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Abstract

Electrical power is one of the most important forms of energy which is needed in almost every field of human
endeavour. However, increase in size of electrical power structure without proper planning has negative effects
on power system supplied to end users, thereby increasing the fault level of the network. This research paper
therefore, developed an Artificial Neural Network based Time Series (ANN-TS) fault predictive model for
forecasting of fault levels in power system. In this paper, ANN-TS model was trained with three years (2015-
2017) outage fault frequency and fault duration data obtained from Ayede 132/33 kV transmission substation of
Transmission Company of Nigeria (TCN) in Ibadan using Resilient Back-Propagation (RBP) algorithm and
simulation was carried out in MATLAB environment using Mean Absolute Percentage Error (MAPE) as
performance metric. The model was used to predict yearly fault frequency and fault duration for twenty-three
years (2018-2040). The results of the fault frequency forecast showed that monthly forecast graphs were
overlapped. Yearly MAPE varied between 0.004 % and 25 %, and the feeders’ average MAPE was between 6 %
and 10 %. In fault duration, the graphs followed the same pattern in nearly all the paths of the graphs, the yearly
MAPE varied between 0.001 % and 25.54 % and the feeders’ average MAPE varied between 6 % and 11 %. The
model produced a fairly accurate forecast according to the criteria of MAPE. The average overall MAPE of each
feeder was between 6 % and 10 % which indicated between 90 % and 94 % accuracy of the model. Therefore the
ANN-TS model is effective for fault prediction in reference time series.
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1. Introduction

Electrical faults such as short circuit conditions in power systems result in outages which lead to economic losses
and reduce the reliability of the electrical system caused by equipment failures such as rotating machines,
transformers, human errors and environmental conditions. These faults cause interruption to electric flows,
equipment damage and even cause death of humans, birds and animals [1], [4]. Electrical fault is the deviation of
voltages and currents from nominal values or states. Under normal operating conditions, power system
equipment or lines carry normal voltages and currents which results in a safer operation of the system. When
faults occur, excessive high current flow which causes damage to equipment and devices [11], [22].

Electrical power system is not static but changes during operation (switching on or off of generators and
transmission lines) and during planning (addition of generators and transmission lines) [1]. In view of this, a
fault study is routinely performed by utility engineers. Faults occur in a power system due to insulation failure,
flashover, physical damages or human error. These faults are either three phase in nature involving all three
phases in a symmetrical manner, asymmetrical in nature where only one or two phases are involved. Faults may
be caused by either short circuits to earth or between live conductors, or by broken conductors in one or more
phases [10], [17].

Electrical fault in an equipment /apparatus is a defect in the electrical circuit due to short circuit in which
current is diverted from the normal path. The nature of a fault implies abnormal condition which causes a
decrease in the basic insulation strength between phase conductors or between phase conductors and earth or any
earthed screen surrounding the conductors [25]. The reduction of insulation strength is not considered as a fault
until it results either in excessive current or in the reduction of the impedance between conductors or between
conductors and earth to a value below that of the lowest load impedance normal to the circuit. In an electrical
power system comprising of generators, switchgears, transformers, power receivers, transmission and
distribution circuits, it is likely that some failures may occur somewhere in the system especially in transmission
and distribution lines. This is due to the fact that the electrical power lines are widely branched, have greater
length, operate under variable weather conditions and are subject to the action of atmospheric discharges [5], [9],
[22].

However, one of the methods employed to monitor the states of some important components in power
networks, such as switchgear and transformers, likewise to predict the fault details in generation, transmission
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and distribution parts of power system is Artificial Neural Network (ANN) [6]. The ANN is trained to detect
minor changes to the internal parameters modelled as power system equivalent circuits. The fault details
resulting from internal and external changes at sending and receiving ends of the power system can be derived
under simulation and then presented to the ANN for training. As some of the internal parameters of the power
system do not physically exist, they cannot be measured directly by simple measurement methods. Thus, the
application of an intelligent technique, such as an ANN method is required [8], [7], [13], [26].

Fault occurrence on distribution system are on increase, the feeders connected to Ayede 132/33kV
transmission substation of Transmission Company of Nigeria (TCN) are not an exception [2], [3], [4]. In view of
this, there are high number of fault occurrences which always result in: long period of ‘black out’ in a large area
being supplied by Ayede 132/33kV transmission substation, high magnitude of load and energy losses and this
results in economic losses to both energy producer and energy users in the area. In addition, whenever there is
fault occurrence, large number of energy users do source for alternative means of energy, these are always diesel
and gasoline generators which cause environmental pollutions such as: noise, air, greenhouse gasses and heavy
metals which are harmful to the areas being supplied by the substation and the world at large. In view of this, a
fault predictive model was developed for forecasting of faults details on Ayede 132/33kV transmission
substation of Transmission Company of Nigeria (TCN) using Artificial Neural Network based Time-Series
(ANN-TS) model. These fault details forecasting comprise of fault frequency, fault duration and energy loss [3],

[4].

