are more appropriate for fine-scale biomass mapping, while waveform 
space-borne LiDAR, has the appropriate for broad-scale biomass mapping (Chen 2013; Dubayah and Drake 2000; 
Lefsky et al. 2002; Saatchi et al. 2011). Common LiDAR remote sensing data source are: GLAS launched in 2003, 
ATLAS launched in 2018, GALA launched in 2020.  

LiDAR technology have a potential to sample the vegetation types, penology, vertical distribution of canopy, 
canopy density and ground surfaces, providing detailed structural information about vegetation. This potential 
leads to more accurate estimations of basal area, crown size (Dubayah and Drake 2000; Lefsky et al. 2002). For 
instance, Zolkos et al. 2013 evaluated more than 70 studies for AGB estimation and concluded that LiDAR 
methods provide a higher accuracy compared to radar and optical data. More over Gonzalez et al 2010 did 
comparative analysis on three methods (LiDAR, Quick Bird and Field Measurement) and he stated that LiDAR 
has produced more accurate estimation of forest biomass than other methods.   

Although LiDAR data have some advantages over radar and optical data, there are a few issues that restrict 
its use for field applications. For example, LiDAR data analyses are not simple and require more image processing 
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knowledge and skill and specific software. The LiDAR data acquisition process is expensive and covers smaller 
areas, hence study areas are still limited to specific areas and have not been applied extensively to larger areas for 
biomass estimation (Kumar et al. 2015; Zolkos et al. 2013). 
 
3. Challenges of Biomass Estimation Methods  

3.1. Challenges of Field Measurement Methods  

Many scholars indicated that the sources of error can emanate from sampling plot and tree because of variability 
in tree attributes such as wood density and crown architecture, thus affect the estimation of forest biomass. 
Generally, the source of errors categorized in two three such as: sampling error, measurement error and statistical 
or model error (Samalca 2007; Temesgen et al. 2015). 

As indicated in the bellow figure 1, sampling errors have two set of phases;  first-phase and second-phase . 
At the first phase, selection of sample plots from aerial photographs or satellite image introduces uncertainty on 
the biomass estimate. In the second phase, selection of sampled trees that are measured to develop biomass 
equation also leads to ambiguity of the biomass estimate. Sampling error is affected by sampling scheme, sample 
size, estimation procedure and inherent variability of the variable of interest (Avery and Burkhart 2015). In this 
regard, for instance, (ÖZÇELİK and Eraslan 2012) finding showed that the sampling error ranged from 2.51% to 
22.63% per tree (and 2.65% of total biomass).   

The second source of error appeared from measurement of the tree variables, such as, DBH, height or weight 
measured by diameter tape or caliper, measuring tape, and weighing scale, respectively. Measurement error occurs 
due to various reasons, including instrument error, recording error, and error due to the nature of the object being 
measured (irregular girth shape) (Chave et al. 2004).  

The third source of error is in the choice of model that describes the relation of biomass and tree variables 
(Chave et al. 2004; Jenkins et al. 2003; St‐Onge et al. 2008). Several biomass equations of different model forms 
can be found from the literature. When different model forms are used for the same data set, one would expect to 
get different parameter estimates (Figure 1). 
Figure 1: Source of error in forest biomass estimation (Temesgen et al. 2015)  

 
 
3.2. Challenges of Remote Sensing Methods   

Remote sensing techniques have many potential benefits in biomass estimation over field measurement methods 
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at different scales ranging from local to regional, including cost, labor, and time. However, to select appropriate 
remote sensing data source we have to critically analyze; the scale of the study area, the data analysis procedure 
and costs. High spatial resolution data from both airborne and satellite platforms can provide accurate biomass 
estimates at local scales; however, for regional scales, a large volume of data is required, which is not only 
expensive but also difficult to process; this limits its application for larger areas (Kumar et al. 2015). In general, 
in all remote sensing biomass estimation methods faces an error in related to selection of appropriate software,  
image acquisition and processing skill.  

Optical sensor data are suitable for the retrieval of horizontal vegetation structures such as vegetation canopy 
cover, but it is not suitable for estimation of vertical vegetation structures such as canopy height, which is one of 
critical parameters for biomass estimation (Ni et al. 2014; St‐Onge et al. 2008). Proper integration of this vertical 
structure features and optical spectral response and textures in a biomass estimation model may be a new direction 
to improve biomass estimation accuracy, but has not been paid much attention yet (Ni et al. 2014; St‐Onge et al. 
2008). Moreover, previous research has not solved the challenge such as: (1) optical sensor data suffer the 
saturation problem for high biomass density; (2)  influenced by bad weather condition ( Lu et al. 2014). 

Use radar data for distinguishing vegetation types (Li et al. 2012) because radar data reflect the roughness of 
land cover surfaces instead of the difference between the vegetation types, thus resulting in difficulty of biomass 
estimation. Several other limitations of SAR are as follows: costly data, limited area coverage, it can't 
distinguishing vegetation types,  non availability of global-level coherent datasets of SAR and the accuracy 
affected by bad weather. Refinements in handling and processing SAR data can improve the analyses which are 
promising prospects for future researches (Sinha et al. 2015). 

Even if LiDAR data better than optical data and radar, there are a few issues that limit its use in the field 
applications. For instance, analyses of LiDAR data are not simple and require knowledge and skill on image 
processing in specific software. The LiDAR data acquisition process is expensive and covers smaller areas, hence 
have not been applied extensively to larger areas for biomass estimation (Kumar et al. 2015). It is spatially limited, 
can't applied extensively to larger areas, limited usage in harsh weather and can be expensive ($350 - $450 / sq 
mile – 1 meter resolution) and technically demanding (Skowronski et al. 2014). 
 
