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Abstract 

Detection of battery power has always been the core of the battery management system of electric vehicles, and 
the fast and accurate estimation of charged state can guarantee the safe operation of electric vehicles. The key to 
improving accurate state-of-charge estimation is an appropriate model establishment coupled with a suitable 
estimation algorithm. This research seeks to adopt and accomplish a lithium-ion battery state-of-charge estimation 
based on the Gaussian function to build up the open-circuit voltage algorithm. A reduced-order extended Kalman 
filtering algorithm is proposed with hybrid pulse power characterization parameter identification to estimate the 
battery characterization state-of-charge. The model’s parameters in different state-of-charge points are calculated 
through the lithium-ion battery’s charge and discharge process; the 2RC modeling correction method and Reduced-
order extended Kalman filter method are used separately based on the High-order equivalent 2RC modeling. The 
Experimental results show that the above method can achieve state-of-charge estimation more accurately and 
conveniently, providing a certain reference value for the rational management and distribution of power lithium-
ion batteries. The maximum error of state-of-charge estimation based on the established high-order equivalent 
2RC model using the Reduced-order extended Kalman filtering algorithm is less than 1.85%. The REKF algorithm 
achieved a maximum voltage error of 0.0409V and an average error of 0.0299V and therefore can satisfy the 
accuracy of the battery management system application needs.  
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parameter identification; reduced-order extended Kalman filtering algorithm 

DOI: 10.7176/JETP/11-3-0  

Publication date:June 30th 2021 
 

1. Introduction 

As the technology in today’s society becomes increasingly mobile and as information networks grow, the 
importance of lithium-ion batteries (LIBs) increases considerably with its use in most electronic equipment and 
many other applications because of a range of advantages, such as a high operating voltage, small self-discharge, 
and no memory effects. The state-of-charge (SOC) estimation of the lithium-ion battery (LIB) and battery pack is 
a core technology in the battery management system (BMS) of electric vehicles (EV). Accurate SOC estimation 
can effectively enhance the safety and energy efficiency of batteries [1, 2]. Recently, amidst the increasing concern 
for the environment and energy power generation challenges, many attempts have been made to install LIBs in 
plug-in hybrid vehicles or electric vehicles but the biggest obstacle comforting LIBs is the issue of safety. This 
affects the utilization efficiency of its capacity and life directly, leading to accidents in several cases for future 
automotive energy power systems, and has become a high strategic priority [3, 4]. For the lithium-ion battery to 
be safe and reliable, and operation needs to be monitored and managed by the battery management system there 
needs to be enhancement of safety performance and improvement of consistency, and elimination of explosion 
risk [5]. The accuracy of estimating the SOC of the battery is one of the important criteria reflecting the quality of 
the battery management system which is necessary for the power application of the LIB to establish a solid position 
in the future such as being used as the power sources in electronic vehicles. With this in mind, [6, 7] suggest that 
further improvements will be needed concerning the output characteristic, cycle characteristic, and safety of the 
battery in the future and avoid abuse, irrational use and ensure safety and extend the life of batteries. Accurate 
SOC estimation is an insurmountable concern due to the immature management of the associated BMS equipment 
[8]. The BMS is used for energy supply with good stability, efficiency, and reliability requirements aiming to avoid 
safety issues by monitoring battery status and optimizing usage [9]. A lithium-ion battery is a complex non-linear 
system, with a complex working condition and sensor measurement process which produces an inevitable noise, 
that makes accurate SOC estimation extremely difficult [10-12]. Sequentially, to improve the performance of LIBs, 
many researchers have studied the high efficiency of SOC estimation of the LIB and there are several methods 
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proposed to estimate the SOC. Existing SOC estimation methods are mainly divided into the following categories 
[13], safety time method [14], internal resistance method, a practical electrical power source which is a linear 
electric circuit [15], and Kalman filter method, observed over time containing statistical noise and other 
inaccuracies [16]. 

In the last two decades, lithium-ion battery technology has made incredible advances in the world and the 
industry has globally reached about $15.5 to $16 billion [17]. Its application range has penetrated various industries, 
such as new energy vehicles, portable devices, aviation, and household appliances. In the accurate estimation 
process of the SOC of the lithium-ion battery, the construction of the battery equivalent model characterizes the 
dynamics of the battery and occupies an important position [18]. The most common battery structure in current 
applications includes electrochemical models, neural network models, and equivalent circuit models [19, 20]. A 
comparative study on global optimization methods for parameter identification of different equivalent circuit 
models of lithium-ion batteries is discussed in [21] and the state-of-charge estimation of lithium-ion batteries based 
on the novel reduced order electrochemical model presented in [22]. A study of a new fractional-order model for 
estimating the state-of-charge of lithium-ion batteries and a study of a dynamic linear model of the lithium-ion 
battery state-of-charge estimation method based on a simplified model is proposed in [23]. The equivalent circuit 
model of lithium-ion batteries is enhanced in [24] and improved package equivalent circuit modeling method in 
[25]. The equivalent circuit model shows the complex dynamic characteristics of the battery during use, 
specifically the dynamic response in the circuit loop. The use of circuit knowledge and calculus to establish circuit 
equations to study the battery characteristics, and the resulting convenience has been widely used in the 
engineering field. A study on the open-circuit voltage and state-of-charge characterization of high capacity lithium-
ion batteries under different temperatures is undertaken by [26] and an improved adaptive estimator for state-of-
charge estimation of lithium-ion batteries is carried out in [27]. In [28] the real-time study of the disequilibrium 
transfer in vanadium flow batteries at different states-of-charge via refractive Index detection is well studied. 