1.1. Transmission System

Electrical power transmission system is the bulk movement of electrical energy from a generating site, such as a
power plant to an electrical substation. The interconnected lines which facilitate this movement are known as
transmission networks [20], [21]. A transmission line is a constituent designed to convey electrical power from
the power source over a long distance with minimum losses and with high-voltage three-phase alternating
current (AC). Transmission-line voltages are usually considered to be 110 kV and above. Lower voltages, such
as 66 kV and 33 kV are usually considered sub-transmission voltages, but are occasionally used on long lines
with light loads [15], [19].

The Transmission Company of Nigeria (TCN) is currently being managed by a Management Contractor,
Manitoba Hydro International (Canada). Manitoba is responsible for revamping TCN to achieve technical and
financial adequacy in addition to providing stable transmission of power without system failure. Currently, the
transmission capacity of the Nigerian electricity transmission system is made up of about 5,523.8 km of 330 KV
lines and 6,801.49 km of 132 KV lines, 23 km of 330/132 kV sub-stations and 91 km of 132/33 kV substations
[16], [23].

1.2. Electrical Substation

An electrical substation is a subsidiary station of an electricity generation, transmission and distribution system
where voltage is transformed from high to low or the reverse using transformers. Electric power may flow
through several substations between generating plant and consumer and may be changed in voltage in several
steps [5], [12]. A substation that has a step-up transformer increases the voltage while decreasing the current,
while a step-down transformer decreases the voltage while increasing the current for domestic and commercial
distribution. Electrical substations are important part of power system. The continuity of supply depends on the
successful operation of substation. It is therefore essential to exercise utmost care while designing and building a
substation [19], [27].

According to [20], a substation is a part of an electrical structure: generation, transmission, and distribution
system. A substation is an important part of electrical structure [20], [24], [26]. Substations transform voltage
from high to low, or the reverse, or perform any of several other important functions. Electric power flow
through several substations between generating plant and consumer and its voltage changes in several steps.
Substations comprise of switching devices, protection devices, control equipment and power transformers.
Distribution circuits are fed from a transformer located in an electrical substation. They divided substation into
three groups: Transmission substation, Distribution substation and Distribution feeders [20]. Transmission
substation combines the transmission lines into a network with multiple parallel interconnections in order that
power can flow freely over long distance from generators to any consumer. Transmission lines operate at
voltages above 138kV [7]. The largest transmission substations can cover a large area with multiple voltage
levels of many circuit breakers. Today, transmission-level voltages are usually considered to be 110 kV and
above. Lower voltages, such as 66 kV and 33 kV, are usually considered sub-transmission voltages, but are
occasionally used on long lines with light loads. Voltages above 765 kV are considered extra high voltage and
require different designs compared to equipment used at lower voltages. Transmission substations often include
transformation from one transmission voltage level to another [9], [27].

Distribution substation operates at medium voltage levels, between 2.4 kV-33 kV. They deliver electric
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power energy at once to industrial and home customers as shown in Figure 1 [14]. The input for a distribution
substation is typically at least two transmission or sub transmission lines. Input voltage may be 115 kV, or
whatever is common in the area. The output is a number of feeders. Distribution feeders transport energy from
the distribution substations to the end of consumer’s premises. Distribution feeders serve a variety of premises
and generally contain many branches on the purchasers’ premises. A distribution transformer transforms the
distribution voltage to the nominal voltage at once and is utilized in households and commercial plants, typically
from 230 to 415V [11], [16], [19]..

In addition, from the primary grid substation, electric power is transmitted at 132 by 3-phase 3 wire to
various secondary substations located at the strategic points in the city and sub-urban areas. At secondary
substation, the voltage is further stepped down to 33 kV. The 33 kV lines convey electrical power to primary
distribution substation/ injection substation where the voltage is further stepped down to 11 kV and in some
cases, the 33 kV lines run along the important road sides of the city. Large consumers demanding more than 50
kW do connect to this type of power line [14], [19].
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Figure 1: Network form of Electrical Substation

1.3. Electrical Faults

Electrical power systems are designed to perform a required function continuously, except when undergoing
preventive maintenance or other planned actions, or due to lack of external resources. Faults occur at any time
and at any location of power system items. In power systems consisting of generators, switchgears, transformers,
transmission lines and distribution circuits, fault may occur somewhere in the system [13], [18].

A fault is defined as abnormal condition which causes a decrease in the basic insulation strength between
phases/ line conductors or phase/ line conductors and earth, or any earthed screens surrounding the conductors.
Such decrease in the system insulation is not considered as a fault until it results either in an excess current or in
the reduction of the impedance between conductors and earth to a value below that of the lowest load impedance
to the circuit [18]. Fault arises due to breakdown of the system insulation by lightning stroke on overhead lines,
the connection with earth via an earth wire. Such earth connection occurs when a tree or a man-made object is
providing the connecting path between the lines and the earth [14], [23].

