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Abstract 
Wind power assessments as well as forecast of wind energy production potential are key issues in the wind energy 
industry. One of the necessary conditions for the development of wind power generation is to choose the optimal 
site. Alternative energy plays a great role for climate change mitigation, environmental protection and sustainable 
development. The objective of this study was to assess the distribution of wind resource based on WRF (Weather 
Research and Forecasting) model and its implication on climate change mitigation in Bale zone, south eastern 
Ethiopia. In this study, one year wind speed and wind direction at 6- hour intervals at a height of 10, 50 and 100 
m were used. The data source is National Centers for Environmental Prediction (NCEP). In addition observational 
wind speed and wind direction data from National Meteorological Agency (NMA) of Ethiopia from ground based 
stations were used. The analysis result of the NCEP and NMA data by downscaling the model to 20 km by 20 km 
spatial resolution enabled to map the wind resource potential sites of Bale Zone applicable for wind mill installation. 
This study showed that most of the Bale zone areas have significant wind power potential to augment its current 
power generation. The analysis result revealed that wind resource potential is high during summer than winter 
season.  Have a potential of installed 10,329MW wind capacity in Bale zone. If this potential wind resource will 
installed, so far environment as an estimation of about more than 5 thousand hectare of forest land per year would 
be preserved, and subsequently, equivalent amount of about 66,294 of CO2 would be stored per year. 
Keywords: Wind speed; Wind direction; Wind power; WRF model; Bale zone 
DOI: 10.7176/JETP/11-1-01 
Publication date: January 31st 2021 
 
1. INTRODUCTION 
Wind power, as an alternative clean energy source, supports environmental sustainability and possibly provides 
part of the solution to our energy insecurity problem (Pryor et al., 2011). Increasing the value of wind generation 
through the improvement of the performance of prediction systems is one of the priorities for wind energy research 
in the coming years (Karimiotakis et al., 2004). From the point of view of wind energy, the most striking 
characteristic of the wind resource is its variability. Wind is highly variable, both geographically and temporally. 
Furthermore, this variability persists over a very wide range of scales, both in space and time. The application of 
numerical weather prediction (NWP) models for the simulation of wind conditions in a given area is one of 
important methods. Mesoscale NWP model are essential to the forecast process (Ma et al., 2009). One of the main 
advantages of WRF modeling for wind resource assessment is creating of wind maps, generating of ‘virtual’ wind 
climates, and to assist in generation of synthesized long term data sets by combining observations and WRF. Since 
accurate assessment of local wind resources is vital for the planning and the management of wind farms, where 
in-situ measurements are scarce and expensive, the validated mesoscale wind field simulations can provide a 
suitable alternative dataset. Growing interest in harvesting wind energy requires the development of reliable 
methodology for estimating the wind resources. In this study, we propose a methodology for the wind resource 
and site assessment studies at the Mesoscale level using numerical simulations and in-situ metrological data. The 
aim of this work is to assess wind resource potential sites of Bale zone, Ethiopia and its implication for mitigation 
of climate change. We have downscaled the model in a special resolution of 20 km by 20 km in the area of interest 
to map areas according to their wind resource potential. Despite the course special resolution of the model, we are 
able to identify wind resource potential regions of the zone. The paper is divided into the following sections. Next, 
we will see the materials and methods. In this section description of the study site, the WRF model, the data used 
and the methodology are explained in greater detail. Section 3 presents results and discussion. Finally conclusion 
and recommendations are given in section 4. 
 
2. MATERIALS AND METHODS 
2.1 Study Area Descriptions 
Bale zone is the second largest zone of Oromia regional state of Ethiopia (Fig 1). It has total area of 63,555 km2 
and covers 17.5% of the total area of the region. The zone has 18 districts, 33 towns, 349 rural villages. The altitude 
range is 300 m to 4389 m above sea level. The energy share from electricity is 10% while 90% is from traditional 
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source such as fire wood, charcoal, kerosene, dung, crop residue based on the report of Bale Zone Finance and 
Economic Development Office (2013). 