The discharge test method uses a single discharge to release the continuous constant current of the battery 
until the cut-off voltage. The product of the discharge time and the discharge current can directly calculate the 
SOC value [29]. [30] examines incremental capacity analysis and differential voltage analysis-based state-of-
charge and capacity estimation for lithium-ion batteries. The State-of-charge inconsistency estimation of the 
lithium-ion battery pack using the mean-difference model and extended Kalman filter is covered by [31] and 
investigating the error sources of the online state-of-charge estimation methods for lithium-ion batteries in electric 
vehicles is also addressed in [5]. The current integration method estimates the battery SOC by accumulating the 
charge or discharge when the battery is charged and discharged, and also corrects the SOC value by the charge-
discharge rate, and the battery temperature. At this present time and age, the commonly used methods in the 
estimation of lithium-ion battery SOC are the open-circuit-voltage (OCV) method, Ampere-hour(Ah) integral 
method, neural network method, and Kalman filter(KF) method [32]. These methods cannot only accurately 
estimate the SOC value, but are simple, easy to understand the principle used, and can also realize real-time 
estimation. The long-term integration process will accumulate effects, and the error will continue to expand, 
causing the SOC to deviate from the true value during the estimation process [33]. [34, 35] discussed an overview 
of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries and self-
adaptive filter for online state-of-charge estimation of lithium-ion batteries. The Kalman filter algorithm is 
combined with the open-circuit voltage method to find OCV, fitting the curve relationship between OCV and SOC, 
following the "prediction-actual measurement-correction" method, according to the minimum variance through 
continuous iterative operation [36, 37]. [38, 39] examines an online internal resistance measurement application 
in lithium-ion battery capacity and SOC estimation [40, 41] used parameter identification and extended Kalman 
filtering for SOC estimation and adaptive extended Kalman filtering to estimate SOC effect. [42] used fractional 
order extended Kalman filter to enhance the state-of-charge performance and estimate the lithium-ion batteries. 
[43] proposed a method for estimating the state-of-charge of lithium-ion batteries based on current-free detection 
algorithm. The work presented in [44] an online approach is introduced for SOC estimation and parameter updating 
using an improved adaptive cubature Kalman filter  

Over time, the limitations of the Kalman filter algorithm are also found and therefore, an extended Kalman 
filter algorithm (EKF) is proposed. The extended Kalman filter algorithm is characterized by SOC prediction and 
the value expands the nonlinear function of OCV and SOC into a Taylor series and omits the second-order RC 
model or higher term so that an approximate linearization model can be obtained. In [45] the depicted Kalman 
filter method establishes and estimates battery SOC based on the extended Kalman filter that can reduce the 
estimation error. When the filtering error and the prediction error are small, the extended Kalman filter algorithm 
(EKF) is used to realize the SOC estimation in real-time and accurately. To extend the Kalman filter to the 
nonlinear systems, various modified KF algorithms have been proposed. The extended Kalman filter (EKF) 
algorithm employs the first-order Taylor series expansion to linearize the nonlinear system and the high-order 
terms are neglected in the linearization process, which will inevitably lead to large linearization errors [46, 47]. 

The utmost focal point of this research paper is the application of the Reduced-order EKF algorithm for SOC 
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estimation. To reduce the linear system error and compute load of the KF, the Reduced-order extended Kalman 
filter (REKF) is adopted to SOC estimation based on a high-order 2RC equivalent model. The REKF algorithm 
utilizes the extension of the classic Kalman filter for a non-linear system where non-linearity is approximated 
using the first or second-order derivative, and its accuracy is higher than that of the KF algorithm. Hybrid Pulse 
Power Characterization (HPPC) is utilized to identify the model parameters and because of the strong coupling 
relationship between the operation conditions model parameters, the HPPC test can accurately describe the internal 
characteristics of the battery. As a result, the HPPC-REKF algorithm is proposed for SOC estimation. When the 
filtering error and the prediction error are small, the Reduced-order extended Kalman filter algorithm (EKF) is 
used to realize the SOC estimation in real-time and accurately. The divergence of REKF is primarily due to the 
linearization error for ignoring high-order terms, and the accuracy of REKF based SOC estimation is sensitive to 
the precision of the battery model. The rest of the paper is constructed as follows: The mathematical and theoretical 
analysis is conducted in section 2 including the high-order 2RC equivalent modeling, state-space iteration, open-
circuit voltage test, and the proposed HPPC-EKF algorithm for SOC estimation. In section 3, the experiments are 
illustrated as well as their estimation effect results. Conclusions and future works are finally reported in Section 4. 