The causes of faults can be internal or external, they include the following [1], [6], [7], [22], [23], [26], [27]:

i. Lightning: This is a form of visible electric discharge between a rain cloud and the earth or between
rain clouds. The discharge is presented in form of a brilliant arc, several kilometers long and stretching
between the discharge points. The discharge produces a sound wave that is heard as thunder. Majority of
rain clouds are negatively charged at the base and positively charged at the top. There are various
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hypotheses that explain how polarization occurs, some require ice and some do not. However ice is a

necessary factor, because lightning is not usually observed until ice has formed in the upper layers of

thundercloud. Many of the electrical faults occurring on overhead power distribution lines are caused by
lightning. Installation of arresters on lines has been a better solution to prevent the flashover of insulator
assemblies.

il. Pollution: Pollution is always caused by continuous deposit soot or cements dust especially in
industrial areas and by salt deposited by wind-borne sea-spray in coastal areas. A high degree of
pollution on an insulator assembly reduces the insulation strength of the affected phase, therefore create
a path for current to flow across the insulator assembly, which in turn results in excess current or other
detectable abnormality.

iil. Wildfires: When a wildfire occurs near electrical power line right-of-way (ROW), wood poles can get
burnt. Lines carried by steel towers are also vulnerable to heat from wildfire. The conductors on both
wood and steel carrying transmission lines are exposed to physical damage from the heat of a wildfire
and the damages done to conductor are not repairable. A fire can cause a forced outage of electrical
power circuit if it increases the ambient temperature of the air around the conductors above the line’s
operating parameters. Intense smoke from a nearby wildfire can contaminate an electrical line’s
insulating medium, which is the air surrounding the conductor. This may result to a phase-to-phase, or
phase-to-ground fault due to the ionization of air around the conductor.

iv. Ageing: Ageing of electrical insulation system is defined as the irreversible changes of the properties of
an electrical insulation system due to action by one or more stresses. The most important part and most
ageing sensitive part of electrical equipment, which determines its useful lifetime is electrical insulation
system. The total lifetime of the equipment is determined by external and internal factors. The main
internal factor is the operating temperature and the external factors are: overvoltage, vibration, humidity,
radiation and other factors .Ageing stresses cause intrinsic and extrinsic ageing. Intrinsic ageing is
defined as the irreversible changes of basic properties of an electrical insulation system caused by the
action of ageing factors on the electrical insulation system. Extrinsic ageing is the irreversible changes of
properties of an electrical insulation system caused by action of ageing factors on unintentionally
introduced imperfections in the electrical insulation system.

In addition, mode of operation of power equipment may influence their lifetime [12]. According to [12],
the lifetime of electrical equipment is between 20 and 40 years of operation depending on device type,
production quality, construction materials and mode of operation [1]. Furthermore, [5] and [12] itemized the
following two types of stressors usually considered for ageing:

1. Environmental: They are stressors that exist continuously in the environment surrounding the
equipment, whether it is operating or shut down. Examples are; vibration, heat and radiation.
il. Operational: They are stressors arising from equipment operation. Examples are internal heating from

electrical or mechanical loading, physical stresses from mechanical or electrical surges, vibration, and
abrasive wearing of parts

1.4. Consequences of Faults

When major fault is left un-cleared, it may result to fire out-break, this can destroy power system equipment, and
result in total failure of the entire system. The short circuit fault may have any of the following consequences
[18]:

1. An abnormal reduction of the line voltage over a major part of the power system, resulting in major

breakdown of the electrical supply to the consumer.

il. When short circuit occurs, an electrical arc accompanies it resulting in the damaging of apparatus
within the system.

. Damage to other apparatus in the system due to overheating and mechanical forces

iv. Stability of the electrical system is affected and this may lead to a complete blackout of a given power
system.

V. A considerable reduction of voltage on healthy feeders connected to the system having fault can cause

abnormal currents to be drawn by motors therefore, causing loss of industrial production.

1.5. Types of Faults
Faults occur in a power system whenever electrical insulation fails due to: flashover, physical damage or human
error. These faults may either be three phase when all three phases are short circuited in a symmetrical manner,
or asymmetrical when only one or two phases are involved [15]. Generally, power system faults are categorized
as shunt faults and series faults. The shunt faults can occur as [20], [26]:
i. Single Line-to-ground fault (SLG): This type of fault occurs when one conductor falls to ground or
contacts the neutral wire. It could also be the result of falling trees in a raining storm.
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il. Line-to-Line fault (LL): It is the result of two conductors being short-circuited. As in the case of a large

bird standing on one distribution line and touching the other, or if a tree branch falls on top of two of the
power lines.

iii. Double Line-to-Ground fault (LLG): This is as a result of a tree falling on two of the power lines.

iv. Balanced three phase fault (LLL): This is a fault condition in which all the three lines/ phases are short
circuited. The balanced three phase fault occurs by a contact between the three power lines in many
different forms.

v. Line-Line-Line-Ground fault (LLLG): This occurs when a tree falls on three power lines.