 
Fig.1 Geograpical map of bale zone with its districs (Numbers 1-7 show wind energy resource potentials of 
the districts, No Met data, indicates districts  with no merological data)  
Bale zone climate is highly variable from district to district. The annual average temperature of 17.5oc, 

maximum annual temperature 32oc and minimum annual temperature 3.5oc and receives 550 mm- 1200 mm 
amount of annual rainfall. The zone is characterized by a great diversity of thermal zones as a result of its wide 
range of altitude extent. It has classified as follows, Temperate 14.93%, Subtropical 21.53%, and Tropical 63.53% 
(BZFEDO, 2013). 

 
2.2 Methodology 
2.2.1 Model description 
The study is based on the Weather Research and Forecasting Model (WRF, version 3.5), aired in September 2013 
(Skamarock et al., 2008). WRF is a limited area meteorological model used for weather forecasting and climatic 
purposes. It employs an Eulerian mass-coordinate solver with a non-hydrostatic approach, and a terrain following 
Eta-coordinate system in the vertical. It is a state-of-the-art mesoscale model used in a variety of studies (Clifford 
et al., 2011; T. Haghroosta et al., 2014; J. J. Gómez-Navarro et al., 2015; P. Jimenez et al., 2013; F. J. Santos-
Alamillos., 2013) among others. The WRF model is a numerical weather prediction system for both research and 
operational forecasting purposes. The Weather Research and Forecast (WRF) model parameters are often used to 
represent the interaction between different scales in the process of model calculation. Using microphysics, short 
wave radiation and atmospheric long wave radiation, cumulus parameterization, boundary layer, and a physical 
parameterization scheme, the WRF model improves simulation results. In this study, the model used NCEP global 
30-s topographic data and NCEP/NCAR (National Center for Atmospheric Research) reanalysis data as initial and 
lateral boundary conditions. These advanced models have the potential to improve the modeling of the wind flow, 
particularly in complex terrain. Low computation time to produce forecasts, and as a consequence, they update 
frequently their outputs.  
2.2.2. Data description 
Two kinds of data were used. One is observational ground data from Ethiopian National Meteorology head office, 
Addis Ababa, and the other is simulated data from NCAR by WRF model. The differences between the observed 
and simulated results were analyzed to see whether the Weather Research and Forecasting (WRF) model is able 
to capture the wind power resource of this location. In this study, wind speed and wind direction data at 6-hour 
intervals and average 1 year (2010) observations at a vertical height of 10, 50 and 100 m were used. To assess the 
wind power density of 1 year trend using the WRF model through dynamical downscaling, National Centers for 
Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data was used to verify the results. 
The data required are wind speed and vertical wind profile speed. These data are available on 0.5°×0.5° grids 
prepared operationally every six hours. 
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2.3 Methods 
The statistical analyses of the local distributions of wind speed and wind direction on Bale zone were laid for each 
20 km by 20 km special resolution. Later, the wind speed and wind direction distribution maps were constructed. 
From the map areas of similar wind speed are categorized in one group. The average air density was evaluated 
from the respective elevations and the average wind power density was estimated for the winter and summer 
seasons. To assess its magnitude, the average value was thus estimated using the standard deviation of the wind 
speed normalized by the average wind speed. Finally, the energy yield and the capacity factor from the model data 
were calculated. Wind speed at turbine hub-height at 50 and 100m is estimated by extrapolating the wind speed 
from a known height (at 10 m) using the power-law relationship of Eqn1. 

To estimate wind speed at turbine hub-height, it is common practice to extrapolate the wind speed from a 
known height (usually 10 m) using the following power-law relationship: 

𝑈ሺ𝑧ሻ ൌ Ur ቀ
௓

௓ೝ
ቁ
ఈ

………………………1  

Where Ur is the reference (or measured) wind speed at a given height, zr. U (z) is the estimated wind speed 
at height z, and α is the shear exponent and can be approximated by the Eqn 2 as stated by (Manwell et al., 2009). 
According to them the installed capacity per km2 at height 100 m is 5MW. 

𝛼 ൌ 0.096 log𝑍 ൅ 0.016 ሺlog𝑍ሻଶ ൅  0.24 … … … … … … … . .2 
According to (Antonio c. et al., 1997) these formulations should be restricted to a height of 200 m; above this 

height the wind speed can be assumed to be constant. 
Then to estimate the vertical profile of wind power densities across the Bale zone wind speed distributions at 

50 and 100 m were used. These vertical heights are key levels as most of the wind turbine hub heights are planted 
around those levels. The wind power density is the energy yield proportional to the area swept by the turbine blade, 
air density and the velocity cubed. It is given by Eqn3. 
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Where, ρ is the average density, 
P is the Power, 
A is the area, and 
V is the wind speed. 