Table 1. List of symbols 

Symbols Description Symbols Description 

U Voltage wk The process noise of the system 

I Current vk The observation noise of the system 

R Internal ohmic resistance Qk The covariance of the process noise 

Q Battery capacity Rk The covariance of the process observed noise 

y Output qk The mean of wk 

e Error rk The mean of vk 

x Input l  Forgetting factor 

 

2. Mathematical Analysis 

2.1 High-order equivalent 2RC modeling  

The accurate estimation of the SOC of a battery is one of the most important issues of an electrical vehicle’s BMS, 

and the foundation of precise SOC estimation is an accurate battery model. The first-order RC model which is the 
simplest model is composed of a resistance-capacitance circuit in series with ohm internal resistance and is 
extensively used in battery SOC estimation [48]. The high-order 2RC equivalent model is utilized in this paper 
because it provides an accurate approximation for the lithium-ion battery dynamics model structure. This model 
is based on an equivalent circuit model whose parameters will be scheduled on the state-of-charge, temperature, 
and current direction as shown in Figure 1. 

UOC(OCV)

R0

CP1

RP1

CP2

RP2

UL

IL

UP2UP1

UP

 

Figure 1. High-order equivalent (2RC) modeling  

The lithium-ion battery models mainly include the equivalent circuit model, electrochemical model, empirical 
model, and mathematical model. The High-order equivalent model with two RC is an ideal battery model, which 
considers not only the static characteristics of the battery but also the transient characteristics. As shown in Figure 
1, the battery model consists of the following five parts: (1) A voltage source UOC (OCV), utilized to describe the 
nonlinear monotonous relationship between OCV and SOC, which can be denoted as UOC (SOC); (2) R0 is the 
ohmic resistance of the lithium-ion battery, which represents the ohmic polarization; (3) RP1 and CP1 are 
concentration polarization resistance and concentration polarization capacitance respectively, which describe the 
long-term polarization response; (4) RP2 and CP2 are electrochemical polarization resistance and electrochemical 
polarization capacitance respectively, which describe the short time polarization response; (5) IL and UL are the 
load current and terminal voltage, respectively. According to Kirchhoff’s voltage law (KVL) and Kirchhoff’s 
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current law (KCL), the battery dynamic equation can be derived as expressed in Equation (1). 
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Among them, the open-circuit voltage can be characterized by the state variable SOC, and a nonlinear function 
relationship can be obtained. Using the knowledge of modern control theory, the equivalent circuit model is 
discretized and the definition of SOC is shown in Equation (2). 
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Where RP1 and RP2 are the voltages on CP1 and CP2 respectively. The Kalman filter algorithm estimates the essence 
of the lithium-ion battery SOC by using the ampere-time integral method to calculate the SOC and uses the 
measured voltage value to correct the SOC value as shown in Equation (3) and (4). 
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(4) 

Where T is the sampling period; 1t and 2t  are the time constants of the RC network, and 1t =RP1CP1, 2t
=RP2CP2; UP1 and UP2 are the voltages across the RC pairs. Under equations (3) and (4), this paper selects SOC, 

UP1, and UP2 as the state variables, UL as the measurement variable, and LI
as the input variable, then the state 

space equation is as shown in Equation (3) and (4).  
 

2.2 Relationship between SOC and OCV 

Open-circuit voltage (OCV) refers to the potential difference between positive and negative electrodes when the 
external circuit is disconnected. After a certain period of shelving, the terminal voltage of the battery is 
approximately equal to the open-circuit voltage. There is a relatively fixed functional relationship between the 
OCV and SOC, as shown in Figure 2. 
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(a): OCV of the charging and the discharge process (b): Relations between SOC and CP1 
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(c): Relations between SOC and CP2 (d): Relations between SOC and CP1-CP2 

Figure 2. Relationship between SOC and OCV 
With an aging degree of temperature at a certain point, the OCV of the battery at each SOC point is measured, and 
then the OCV-SOC curve, which changes with SOC, is drawn. The corresponding functional relationship between 
OCV and SOC can be obtained by the curve fitting tools in MATLAB as shown in Equation (5). 