According to [23], Series faults occur along the power lines when one or two lines are broken along the
distribution network which resulted to unbalanced series impedance. This is referred to as ‘single phasing’
condition in the power system [10]. Figure 2 shows different types of series faults in power system [13].

a) 2
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Figure 2: Broken Conductor Faults: (a) Broken Conductor Failure Alone, (b) Line-to-Ground Fault with Broken
Conductor, (¢) Broken Conductor with Line-to-Ground Fault

1.6. Analysis of Three Phase Symmetrical Faults
In analyzing three phase symmetrical faults using sequence network [8]:

L. Power system operates under balanced steady-state conditions before the fault occurrence. This means
that the sequence networks are uncoupled before the fault occurs. During unsymmetrical faults they are
interconnected only at the fault location.

ii. Pre-fault load current is neglected: As a result of that, the positive-sequence internal voltages of all
feeders are equal to the pre-fault voltage Vr. When neglecting pre-fault load currents, no voltage drops
in the pre-fault circuit and thus pre-fault voltage at each bus in the positive-sequence network equals V.

iil. Transformer winding resistance, shunt admittances and A—Y phase shifts are neglected.
iv. Overhead line series resistance and shunt admittance are neglected.
V. Synchronous machine is simply represented (armature resistance, saliency and saturation are neglected)
and all non-rotating impedance loads are neglected.
Vi. Induction motors are represented as synchronous machines.
vii. The three lines are represented by Red (R), Yellow (Y) and Blue (B) and their currents are: I, Iy and I,
respectively.

1.7. Artificial Neural Network

Artificial Neural Network (ANN) is a machine learning approach inspired by the way in which the brain
performs a particular learning task. ANN is modeled on human brain and consists of a number of artificial
neurons. In each neuron, the inputs coming to it are added together and this sum is then passed through an
activation function which is the transfer function of the neuron [5]. The neural network is a network formed
using the neurons and the weights connecting these neurons form the memory of the network. The neurons are
connected by links and they interact with each other. The nodes can take input data and perform simple
operations on the data. The result of these operations is passed to other neurons. The output at each node is
called its activation or node value as shown in Figure 3 [21], [27].
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The process by which the ANN is tuned to perform to the particular application is known as training. Once
the network is trained with a variety of patterns of input and output combinations, ideally it should be able to
predict the correct output when an input pattern is given randomly. ANN are being applied for different
optimization and mathematical problems such as classification, object and image recognition, Signal processing,
seismic events prediction, temperature and weather forecasting, bankruptcy, tsunami intensity, earthquake and
sea level [6]. The success of ANN mostly depends on their design, the training algorithm used and the choice of
structures used in training. ANN has the aptitude for random non-linear function approximation and information
processing which other methods does not have [5], [9].

In equation (1) below, the neural network plays the role of mapping function @.

Y= 0 (X) (1)
Where; O is mapping function of neural network, X is input and Y is output of vectors.

Hidden

Figure 3: Artificial Neural Network Architecture

2. Materials and Method

Artificial Neural Network based Time-Series (ANN-TS) Fault Predictive model was developed to predict fault
details (fault frequency and fault duration) on Ayede 132/33 kV transmission substation of Transmission
Company of Nigeria (TCN) shown in Figure 4. The modelling data were data obtained from the performance
target measurement sheets of Ayede 33 kV substation for the period of three years (2015-2017). Ayede 132/33
kV transmission substation receives 132 kV electrical supplies from Ayede 330/132 kV transmission station and
stepped it down to 33 kV. Eight injection sub-stations take their sources from the secondary side of Ayede
132/33kV power transformers. These feeders include: Apata feeder, Eleyele feeder, Express feeder, Interchange
feeder, Iyanganku feeder, Lanlate feeder, Liberty feeder and Oluwole feeder.
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Figure 4: Schematic Diagram of Ayede 132/33kV Transmission Sub-station

2.1 Development of ANN-TS fault predictive model for Ayede 132/33kV substation
Artificial Neural Network based Time Series (ANN-TS) was developed as generalization of mathematical
models of human cognition or neural biology based on the following assumptions:

i.  Information processing occurs at several simple elements that are called neurons.

ii.  Signals are passed between neurons over connection links.

iii. Each connection link has an associated weight, which multiplies the signal transmitted.
iv. Each neuron applies an activation function (usually non-linear) to its net input (sum of weighted input

signals) to determine its output signal.