The special distribution of the density was calculated at 50 m and 100 m model levels, based on the 
temperature, pressure and mixing ratio (moisture effect) meteorological parameters, using the ideal gas law. Eqn.4 
was used to calculate the moist air density. Dry area density is used in the standard calculations. However to 
account the density variations due to moisture which can affect the wind power density calculations the moisture 
effects included. The temperature, pressure and mixing ratio were first extracted from the WRF model at the two 
levels specified above and the density was calculated using Eqn 4. Finally, the wind power density was estimated 
using equation 3. 

𝜌 ൌ
𝑃
𝑅𝑇

൬
1 ൅ 𝑤

1 ൅ 1.6078𝑤
൰… … … … 4 

Where, ρ is the average density, 
P is the pressure, 
T is the temperature, 
W is the mixing ratio of the universal gas constant. 
 
3. Results and discussion 
3.1. Average wind speed, wind direction and wind energy distribution 
Based on the WRF model output and statistical analysis of ten year metrological data, districts are classified from 
super to marginal wind potential. The areas are labeled as shown in Fig.1 and Table1. However, four of wind 
energy resource potential districts from super to good be chosen. The ratings of the districts are made according 
to the classification by (Frank, 2014) and (Dennis E., 2007) as shown in table 2. Daily mean wind speed, wind 
direction distribution curves of these four districts of the zone are as shown in Fig.2 (A to D). In addition curves 
of monthly mean wind speed and wind power density of Rayitu, Madawalabu and Robe district are depicted in 
Fig.3 (A to C) and wind speed is also shown in Fig. 4 (A to C). Fig 2.A and Fig.3.A, shows the distribution of 
wind speed and direction of class1. Rayitu district is in this category. The blue bars are frequency of the wind 
speed and the red one shows wind direction. The average wind speed lies between 3 and 8 ms-1. Days in the first 
half segment of the graph are winter time (October to February) while the second half days are for summer (April 
to August). The magnitude of wind speed in the area is high and extremely variable during summer season than 
the winter season. The average wind speed is Vm = 6 m s-1 for the summer season and 2.25 m s-1 for the winter 
season.   

From direction distribution Fig.5.A, east wind and southwest wind play the main role. The main role is played 
by east wind in winter half years of the Northern Hemisphere and South or Southwest in summer half year of the 



Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online)  

Vol.11, No.1, 2021 

 

4 

Northern Hemisphere. This indicates significant characteristics of monsoon climate (McKnight, et al., 2000) and 
(Ritter, et al., 2006)  
Table1. Wind potential classification at 10 m 
Rating Wind power class Wind Power density at 10 m 

W/m2 
Average wind 
Speed at 10m/s 

 
Name of districts in similar class 

1 Super 196 5.05 Dawekachen, Rayitu and 
Sewena 

2 Outstanding 117 4.25 Beltu and Madawalabu. 
3 Excellent 94 3.95 Delosebro, Gololcha, and Sinana 
4 Good 43 3.05 Ginnir, Robe, Goba and 

Daweserer 
5 Fair 13 2 Agarfa,Dinsho, Haro and Goro 
6 Marginal 5 1.5 Goro, and Dalomena 
7 Poor 1.5 1 Angetu, Direshekhusen, 

In class 2 (see Fig. 2 B), the wind speed lies between 2.5 and 7 m s-1. Beltu and Madawalabu districts are in 
this class as shown in Table 1. Similarly, Fig.2.B is for Madawalabu district. Seen from the analysis result, there 
is rich wind resource around this area. In this site too, the average wind speed is not highly variable and the wind 
direction is more stable than the other area. The annual average model wind speed is Vm = 5 m s-1 at the height of 
2m. Almost similar to that of the first super class, wind speed is higher from April to September. And also the 
curves of monthly mean wind speed and wind power density Fig. 3B shows the same result. The average wind 
direction is almost played main role east wind in winter half year of the Northern Hemisphere and southwest wind 
in summer half year of the Northern Hemisphere as almost similar with the first super wind class.    