 ( )OCV f SOC=
 (5) 

There is a functional relationship between OCV and SOC of the lithium-ion battery, so the initial SOC can be 
calculated by measuring the OCV. According to the principle of SOC, the initial value can be modified by the 
open-circuit voltage method used in Equation (5), updating and correcting the initial SOC value depends on the 
corresponding relationship between OCV-SOC. However, OCV-SOC relationships can be affected by external 
factors under actual working conditions, resulting in SOC estimation error. The OCV curve at 40, 30, 20, 10, and 
0 degrees describe a more accurate OCV-SOC curve, and the results show that the improved OCV method can 
elevate SOC estimation effects. Also, some papers have analyzed the shelf time of the lithium-ion battery and 
determined that the necessary shelf time of the OCV-SOC curve is mainly influenced by internal and external 
factors such as battery type, SOC status, and temperature.  
To avoid the serious error of SOC estimation caused by the above situation, the closed-circuit voltage method is 
also used to correct the initial value of SOC. The ohmic internal resistance calculation formulas are as shown in 
Equation (6). 
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 According to the above analysis, each parameter in the high-order equivalent 2RC modeling can be identified. 
The corresponding weights are as shown in Equation (7). 
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The polarization capacitor CP in the resistance-capacitance network is charged, and the voltage decreases slowly 
to form a zero-input response as an expression for the RC network and this is expressed as shown in Equation (8). 
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At this time, there is a zero-input effect of the RC circuit in the circuit model. In other words, the RC circuit returns 
energy to the battery circuit after storing energy for a time, leading to the rise of voltage. The battery terminal 
voltage can be expressed as is shown in Equation (9).  
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The circuit modeling parameters of R0, RP1, CP1, RP2, and CP2 are derived from the identification results of these 
parameters. The values of each parameter can be obtained based on the terminal voltage that can be expressed. 
The open-circuit voltage calculation formula is as shown in Equation (10). 
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(10) 

The measuring equipment used in the hybrid pulse-power characteristic test is not difficult to use, the cost of the 
measurement is not high, and high accuracy can be obtained. The open-circuit voltage calculation formula is as 
shown in Equation (11). 
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From t4 to t2, the ohmic internal resistance of the battery is affected, and the voltage at the battery terminal drops 
sharply, thereby obtaining the ohmic internal resistance of the battery. The time constant is calculated as shown in 
Equation (12). 
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In the equivalent circuit model, these equations are the values of any parameter. During the data analysis and 
processing, the thriving data section is derived from the initial experimental data, and then the extracted data 

segment is analyzed. The two-time constant t1 and t2 are calculated and the value of capacitor CP can be directly 
obtained as shown in Equation (13). 
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As the battery voltage is its open-circuit voltage, the relationship between the OCV and the SOC can be 
obtained as shown in Figure(a). In this paper, the model is parameterized using a semi-automatic process that can 
satisfy the constraints on the optimized parameters. According to the curves in the above Figures, the value of the 
current and the voltage change at the time t1 decreases sharply as it reflects the internal resistance characteristic of 
the high-order 2RC equivalent model. From time t2 to t3 and also t4 to t5 the process from Figure 2(b) shows that 
the value of the terminal voltage UL gradually decreases. According to the KVL of the high-order 2RC equivalent 
model, the polarization of the CP1 and CP2 gradually reduces the terminal voltage, and the reverse polarization known 
as the polarization voltage UL gradually increases and finally equals the open-circuit voltage from 0V.  

Finally, the voltage and current curves of the whole HPPC experimental pulse charge and discharge process 
correspond to the High-order 2RC equivalent model showing the polarization effect of the battery. There are many 
commonly used SOC estimation methods, among which the error of the ampere-time integral method is large. The 
open-circuit voltage method is mainly used for offline estimation, as well as the high-precision SOC estimation 
methods such as the neural network method, fuzzy reasoning method, and the Kalman filtering method.  
 

2.3 Reduced-order EKF algorithms 

2.3.1 Kalman filter algorithm 

The principles of the Kalman Filter (KF) algorithm are one of the most widely used intelligent algorithms and are 
often used in practical scenarios such as path planning, target tracking, and SOC estimation of lithium batteries 
[49]. The measurement update process also called the calibration process is a method of feeding back the 
observations and correcting the deviations. The Kalman filter algorithm is an optimized autoregressive data 
processing algorithm that is not only suitable for stationary processes but also non-stationary processes with good 
real-time performance and easy implementation. Its state equations and observation equations are as shown in 
Equations 14. 
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Where kX
 represents the system state variable at a time k , ks

 is the system observed variable at a time k, Uk is 
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the system input which is used as the control variable; Nk is the transfer matrix of state x from 1k -  to k , and Mk 

is the input matrix. Gk is the measurement matrix, Hk is the feedforward matrix; kw  is the noise of the system 

state equation i.e., the process noise, whose variance is kQ
, kn  is the noise of the measurement equation i.e., the 

observed noise, whose variance is Rk. 