The developed ANN was modelled into three layers: input layer, hidden layer and output layer as shown in
Figure 5. Each node in the hidden layer computes y; (j = 1,2,3,4) as shown in equation (2) according to

equation (3):

fi = XYxw

2

A sigmoid function (;) is used to transform the output that is limited into an acceptable range. It prevents

the output from being too large.
1

Vi = —
<] 1+e T

3)

Lastly, Y in the node of the output layer in Figure 5 was obtained by equation (4)

Y = X1 w

“
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Figure 5: Three Layer Artificial Neural Network Time Series Fault Predictive Model Network for Ayede 33kV
Substation

In this study, the Resilient Back-propagation (RBP) was adopted due to its speed, early convergence,

stability and production of fairly good results. The learning process involves the following steps:

Step 1: Assign random numbers to the weights

Step 2: For every element in the training set, calculate the output using the summation functions embedded in
the nodes

Step 3: Compare computed output with observed values

Step 4: Adjust the weights and repeat steps (2) and (3). If the result from step (3) is not less than a threshold
value, alternatively, this cycle can be stopped early by reaching a predefined number of iterations, or the
performance in a validation set does not improve.

Step 5: Repeat the above steps for other elements in the training set.

The ANN model developed in this research paper is the standard three-layer feed-forward network. Since
the one-step-ahead forecasting is considered only, one output node was employed. The activation function for
hidden nodes in the logarithm function is given as:

1
|Logsigl:  f() = 3ialH
and for the output node the identity function (pure linear function):
[Lin]: f(x) =F i (6)
Where X is the input signal (fault frequency, fault duration)

Bias terms were used in both hidden and output layer’s nodes. The fast Resilient Back-propagation
algorithm provided by the MATLAB neural network toolbox was employed in the training process. The ANN
was randomly initialized with weights and bias values. The selected architecture consists of 12 input nodes in the
entrance layer, 4 hidden nodes in the second layer and one node in the output layer (1-12; 4; 1) as shown in
Figure 5. The input of the model consists of the 12 previous numbers corresponding to the last 12 months fault
data. The output is the predicted faults for the next month.

The data set was divided in a sub-set for training, a sub-set for validation and a sub-set for testing. The data
set between January and December of the previous year was used for training. Several training sessions for each
identified situation was performed with different initial weights. From this number of training sessions, the ANN
obtained was retrained to obtain better forecast results in each situation under the validation set. The set was used
for early stop training if the Root Mean Square Error (RMSE) does not decrease in a number of five training
iterations.

)

Developed ANN-TS fault predictive model for computing a forecast of Y(t'} using selected past
observations (data) is stated as:

Y, =by + X'w; f(XM, Wy +by) ™
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Where: m is the number of input nodes, n is the number of hidden nodes, f is a sigmoid transfer function such as
the logistic, used in the hidden layer nodes,{wj, j=0,1,2,...... n} is a vector of weights from the hidden to

output nodes, {Vl/[-j, 1=0,1,....m; j=1,2...... ,n} are weights from the input to hidden nodes, bzllandbl_j are the
bias associated with the nodes in output and hidden layers, respectively.

The output of the developed ANN-TS is governed by the minimum Root Mean Square Error (RMSE) in the
training set. The minimum RMSE between the observed and predicted values are used as the agreement index.
RMSE is as shown in equation (8).

Z ?ﬁ 1(At _Yt)z
RMSE = ®)
n
Where; A is the observed value, Y is the prediction value, and n is the total number of observations.
The other agreement index used is the coefficient of correlation (rap) between the observed and predicted
values and is as shown in equation (9).

Y1 (A—A)(¥—Y)

TApP = — 9)
ZEs A D212
2.2 Algorithmic Method of Initializing Weight of ANN-TS model for Ayede 132/33kV
i Calculate the maximum max(x; ) and minimum min(x;) for all input variables x; where i= /1, ..., N].

il. Calculate the maximum distance between two points of the input space D, D™ is given by:

in _ N - : 2
De = \/Zizl [max(x;) — min (x;)] (10)
where i is the number of input neurons
iii. Calculate the Wi, g, to define the interval [—W,, ., Winax) from which the random weights for the

hidden layer will be drawn.

_ 0.72 |8
Wiax = pin E (11)

iv. Evaluate the centre of the input space C m using the following equation:
cin - (-m.ax(xl) + min(xq) 'max{:xz) + min(x3) L max(x,) + m.in(x")) (12)
2 2 2
v. Calculate the threshold Wy; given by: Wi = — }Izl C; - Wj; (13)
Vi. Calculate the V4, to define the interval [—Vqx Vinax] from which the random weights for the
1.10

output layer, V4 1S given by: Vi gr= T, where H is the number of node in the hidden layer.

Vii. Evaluate the threshold v;qof the output layer given by:

vjo = —0.5 XL, vy (14)
This method of initializing weights was employed for the proposed algorithm in this study. The
stepwise for the proposed algorithm is as follows:
Step 1: Choose network, apply initialized weights.
Step 2: Select a sample to process
Step 3: For each node in the hidden layer calculate the linear (1) and non-linear (2) output.
Step 4: For each node in the output calculate the Linear (1) and non-linear (2) outputs, Non-linear (7) and linear
error (10)
Step 5: For each node in the hidden layer, calculate the linear (12) and non-linear error (13)
Step 6: Update the weights using equation (3.10)
Step 7: Repeat the step 3 - 6 for all patterns
Step 8: Evaluate the error of the network and evaluate the stopping criteria. If stopping criteria is not reached
repeat Steps 2-5.