And also as shown Fig. 4B from direction distribution Northeast wind and Southwest wind play the main role. 
The wind speed distributions shows that summer have good wind distributions. In summer season the average 
wind direction is almost east wind but in winter the direction of the wind is southwest. Fig: 2.D shows the wind 
speed and direction for Robe. The wind speed lies between 1 and 5 ms-1 this is categorized under class 4. Districts 
in this class are Robe, Goba and Daweserer. In these areas wind speed is highly variable. But the wind direction 
is more variable in winter season than the summer season. 

Similarly, Robe is in class 4, category. As Robe city (found in Sinana district) is closer to inland, significant 
change can been seen in wind speed statistics. High wind occurs from February to May which is almost different 
from others. For other areas have high wind and occur from April to August. This is because of geographical 
seasonal climate variability of the area (Jowder F., 2009) and (Ashenafi A. et al., 2008) also found a large 
variability from one location to the other and also from season to season at any fixed location. It is highly variable, 
both spatially and temporally and this variability exists over a very wide range of scales. This variability is 
dependent on the location and weather conditions of the area. Small-scale variation is dictated by factors such as 
ratio of land to water, terrain, etc. 

As seen from direction distribution East wind plays the main role, with Characteristics of monsoon climate 
which cause a seasonal change in wind direction (McKnight, et al., 2000) (Fig. 2.D) and Fig. 3C. The wind speed 
lies between 1 and 5 m/s. In this areas wind speed is highly variable in summer season than the winter season. The 
average model wind speed is Vm = 3.25 m s-1 for the winter season and 2 m s-1 for the summer season.  

The rainy season is often called the monsoon in Robe because it is associated with a change in the predominant 
wind direction; northeast winds prevail during the dry season and westerly to southwesterly winds during the rains. 
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Fig.2: Daily Wind speed (blue bars) and wind direction (red bars) distribution curves of (A) 
Rayitu, (B) Madawalabu, (C) Meliyu  and (D) Robe for the year 2010 from WRF model. 

A B

C   
Fig.3 Curves of monthly mean wind speed and wind power density of (A) Rayitu, (B) Madawalabu, (C) Robe for 
the year 2010 from WRF model. 
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Fig 4. Direction distribution of wind speed of (A) Rayitu, (B) Madawalabu and (C) Robe for the year 2010 from 
WRF Model. 
 
3.2. Vertical profile of wind speed  
Bale zone east plain region mainly Dawekachen, Rayitu, Sewena, Beltu and Madawalabu has richest wind energy 
resource. Strong wind power under the alternative influence of North- east trade wind zone and Southwest 
monsoon zone. Hence it’s richest in wind energy resource reserve in Bale zone. Mean wind speed of Bale zone in 
east is higher in the west and southwest. In a similar study country has enormous potential, wind energy (Oumer, 
2013) and (Derbew, 2013). Therefore it meets requirements for assessing macro wind energy in most area over 
the Bale zone. 

 
Fig5. Good to super wind potential classification at 10, 50 and 100 m. 

The wind speed at 10, 50 and 100 m and the corresponding power potential at 50 m height of the four classes 
of wind categories are depicted in Fig.5. In similar studies according to (Elhadidy, M.A. et al., 2005) in wind 
resource assessment of Eastern coastal region of Saudi Arabia, he said that Wind is faster, less turbulent and yields 
more energy at 50m or more heights above the ground. (Alam M. et al., 2011) Also investigates the wind speed 
increases with height in each class. Wind speed is increase with height. As the height of wind speed measurement 
increase, the percent frequency of occurrence of higher winds also increases. 

 
Fig 6: Wind power potential at 10, 50 and 100 m. 

Similarly, wind power potential increase with height as shown in Fig 5. The average wind power densities 
for summer are therefore 328 Wm-2, 190 Wm-2, 138 Wm-2 and 52 Wm-2 for winter are 17 Wm-2, 17 Wm-2, 12 Wm-

2 and 12 Wm-2 class1, class2, class3 and class4 respectively. The wind speed distributions show that summers have 
good wind distributions with > 294 W m-2 wind power densities. Although these methods are very vital for 
statistical analysis of observed wind data, mesoscale modeling provides a liberty to use the wind data at several 
key levels. According to (Dennis E., 2007) in wind resource assessment and mapping for Afganistan and Pakistan, 
he found similar results in wind power classification. He also included in calculations by assuming installed 
capacity per km2 = 5MW at 50m height.  
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Table 2: Super to Good wind resource. Wind resource capacity calculated at 50 and 100 m 
Rating Wind 

class 
Wind 
Speed at 
50 m  
(m/s) 