2.3.2 Reduced-order EKF algorithm  

The lithium-ion battery is a dynamic nonlinear system and a reduced-order extended Kalman filter has been 
considered a standard selection in the nonlinear state estimation. Reduced-order EKF is the nonlinear version of 
the Kalman filter which linearizes an estimate of the current mean and covariance [50]. When the precise state-
space model for batteries is established, the EKF method is capable of keeping track of the estimated state of the 
system and the variance or uncertainty of the estimate in case the accurate initial state is given. Otherwise, the 
convergence will cost more time and even be lost sometimes. If given an effective search mechanism to access the 
original states, this unfulfilled situation can be improved. After obtaining the linearization model, the SOC of the 
lithium-ion battery is further estimated by the Kalman filter, and the algorithm flow of the extended Kalman is 
shown in Figure 3. 

Prediction  stage
Extended Kalman Filter 

(EKF)

State Calculation 

Process

Variance 

Calculation Process

Filter Update Updated Time

Kalman Gain 

Update

State Estimation 

Measurement 

Updated

Update  stage

 

Figure 3. Reduced-order EKF-based implementation process 
In the case of linearization error, the value calculated by the mathematical model and the physical value 

directly measured by the physical method and the measured true value is equal because of the linearization error 
of the mathematical model plus the prior estimate. There is a certain error between the value and the estimated 
value. There is an error between all the measured values obtained by the mathematical model and the actual 
measured true values. The extended Kalman filter algorithm is based on the ordinary Kalman filter algorithm.  

Extended Kalman filtering is a technique for online linearization [51]: This means linearizing the estimated 
parameters and then performing linear Kalman filtering thereby achieving a SOC estimation of the lithium-ion 
battery. In this case, system noise and process noise are generally approximated as white noise under Gaussian 
distribution. The expression equations and observation equations of the discrete nonlinear system space are as 
shown in Equation (15).. 
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Where ƒ (*) is the system function, h (*) is the output function, both of them are nonlinear functions that 

could be linearized by the first-order Taylor series. Here XK+1 represents the state vector, Xk is the n-dimensional 
system state, K stands for the discrete vector, ωk is the process noise vector, and modeling errors ZK in the m-
dimensional observation vector and υk is the measurement noise. ωk and υk are usually considered as the zero-mean 
Gaussian white noises. Further computations on the formulas can be seen as shown in Equation (16). 
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To avoid the high-order term for updating the linear space equation, the current state transformation matrix and 
observation driving matrix can be achieved. Centered on the linear system’s spatial equation, the extended Kalman 

filtering principle is simply applied to equation (16). and the values of Ek, Fk, Gk, and Hk are expressed as shown 
in Equation (17). 
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Further mathematical computations can be applied to linearize the formula as shown in Equation (18). 
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The recursive process of the extended Kalman filter algorithm formula is obtained by applying the Kalman filter 
basic equation as shown in Equation(19). 
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Where kX -

 is the direct estimate time k, 1kX - is the optimal estimate state value at the last moment. | 1k kP -  is the 

covariance of kX -

, kQ
is the covariance of kw

. kK
is the Kalman gain. The SOC estimation of the battery is an 

obvious hidden Markov model.  
 

3. Experimental verification analysis 

3.1 Implementation of the test platform 

All the data in this paper was derived from the comparison and verification of the HPPC test on the ternary 3.7V 
70Ah NCM Prismatic lithium-ion battery for parameter identification at 25 , capacity calibration for constant 
current charge and discharge, and algorithm complexity for BBDST conditions. The battery test equipment used 
was the BTS750-200-100-4 and the incubator used for the temperature was the BTT-331C. The experimental 
platform used for the experiment is shown in Figure 4 
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Figure 4. The experimental platform 

The battery will age due to recycling and other reasons, and the actual capacity of the battery will have greatly 
deviated from the calibration capacity of 70Ah. The true discharge capacity of the battery is important for the 
estimation of the SOC of the lithium-ion battery. Therefore, the capacity calibration of the battery must first be 
performed. In this study, the parameter identification will increase the complexity of the algorithm but the accuracy 
is not improved. The battery is subjected to a Pulse discharge experiment, and the battery model parameters are 
obtained by analyzing the operating characteristics of the battery during operation. The specifications of the ternary 
3.7V 70Ah NCM Prismatic lithium-ion battery are shown in Table 2. 