2.3. Prediction of Fault Details (Fault Frequency and Fault Duration)

The fault data (fault frequency and fault duration) extracted from Ayede 132/33kV transmission substation for
the period of three years were divided into three in ratio 50 % : 30 % : 20 %; fifty percent of the data in each
case was used for training of the developed model, thirty percent for testing and twenty percent of the data for
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validation. Flow chart in Figure 6 showed the step by step process of ANN-TS prediction system for Ayede

132/33kV transmission substation. Validation of the developed model with the test set was achieved with the use

of Mean Absolute Percentage Error (MAPE). MAPE is a statistical measure of how accurate a forecast system is.

It measures this accuracy as a percentage and is calculated as average absolute percentage error for each time

period minus actual value divided by actual value.

Yi—A
At

Where; n is the total number of data considered, Yt is the forecast/ predicted value, and A¢is the actual value /

observed value.

Collect input / output and
auxiliary data file

1¢n
MAPE = —
nzt_l

Identify model node,
Conwvert files to R time series object
Make data object to pass to function

| B

Is it the
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i

I Perform prediction and
I Correction

/ Write state data /

<
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conditions / data
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Figure 6: Flow Chart of ANN-TS Fault Predictive Model for Ayede 132/33kV

3. Discussion of Results.

The results of ANN-TS model under the test set were observed for fault frequency and fault duration. In view of
this, the predicted data of ANN-TS model of each feeder were compared with each other for twenty-three years
(2018-2040). The selection process of the ANN predicted value is governed by the minimum Root Mean Square
Error (RMSE). The model was validated using MAPE.

3.1 Forecasting of Fault Frequency on the Feeders

The developed predictive model was applied to the three years faults frequency modelling data of each feeder for
forecasting. Modelling data for various feeders in Ayede transmission substation were used to train the model,
when the epoch were reached and weight data were obtained, the new data were used to train and retrain and
new weight data were obtained, this was repeated and several output were obtained as predicted data of fault
frequencies. The model was used to predict the possible faults occurrences on each feeder for the period of
twenty three years (2018-2040).

Figure 7 presented the yearly fault frequency forecasting graph results obtained for the prediction of faults
frequency on each feeder of Ayede 132/33 kV substation. The graphs for predicted data overlaps in almost all
the feeders considered. MAPE demonstrated that the yearly percentage error varied between 0.01 % and 15 %
and the feeder average MAPE range between 6 % and 10 %, indicating accuracy of about 90 % of the developed
ANN-TS fault predictive model. This showed that the predictive model performed satisfactorily. Fault frequency
is the number of fault occurrences on a feeder within a specific period, it is worth forecasting in order to prevent
its future occurrences.
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Figure 7: Yearly Fault Frequency Forecasting on Ayede Substation Feeder from 2018 — 2040

3.2 Forecasting of Faults Duration on the Feeders

Fault duration is the total period in which the system is down and unable to make energy available for the
customers supplied. The ANN-TS fault predictive model was applied to the modelling data of the fault duration
data obtained for the period of three years (2015-2017). The model was used to forecast the possible faults
duration on each feeder for the period of twenty three years (2018-2040). Figures 8 showed the yearly fault
duration forecasting graphs of the fault duration forecasting results obtained on the feeders. The results followed
the same pattern in nearly all the portion of the graphs in each feeder, yearly MAPE is between ‘0.01 %
and ’17 %’, and average MAPE varied between ‘6 %’ and ’11 %’. Fault durations on feeders were predicted to

provide expected down-time on each feeder in order to prevent the future occurrence.
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Figure 8: Yearly Fault Duration Forecasting on Ayede Substation Feeder from 2018 — 2040

3.3 Performance Measure of ANN-TS Fault Predictive Model using MAPE

The statistical summary of the out-of-sample (data used as the validation set) forecasting performance of the
model were given in Tables 1A, 1B, 2A and 2B. In almost all the forecast, the graphs took the same pattern in
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each feeder. Yearly MAPE varied between 0.01 % and 26.75%, and feeder average MAPE varied between 6 %
and 10 %. Judged by the average overall accuracy measures of each feeder, it was observed that the forecasting
performance of the model is good. Therefore, according to the criteria of MAPE for model evaluation, the
predicted data with the selected model has a highly accurate forecast because the average overall result of each
feeder is lower than 10 %. This indicated accuracy of between 90 % and 94 % of the model. Figure 7 and 8
displayed the predicted graphs of time series for entire sequence.