Wind 
Speed at 
100m 
(m/s) 

Wind 
Power at 
50 m W/m2 

Wind 
Power at 
100m W/m2 

Land 
area 
(Km2) 

% of 
windy 
Land 

Total 
capacity at 
100 m (MW) 

Super 1 10.39 15.8 1392 4331 159 0.25 794 
Outstanding 2 8.75 13.3 830 2583 318 0.5 1,590 
Excellent 3 8.13 12.36 665 2073 477 0.75 2,385 
Good 4 5.95 9.04 261 811 1,112 1.75 5,560 
Total      2,066 3.25 10,329 

 
3.3. Total wind power density distribution over Bale zone. 
To estimate the wind power densities across the Bale zone wind speed distributions at 50 and 100 m were used. 
These vertical heights are key levels as most of the wind turbine hub heights are planted around those level values. 
The moist air density at 50 and 100m is 1.013 kg m3 and 0.912 kg m 3 respectively based on Eqn.5 first by extracting 
the temperature, pressure and mixing ratio from the WRF model. Then by using Eqn 4 wind power density at 100 
m is calculated and the estimation result is given in Table2.  
Assumptions to calculate the installed capacity per km 2 = 5 MW (Frank, 2014) 
Total land area of Bale zone = 63,555 km 2 

Good to Excellent wind resource is 2,066 sq. km almost 3.25 % of Bale zone’s total land area of 63,555 sq. 
km. 10,329 MW of potential installed wind capacity assumes 5MW per sq. km. And also according to (Manwell 
F., et al., 2009) the installed capacity per km2 is 5MW. 

The average wind power density (Figure 6) is calculated for the (class 1, class 2, class 3 and class 4 ) the 
results are 4331, 2583, 2073 and 811 W/m2 at 100 m vertical heights and 1392, 830, 665 and 261 W/m2 for the 50 
m vertical heights respectively. The result shows that wind power density increases with height. 

 
3.4. The difference between the observed and simulated wind data 
The simulated WRF model output and observational ground meteorological wind data are shown in Fig. 7. As 
shown in the figure the first one is the wind speed from simulated data and observational data. From the result 
there is a little bias. In general WRF configured with high resolution in space and time predicts accurately wind 
speeds over Bale zone. While the work performed was a good representative of the year, more simulations and 
observations are required to draw a complete confidence level of wind profiles over the study area 

 
(a)                                                                                   (b) 

Fig.7 Comparison between observational and WRF model wind speed (a) and wind direction (b). 
 
3.5. Environmental Analysis 
Environmental conservation have economic benefits by Providing raw materials such as land, water, minerals and 
timber for economic production and consumption, income and employment; Generating ecological services such 
as pollution regulation, climate control and water catchment protection which protect natural and human resources 
through providing a sink for wastes and residues and maintaining essential life support functions; Giving aesthetic 
pleasure and holding cultural significance for many different people.  

For this study the emission saved (other than carbon) from wood, charcoal and kerosene, controlling pollution 
by the proper use of slurry, minimization of indoor pollution due to the use of traditional fuels and the decrease of 
women’s load are considered to be intangible, but highly rewarding. The tangible benefits are presented below. 
3.5.1. Decrease in deforestation 
Deforestation, clearance, or clearing is the removal of a forest or stand of trees where the land is thereafter 
converted to a non-forest use (SAF net Dictionary, 2008). Deforestation occurs for multiple reasons: trees are cut 
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down to be used for building or sold as fuel (sometimes in the form of charcoal or timber), while cleared land is 
used as pasture for livestock and plantation.  

The removal of trees without sufficient reforestation has resulted in habitat damage, biodiversity loss and 
aridity. It has adverse impact on bio sequestration of atmospheric carbon dioxide. As of 2005, net deforestation 
rates have ceased to increase in countries with a per capita GDP of at least US$4,600 (Kauppi, P. E. et al., 2006; 
The New York Times, 2009). Deforested regions typically incur significant adverse soil erosion and frequently 
degrade into wasteland. Deforestation causes extinction, changes to climatic conditions, desertification, and 
displacement of populations as observed by current conditions and in the past through the fossil record (Sahney, 
S., 2010).  