Table 2. Basic technical parameters of the lithium-ion battery 

Criteria/ Factors Parameters 

Cell nominal capacity/Ah 70 

Rated voltage/V 3.7 

Charge cut-off voltage/V 4.2±0.05 

Discharge cut-off voltage/V 2.75±0.05 

Size: length * width * height/mm 14×38×91 

Standard charge current 1C 

Standard discharge current 2C 

Maximum load current 3C 

Internal resistance/mΩ 0.5 - 1.0 

Working temperature/" -10 - +35 

 

3.2 Experimental process and parameters identification 

The essential part of the parameter measurement process of the battery model is model-based SOC estimation. 
After determining the structure of the battery model, the model parameters need to be identified. As shown in 
Figure 1, the parameters, including UOC (SOC), ohmic resistance R0, polarization capacitance CP1, and CP2, and 
polarization resistance RP1 and RP2, should be determined. Therefore, the following experimental processes are 
conducted on the lithium-ion battery with a nominal capacity of 70Ah and the identification steps are as follows: 

1) Set the ambient temperature for the battery to 25 . 
2) Fully charge the battery at constant current and constant voltage (CC-CV) until the charging current drops 

to 0.05C. 
3) The lithium-ion battery with SOC=1 was discharged at a rate of 1C for 6 minutes (SOC=0.9) and left for 

40 minutes, and then the HPPC experiment was performed, and the open-circuit voltage, the discharge 
current, and the discharge times were recorded. 

4) Discharge by 2% SOC with 1/3 C-rate to adjust the SOC 
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5) Rest the battery for 2h and record the voltage characteristic. 
6) Repeat steps (4) and (5) until SOC=1% or discharge cut-off voltage is reached. 

According to the above experimental steps, the lithium-ion battery capacity is first calibrated as 70Ah at 25  and 
then the pulse discharge test is conducted on the battery. With the HPPC experimental data, the corresponding 
relationship between different SOC points and various parameters can be achieved for the high-order 2RC 
equivalent circuit model at 25  as shown in  

SOC UOC/OCV R0/Ω Rp1/Ω Rp2/Ω Cp1/F Cp2/F I 

1 4.184 0.001311429 3.33857E-05 0.000468286 26023.10655 30131.17755 70 

0.9 4.0513 0.001302857 9.28571E-05 0.051257143 21603.07692 47876.25418 70 

0.8 3.936 0.001302857 0.000716714 5.37714E-05 29439.90433 17998.40595 70 

0.7 3.8309 0.001302857 4.29143E-05 0.000639 18877.16378 25931.14241 70 

0.6 3.7366 0.001305714 4.33429E-05 0.000623429 19138.10152 24926.67278 70 

0.5 3.6511 0.001311429 0.000301571 1.37943E-05 28716.24822 77133.38857 70 

0.4 3.6163 0.001324286 2.46571E-05 0.000365714 24727.11472 34070.3125 70 

0.3 3.59 0.001351429 0.000376857 2.88857E-05 31550.41698 17531.15727 70 

0.2 3.5369 0.001398571 0.000468857 3.77143E-05 28196.22182 14108.71212 70 

0.1 3.4545 0.001478571 0.000696714 0.000101271 17654.29567 4532.374101 70 

.  
Table 3. Variation of parameters at different SOC points 

SOC UOC/OCV R0/Ω Rp1/Ω Rp2/Ω Cp1/F Cp2/F I 

1 4.184 0.001311429 3.33857E-05 0.000468286 26023.10655 30131.17755 70 

0.9 4.0513 0.001302857 9.28571E-05 0.051257143 21603.07692 47876.25418 70 

0.8 3.936 0.001302857 0.000716714 5.37714E-05 29439.90433 17998.40595 70 

0.7 3.8309 0.001302857 4.29143E-05 0.000639 18877.16378 25931.14241 70 

0.6 3.7366 0.001305714 4.33429E-05 0.000623429 19138.10152 24926.67278 70 

0.5 3.6511 0.001311429 0.000301571 1.37943E-05 28716.24822 77133.38857 70 

0.4 3.6163 0.001324286 2.46571E-05 0.000365714 24727.11472 34070.3125 70 

0.3 3.59 0.001351429 0.000376857 2.88857E-05 31550.41698 17531.15727 70 

0.2 3.5369 0.001398571 0.000468857 3.77143E-05 28196.22182 14108.71212 70 

0.1 3.4545 0.001478571 0.000696714 0.000101271 17654.29567 4532.374101 70 

The voltage source UOC is utilized to describe the nonlinear monotonous relationship between OCV and SOC, 
which can be denoted as UOC (SOC); the R0 is the ohmic resistance of the lithium-ion battery, which represents the 
ohmic polarization; in this case, RP1 and CP1 are concentration resistance and concentration polarization resistance 
respectively, which describe the long-term polarization response; RP2 and CP2 are electrochemical polarization 
resistance and electrochemical polarization capacitance respectively, which describe the short-time polarization 

response; LI
and LU

are the load current and terminal voltage, respectively. 
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(c): The Relation between SOC and RP1 (d): The Relation between SOC and RP2 

Figure 5. Identification results of RC network parameters 
The fitted parameter is then shown with a polynomial of the 6th order, and the following results are obtained. The 
fitting results of the curve are R0, RP1, RP2, CP1, and CP2 respectively, reflecting the parameters for the equivalent 
circuit model. The fitted results are shown in the following Equation (20). 
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(20) 