Table 1A: Fault Frequency Forecasting Error Measures for Root Mean Square

APATA ELEYELE EXPRESS INTERCHANGE IYAGANKU LANLATE LIBERTY OLUYOLE

YEAR RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE
2018  66.58 0.005 2.857 30.23 0.633 0.032 7.716 0.332
2019 0.01 6.393 4.246 34.42 2.441 0.016 0.014 2.498
2020  5.949 0.026 4.079 8.182 0.625 5.324 4.949 0.015
2021  0.049 7.895 4915 5.592 2.373 3.346 6.508 5.497
2022 9.462 0.064 6.809 5.782 0.613 53.23 10.17 5.565
2023 0.013 25.73 3.368 6.560 1.054 5.177 4.847 2.041
2024  9.483 0.032 3.710 5.783 2.675 8.756 4.995 2.735
2025  5.510 7.692 3.243 22.85 2.366 0.126 5.572 1.984
2026  8.006 4.908 3.709 2.188 0.734 5.177 28.77. 1.925
2027  0.004 9.113 76.15 5.138 1.087 0.012 6.051 1.898
2028  54.62 8.183 5.127 22.29 0.069 52.24 4.713 0.009
2029  9.106 8.064 6.164 4.492 1.034 0.077 7.453 1.566
2030  6.355 7.721 4.776 4.811 2.405 60.80 5.159 2.897
2031  3.895 7.216 2.266 8.121 1.163 64.23 6.454 6.034
2032 1.611 13.25 0.035 4.476 0.616 7.266 6.030 2.00
2033  5.568 6.884 1.545 5.691 0.128 9.528 4.784 29.32
2034  56.74 70.28 3.741 0.645 0.607 1.900 5.494 1.982
2035  8.213 12.09 10.95 5.677 1.041 3.888 4.784 1.950
2036  5.722 10.06 16.51 0.043 0.629 22.21 4.627 2.560
2037  11.62 7.402 24.03 6.697 3.429 2.926 6.520 0.627
2038  27.00 3.392 6.717 5.713 0.620 7.421 3.785 2.929
2039  9.755 38.03 2.018 13.40 2.670 2.006 2.245 3.265
2040  32.75 4.067 3.910 0.146 1.009 3.738 3.941 1.99

Table 1B: Fault Frequency Forecasting Error Measures for MAPE

APATA ELEYELE EXPRESS INTERCHANGE IYAGANKU LANLATE LIBERTY OLUYOLE

YEAR MAPE MAPE MAPE MAPE MAPE MAPE MAPE MAPE
2018 5.53 0.004 12.70 241 8.15 0.25 12.00 0.54
2019  0.009 8.085 5.40 4.00 7.31 0.08 0.17 6.44
2020 12.44 0.019 3.72 1.09 11.11 3.94 8.07 0.65
2021 0.044 7.586 5.66 541 6.92 4.51 2.67 13.54
2022 10.96 0.042 12.85 5.61 14.25 23.53 2.36 13.67
2023  0.011 12.05 391 8.34 14.41 2.50 15.41 11.36
2024 10.95 0.024 12.10 5.30 10.98 9.10 12.98 7.14
2025  8.054 13.95 3.29 10.43 11.95 0.61 13.88 10.62
2026 11.77 7.772 11.79 2.51 13.26 3.43 3.18. 7.35
2027  0.007 10.43 7.40 6.27 8.54 0.05 12.04 13.33
2028 4.64 9.846 6.49 10.06 0.742 4.26 10.26 0.03
2029 12.57 13.75 10.19 7.95 25.00 0.35 12.06 3.06
2030 1291 10.03 7.78 3.91 16.08 3.53 13.12 17.18
2031 5.934 7.906 7.22 7.40 2.99 5.81 11.89 6.93
2032 2.945 12.91 0.39 3.52 10.86 8.05 12.53 7.25
2033 7.089 9.604 3.88 4.43 1.49 9.07 13.86 6.11
2034 4.69. 7.34 12.17 0.47 7.82 2.67 12.27 7.50
2035 11.94 17.56 13.46 3.92 3.70 5.49 11.50 6.58
2036 13.68 13.75 10.14 0.30 9.32 10.32 11.75 12.22
2037 12.28 9.700 12.04 8.72 24.34 3.10 11.57 0.82
2038  3.652 4.589 13.27 8.87 13.60 4.95 11.76 10.57
2039  9.505 11.67 7.20 4.39 1.20 2.02 3.80 5.63
2040  2.897 7.179 4.92 0.84 20.07 3.46 13.18 5.46

12



Journal of Energy Technologies and Policy Www.iiste.org
ISSN 2224-3232 (Paper) ISSN 2225-0573 (Online) J LA |
Vol.12,No.3, 2022 “STE