This study reveals that because of huge potential wind resource in south eastern Ethiopia deforestation will 
be reduced. The amount of fire wood will be saved when introduce wind energy estimated and the equivalent 
number of trees was calculated using literature value i.e. 712kg of dry wood is equivalent to 6 large trees (USDA 
forest service 2010), and to produce 1kg of charcoal 5.21kg of wood are required (Sepp 2014). Thus using 
6trees/712kg of wood and 1kgcharcoal/5.21kg of wood as conversion factors, and estimating the total wind energy 
users into consideration, the yearly decline in deforestation is estimated and showed in Table 3. 
Table 3. Annual deforestation decline rate 
                Source: Survey data 

 Annual deforestation decline rate 
Fire wood  Charcoal Save forest 

Percentage 59 68 65 
3.5.2. Emission saving 
A healthy tree stores up to 13 pounds (6kg) of carbon annually (USDA forest service 2010; Nowak and Crane 
2002). Table 3 indicates that 65% (10,549) trees will be saved annually due to wind energy dissemination in South 
Eastern Ethiopia if replacing some part of the fire wood and charcoal by wind energy. Besides the carbon saved, 
which otherwise would be released when cutting trees, about 66294kg of carbon is stored per year. 
 
4. CONCLUSION 
In this study wind reanalysis and station metrological wind speed and direction data were analyzed to assess the 
wind resource potential of Bale zone. The wind speed and wind speed potential increase with altitude and summer 
has very good wind potential than winter season.  From the five months of April, May, June, July and August the 
wind speed statistics based on the 10 m model wind speed and direction output showed a high wind potential in 
June and low in November. September and March are transition months for most of the Bale zone district. The 
month of November also shows the lowest wind speed from winter seasons of October, November, December, 
January and February.   

The 2D distribution of the 10m wind speed output during June, wind speed distributions of the Bale zone area 
showed high winds while the low elevations and valleys showed relatively low wind speeds. This will depend on 
many factors including but not limited to proximity to grid connection, access to area, and land use and land cover 
among others. In similar studies (E Streevalson, 2009) the crest of hills, cliffs, ridges and escarpments, the wind 
accelerate while near the foot and valley it will decelerate. And also according to (Lebassi B. et al., 2013) in wind 
resource assessment in Dragash-Kosovo he found that the wind close to the low level jet have higher wind 
resources since they get momentum transfer from the jet by eddy mixing. The valleys are relatively low wind 
speeds due to winds tipped in the jet toward the hill. The 50 and 100 m wind distributions also analyzed which 
showed higher wind speeds with similar pattern as expected. The wind power densities of the two heights showed 
similar patterns as the distribution of wind speeds where the high and medium elevations showed the high wind 
power densities. 

The tropical areas of bale zone relatively have high wind power density. From the Bale zone east plain region 
mainly Dawekachen, Rayitu, Sewena, Beltu and Medawelabu districts are the areas with super to outstanding wind 
potential and Daweserer, Gololcha, Delosebro, Maliyu, Goba, Sinana and Robe town have the excellent to  good 
wind potential area when compared with the others. This study showed that most of the Bale zone areas have 
significant wind power potential to augment its current power generation. Mean wind speed of Bale zone in east 
is higher than west and southwest wind shares higher in direction distribution. This indicates southeast of Bale 
zone is highly influenced by low level jet from Somalia. Hence it’s richest in wind energy resource reserve in Bale 
zone. Therefore it meets requirements for assessing macro wind energy resource in most area over the Bale zone. 
Have a potential of installed 10,329MW wind capacity in Bale zone. If this potential wind resource will installed 
and only 10% of the population is used, so far environment as an estimation of about more than 5 thousand hectare 
of forest land per year would be preserved, and subsequently, equivalent amount of about 66,294 of CO2 would 
be stored per year. In this study area due to lack of observational data, microscale wind modeling is challenging 
to accurately reproduce for any location in the area.  
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5. Recommendations 
Based on the empirical findings of this study, we forward the following recommendations. 
To found more accurate result it is necessary to increase spacial resolution and long term analysis is required for 
better results. Based stations are sparsely distributed. Thus more measurements are necessary to acquire temporally 
high resolution meteorological data at key locations in the area. But we feel that these findings are good starting 
points for further study to choose optimal wind resource site in Bale zone. 
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