3.3  HPPC test results and parameter Identification 

The variation of the model parameters can be attained and embedded into the state-space equation for the 
subsequent SOC estimation by the curve fitting for the ECM model and the circuit voltage relationship expression 
between UOC and SOC. The cure variations of current and voltage are presented in  Figure 6 
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(c): Complete HPPC voltage response variation (d): Partial HPPC voltage response variation 
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(e): Complete voltage and current cycle variation (f): Partial-cycle voltage and current variation 
Figure 6. HPPC Pulse discharge test index curves 

The complete curves of current and terminal voltage are shown in Figure 6 (a), and Figure 6 (c) respectively. 
The current and voltage curve of one of the pulses in the test is shown in Figure 6 (b), and Figure 6 (d), respectively. 
The battery voltage will gradually stabilize after a long period at the end of discharge, which means that the internal 
chemical reaction and thermal effects have reached equilibrium. The model is very related to the actual battery 
characteristics, so making it simple and easy to use. Parameter identification can be accomplished by establishing 
an equation for the zero-state and zero-input states of the High-order 2RC equivalent model. From the voltage 
response curve of the HPPC test experiment battery, the characteristics of each SOC point can be obtained. By 
analyzing Figure 6(d), the following conclusions can follow: 

1) U1~U2: The voltage transient is caused by the ohmic internal resistance R0, and the voltage drops from 
U1 to U2. 

2) U2~U3: The polarization capacitor CP1 in the RC network is charged, and the voltage is slowly decreased 
to form a zero-input response; 

3) U3~U4: At this time point, the current is abrupt, the current suddenly changes to 0, and the voltage drop 
on the ohm internal resistance disappears, causing the voltage transient to rise; 

4) U4~U5: At this time, the polarization capacitor CP2 is discharged through the polarization of internal 
resistance RP2, and the voltage slowly rises.  

The voltage of the battery terminal at t1-t2 drops instantaneously because the battery’s discharge current 
increases abruptly from 0 to 1C resulting in a sudden change in voltage on the ohmic internal resistance. The 
terminal voltage of the t2-t3 battery decreases slowly during the process of discharging and the current charging 
polarization capacitor is caused by the zero-state response of the 2RC loop. The terminal voltage of t3-t4 the battery 
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rises instantaneously, which is caused by the sudden change in the discharge current to 0 and the disappearance of 
voltage on the ohmic internal resistance. In the period t4-t5, the slow rise in the battery terminal voltage is the 
process of polarization resistance discharge by the polarization capacitor which is caused by the zero-input 
response of the 2RC circuit. t5 time is the charging phase of the battery. There is a phase of sudden voltage increase 
and a phase of slow voltage increase during the charging. In the study of this experiment, the values R0, RP1, RP2, 

and CP1, CP2 were all substituted into the algorithm in a mean way. The EKF estimation of the lithium-ion battery 
SOC algorithm was verified by 0.5C constant current discharge and combined equations. 
 

3.4 Simulation verification 

After identifying the parameters of the model, the dynamic simulation model of the equivalent circuit was 
constructed in Simulink/Matlab. The identified parameters were put into the simulation model and in addition to 
different working currents. The output voltage response of the model was compared with the actual voltage data, 
and the model was verified. To evaluate the accuracy of the model parameters, the variable operating current is 
added to the model and the difference between the model output voltage and the time output voltage is compared. 
The model established in Simulink/Matlab is as shown in  Figure 7. 

 

 
(b):  Inner structure of ampere-hour (Ah) model 

 

 
(a): The Simulation Model of the 2RC equivalent model (c): The internal circuitry of the 2RC equivalent 

model 
Figure 7. Structural diagram of the Simulink verification model 

The Simulink simulation structure established is to calculate SOC with discharge current, and the ampere-
hour (Ah) integral method is applied to its internal structure. In the internal structure of the high-order 2RC 
equivalent model, each circuit component is a controllable parameter that changes over time. The model has five 
inputs and one output. The inputs are I, R0, RP1, CP1, RP2, CP2, and UOC and the output is the terminal voltage U. 
This model can simulate the working condition of the lithium-ion battery. 

Considering that the battery is often in an intermittent discharge state in actual use, the model is further 
simulated and analyzed under the conditions of cyclic discharge shelving. The experimental results are shown in 
Figure(a), and the estimated deviation is shown in  Figure 8 (b). 
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Figure 8. Experimental and simulated voltage variations 
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The difference between the model output voltage and the original battery output voltage is described in 
Figure(b), as the voltage error. The Figure shows a powerful tracking effect on the original value of the expected 
value. The calculated average deviation is approximately 0.0425V, which can explain the voltage value of the 
battery on the operating end. And the voltage measurement deviation increases at the end of the battery discharge 
by studying the voltage comparison error between the two. The battery voltages vary greatly before the final 
discharge in this regard. The simulation outcome is followed by a measurement error. The precision of the model 
is 99.14%, while 4.4V is the maximum lithium battery voltage. 
 