4. Summary of biomass estimation methods     

We try to make a comparison the above stated remote sensing biomass estimation methods like optical remote 
sensed data source, radar detection and ranging (RADAR) and light detection and ranging (LiDAR). Clear 
advantage, limitation and source of data are discussed in the bellow table  
Table 3: Summary of Biomass Estimation Methods  

Methods and 
data source   

Advantage Limitation  References 

Field measurement methods  

1. Destructive 
methods  

· The most accurate 
approach.  

· An input for 
development of 
allometric models for 
assessing biomass on a 
larger-scale 

· Destroying trees, time-
consuming and labor-
intensive suitable only for 
small areas. 

· It's not applicable for 
degraded forests containing 
threatened species 

Picard et al. 2012 
Montes  et al 2000 

2.Semi-
destructive 
methods  

· It's not destroying trees 
and save time and costs 

· Use to estimate endanger 
species biomass    

· It's not measure the whole 
tree compartment which 
may affect the accuracy  

Picard et al. 2012  

Remote sensing methods  

1. Optical 
remote 
sensing 
(IKONOS, 
Quick bird, 
Worldview, 
SPOT, 
Land sat 
and 
MODIS) 

· Satellite data regularly 
collected and freely 
available at global scale 

 
· Reduces time and cost of 

collecting forest 
inventory data 

 

· Accuracy is low in closed 
forests with tree canopy 
overlap. 

· It is 2-D data so limited to 
vertical vegetation 
structures 

· It needs clear weather 
condition (absence of 
cloud) 

Kumar et al 2015;  
(Gibbs et al. 2007) 
(Foody et al. 2003) 
(Zheng et al. 2004) 
(Steininger 2000) 
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2. RADAR · Provides information on 
surface roughness and  
moisture content. 

· May penetrate 
vegetation, sand, and 
surface layers of snow.  

· Enables resolution to be 
independent distance to 
the object of with the size 
of a resolution cell being 
as small as 1 x 1 m.  

· High wind speed, rainfall, 
freezing,  and temperature, 
affect the accuracy 

· Less accurate in complex 
canopies of mature forests 
because signal saturates 

· Can be expensive and 
technically demanding 

 
(Gibbs et al. 2007) 
(Urbazaev et al. 2018)  
(Mitchard et al. 2011);  
(Ghasemi et al. 2011)  
(Sarker et al. 2012) 

3. LiDAR · High spatial resolution 

(̴ 5 cm) 
· It is not affected by 

extreme weather 
· Can be used to map 

inaccessible and 

featureless areas 
· It is measures vertical 

forest structure such as: 
canopy heights, and 
aboveground biomass 
with high level of 
accuracy 

· It is spatially limited 
· Can't applied extensively to 

larger areas   
· Limited usage in harsh 

weather 
· Can be expensive ($350 - 

$450 / sq mile – 1 meter 
resolution) and technically 
demanding  

 

(Gibbs et al. 2007) 
(Nelson et al. 2012);  
(Dong and Chen 2017);  
(Skowronski et al. 
2014)  
http:/code.google. 
com/creative/radiohead/ 

 
2. Conclusion  

Forest ecosystems play an important role in global change on the earth. However, continued forest degradation 
and deforestation will results in the loss of forest biomass or carbon stock. Hence, current concerns for global 
change and ecosystem functioning require accurate biomass estimation and examination of its dynamics. In this 
end, we reviewed the present scenarios of above ground biomass estimation, focusing predominantly on field 
measurement (destructive and non-destructive) and remote sensing (optical remote sensing, radar and light 
detection and ranging (LiDAR)). Destructive estimation method entails harvesting trees like tree trunk, leaves and 
branches (or shrubs, herbs, etc.), drying them, and then weighing the biomass. Non-destructive method is sampling 
measurements that do not require total felling of the trees, only the small branches are affected and It is applicable 
in threatened forest ecosystems. The source of errors in both methods categorized in two three such as: sampling 
error, measurement error and statistical or model error. 

In remote sensing, there are three different types of remote sensed methods, such as optical remote sensing, 
radar and light detection and ranging (LiDAR) each of remote sensing data type have their own advantages and 
uncertainty in estimation of above ground biomass. optical satellite data is very frequent used and different scholars 
were assessed the potential of optical remote sensing methods for biomass estimation using different types of data 
and image processing techniques. SAR sensor can penetrate vegetation to different degrees and provides 
information on the amount and three-dimensional (3-D) distribution of structures within the vegetation. Light 
Detection and Ranging (LiDAR) is a relatively new and sophisticated technology that helps to overcome this 
limitation due to its ability to extend the spatial analysis to a third dimension. Optical sensor data is not suitable 
for estimation of vertical vegetation structures such as canopy height, which is one of critical parameters for 
biomass estimation. Radar have the following uncertainty costly data, limited area coverage, it can't distinguishing 
vegetation types,  non availability of global-level coherent datasets of SAR and the accuracy affected by bad 
weather. LiDAR also faces the following challenges spatially limited, data intensive, and expensive, can't applied 
extensively to larger areas, limited usage in harsh weather. Finally, we suggest that using both field measurement 
and remote sensing methods will increase the accuracy of biomass estimation.  
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