Table 2A: Fault Duration Forecasting Error Measures for Root Mean Square

APATA ELEYELE EXPRESS INTERCHANGE IYAGANKU LANLATE LIBERTY OLUYOLE

YEAR RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE
2018  0.001 21.23 9.15 1.48 0.68 10.50 24.15 12.76
2019  0.002 6.05 0.001 34.82 0.01 73.44 8.23 1.72
2020 11.21 15.95 8.70 13.93 8.02 18.54 0.02 4.36
2021 0.102 3.76 5.17 11.85 0.004 23.69 0.08 1.50
2022 9.63 3.06 746.7 7.68 11.20 21.73 13.27 8.43
2023 14.94 3.7 12.08 14.58 0.07 36.39 17.47 13.01
2024  26.11 24.26 1.32 7.21 0.28 17.60 18.50 6.43
2025 39.54 4.44 10.57 14.80 2.36 11.32 5.89 8.87
2026 0.69 5.24 0.83 5.06 1.96 24.12 36.34 12.79
2027 18.26 38.55 12.37 16.93 1.85 3.82 1.84 10.66
2028  0.012 945.1 0.36 17.17 0.79 62.74 5.55 5.09
2029  20.33 11.69 6.72 3.44 5.52 1.10 5.62 1.61
2030  12.97 8.04 19.23 2.59 2.58 26.82 1.33 1.64
2031 1.76 1.87 0.14 0.20 0.24 0.99 36.18 18.80
2032 17.75 58.53 5.28 4.10 20.20 22.55 26.53 1.64
2033 15.51 6.82 0.03 13.26 2.10 1.18 10.96 35.54
2034  53.12 20.57 3.97 20.31 0.34 1.51 70.40 85.91
2035  26.81 4.76 9.95 4.46 5.52 20.50 17.30 2.30
2036  20.88 22.00 6.90 2.53 6.26 3.08 0.50 1.38
2037 0.40 0.40 75.6 5.13 7.91 63.93 3.11 1.21
2038 1.52 3.21 17.8 0.27 1.98 46.64 5.29 4.51
2039 15.73 43.35 5.51 17.6 2.11 21.31 2.37 0.62
2040 16.3 4.88 10.93 0.003 0.74 34.53 11.76 5.01

Table 2B: Fault Duration Forecasting Error Measures for MAPE

APATA ELEYELE EXPRESS INTERCHANGE IYAGANKU LANLATE LIBERTY OLUYOLE

YEAR MAPE MAPE MAPE MAPE MAPE MAPE MAPE MAPE
2018 0.01 12.33 12.83 1.70 7.72 20.41 13.38 14.45
2019 0.01 15.22 0.001 8.19 0.02 25.54 9.78 1.90
2020  20.95 12.28 6.52 6.80 9.51 20.32 0.009 12.40
2021 0.37 2.90 7.48 9.92 0.043 7.59 0.16 1.67
2022 12.54 7.31 10.37. 3.96 10.08 9.73 3.97 6.15
2023 9.42 3.46 8.82 12.61 0.61 13.27 8.52 6.36
2024 12.29 12.20 3.90 7.43 3.45 4.12 14.18 11.75
2025 52 10.58 8.85 4.50 21.12 2.81 3.42 7.87
2026 0.25 13.06 1.28 3.06 13.10 8.23 12.07 14.82
2027 8.08 5.94 12.17 17.78 14.04 0.83 1.33 6.14
2028 0.05 5.48 0.41 4.45 6.50 10.39 8.22 14.90
2029 11.26 16.85 7.29 3.61 10.76 0.189 11.30 3.88
2030 11.2 15.44 11.52 1.41 3.39 10.67 1.88 1.28
2031 2.18 1.53 0.2 0.21 2.26 0.21 10.60 10.53
2032 18.46 12.83 7.29 2.55 22.75 10.07 10.94 1.31
2033 6.13 10.71 0.06 12.38 12.89 0.26 231 8.94
2034 9.81 12.43 12.05 16.02 4.55 0.50 7.39 9.33
2035 12.00 5.31 6.39 2.40 10.37 22.86 17.73 5.99
2036 13.06 13.10 23.04 1.73 6.29 6.91 1.05 1.73
2037 0.20 0.59 4.24 4.87 12.19 24.15 6.45 2.54
2038 1.78 4.89 12.4 0.19 6.61 18.61 1.42 11.55
2039 9.20 7.07 5.44 9.36 4.33 10.20 4.88 0.36
2040  12.22 10.28 9.73 0.003 10.44 10.79 3.44 13.79

4. Conclusion

This research paper has developed an Artificial Neural Network Time Series (ANN-TS) predictive model for the
purpose of prediction of fault frequency and fault duration on Ayede 132/33 kV substation feeders. The time
series was used in the logarithmic transformed data. The series were separated into three sets of data: a training
data set to train the neural network, a validation data set to stop the training process earlier and a test data set to
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examine the level of prediction accuracy. The model has four (4) neurons in the hidden layer with the logarithm
activation function and was trained using the Resilient Back-Propagation (RBP) algorithm. The analysis of the
output forecast data of the selected ANN model showed reasonably close results compared to the target data. The
developed model is then considered adequate for the purpose of prediction in the reference time series.
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