3.5 Dynamic test condition analysis  

The Beijing Bus Dynamic Stress Test (BBDST) setting working condition test is used to test the lithium-ion battery. 

The BTS770-200-100-4 battery testing equipment provided by Shenzhen Yakeyuan Technology Co., Ltd. is used 

for battery charging and discharging. 
The BBDST working condition is the actual data acquisition of the Beijing bus. In Table 1, Ph (kW) is the 

actual battery output power under the conditions of the bus start acceleration and taxiing. The data in Pc(W) was 
obtained by reducing Ph(kW), and Pc(W) was used for the experiment of the ternary 3.7V 70Ah NCM Prismatic 
lithium-ion battery of China National Aviation Corporation. It can be seen from Table 1 that the time of a complete 
BBDST is 300s, and the BBDST condition test is performed 20 times on the battery, and the BBDST condition 
data obtained is as shown in Figure 9 
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Figure 9. BBDST working condition experimental data 
Figure 9 (a) and (b), are the experimental current and voltage data of BBDST conditions respectively. Since 

the BBDST operating condition is power discharged, it can be seen from Figure(a), that as the number of cycles 
increases, the discharge current increases, and according to Figure 9(b), the battery terminal voltage as a whole 
shows a downward trend. 

The High-order 2RC equivalent modeling was established by parameter identification of HPPC experimental 
data. To verify the validity of the model, the model data and actual data were compared and analyzed with 
additional battery operating conditions data. The model was verified by the BBDST condition, and the various 
working conditions of the battery were simulated by constant power discharge for a certain period. The test device 
obtained the current value in the experimental data as the input condition, and the simulated terminal voltage is 
compared with the experimental acquisition terminal voltage by the simulation model, and the result is as shown 
in Figure. 
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(a): Simulation terminal voltages (b): Simulation terminal voltage Error 
Figure 10. Simulation terminal voltage and experimental terminal voltage comparison chart 

In Figure, U1 is the real terminal voltage data curve obtained by the test equipment, and U2 is the output 
terminal voltage curve obtained by the simulation model under the input current condition. It can be seen from 
Figure 10 that the simulation curve and the actual test curve have similar trends, which can better simulate the 
battery discharge. According to the established high-order 2RC equivalent mode and the reduced-order extended 
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Kalman filter algorithm, the SOC estimation of the BBDST condition is carried out. The error between the initial 
value and the true value is given at least 20% in advance so that the SOC estimation is performed, and the obtained 
result is shown in Figure. 
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       (a): Comparison of SOC estimation result (b): SOC estimation Error  
Figure 11. Comparison of SOC variation curves   

In Figure(a), SOC1 is the true SOC value, and SOC2 is the SOC estimation value using a REKF algorithm. 
Figure(b) is the REKF error curve obtained the difference in the two SOC value curves. Figure(b), shows the error 
of SOC estimation based on the established high-order 2RC equivalent modeling using the reduced-order extended 
Kalman filter. The Figure shows the theoretical calculation of the battery SOC and the estimated value of the 
reduced-order EKF algorithm. It can be seen from the Figure that the reduced-order EKF algorithm converges 
quickly and the tracking effect is good enabling the initial algorithm to converge within the required time of about 
100s to track the theoretical value. It can also be observed that the estimated deviation is stable within -0.031V 
and 0.0409V, and the overall performance is excellent. It is proven that the reduced-order EKF has good 
convergence and has optimum tracking performance for SOC estimation. The algorithm can correct the error of 
the initial value very well, does not depend on the accuracy of the initial value, and has a strong correction function. 
However, the maximum error of the SOC estimation at the end of the discharge of the method described herein is 
1.85%. 
 

4. Conclusions 

In this study, the high-order 2RC equivalent model is selected to identify the parameters. Through detailed circuit 
analysis, the accurate expressions of the 2RC time constant and terminal voltage of lithium batteries are derived. 
After HPPC-Reduced-order EKF experiments, the parameters are accurately identified and a Simulink model is 
established in MATLAB to verified by simulation with the HPPC experimental data. The parameter identification 
method adopted in this paper can make the accuracy of the equivalent circuit model reach more than 98.15% 
accuracy. The research content of this paper can provide an accurate parameter identification method for the 
lithium-ion battery mathematical model, and serve as an important theoretical basis for the accurate estimation of 
SOC in a battery management system. Moreover, based on the linearization method adopted, the high-order 2RC 
equivalent model and the reduced-order extended Kalman filter is constructed for the SOC estimation algorithm 
of LIB. Then the effectiveness of this algorithm is verified experimentally through fully and partially charged 
battery discharge experiments. 
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