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Abstract 

The two main important properties of software components are reliability and robustness. Reliability can be 

defined as the probability of failure free operation and on the other hand the robustness can be defined as how far 

the software can be able to with stand for intrusion attacks. In both the cases there should be some metric to 

evaluate the performance of these properties. In this paper metrics are been described which can be used to 

assess the quality of performance for these properties within a software reliability growth model. 
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I.INTRODCUTION 

A software component model is a minimal software item for which a separate specification is available [1]. 

Component-based software engineering (CBSE) seeks to build software systems by composition of pre-existing 

software components. Two related problems in CBSE are: 

(1) How to predict the properties of the assembled system given the properties of individual components and  

(2) How to guarantee that one component can be substituted for another without changing the properties of the 

overall system 

Software failures are caused by errors that arise due to faults in the software that have been introduced during 

software development [5]. A delayed failure is defined for the present research as a failure that occurs some time 

after the condition that causes the failure and the proposition that delayed failure of software components is a 

consequence of long-latency error propagation and that the conventional approach to software testing is unlikely 

to detect this type of software failure 

In this paper metrics are been described to characterise a given type of software component and use these metric 

for the performance evaluation of software reliability growth models. 

Software component: 

This provides the interface between request and response interfaces see below figure 1 

 

 

 

 

An input to the component arrives in a request and the corresponding output from the component appears in a 

response. An input to the component may be either valid or invalid; specified component behaviour is to produce 

a correct response to a valid input and to reject an invalid input. 

This paper is organized as follows ,in section I a basic introduction for quality assessment is discussed, in section 

II previous done work with some examples are quoted and in section III describing about the metric and ending 

with results and conclusion in section Iv and V . 

 

II.RELATED WORK 

Mukherjee et.al in [8] presents robustness benchmarks for Unix-like operating systems and gives general design 

criteria for robustness benchmarks. Slutz et.al in [9] describes a system for random generation of SQL (RAGS). 

This system combines a random testing approach with grammar–based generation to generate large numbers of 

valid SQL statements; this was successfully used for testing SQL database systems.As stated in [6] shooman’s 

model provides an equation to estimate the expected number of software failures (nf)  

+       (1) 

Where n is the number of software tests, f1 is the execution path usage ratio and q is the probability of failure of 

the path and n is the number of execution paths. Using the above equation (1) the software system probability of 

failure Qs can be defined as  

Component 

 Request 
 Response 
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                                      (2) 

The above equation describes the system unreliability is equal to the sum of the likelihood of failure over every 

execution path weighted by its corresponding execution path usage ratio. The software reliability Rs is defined as  

          (3) 

 

III.RELIABILITY QUALITY METRICS 

Reliability can be defined as the probability of failure free operation under stated conditions for specific period 

of time [2].Assessment of reliability performance for a component are usually defined for the expected input 

profile in actual operational use. 

The commonly used metric for assessment are, Mean time to time failure (MTTF), mean time between failures 

(MTBF) and robustness [3].In [4] storey has given the definition as a function of time R(t) at a constant failure 

rate of λ  

              (4) 

Where λ is the probability that there is no failure before time t 

Then the MTTF can be given as 

                 (5) 

And                  (6) 

Where MTTR is the mean time of recovery defined as the average time a component takes to recover from a 

failure. The measures MTBF, MTTF and MTTR are usually considered to apply in the case of a system 

operating continuously; however for a system operating on demand as is the case here, equivalent definitions 

apply where time is treated in discrete units [7]. 

 

IV RESULTS AND ANALYSIS 

For the experimental analysis a test was conducted on 10k randomly generated statements .At initial state the 

database was empty creation of tables proceeded till all the tables defined in the input profile has been created 

for certain runs. 

Table I: Tabulated values of acceptance and Error 

Run Executed Error Accepted Succeeded 

3 11,682 1 10,135 1,745 

6 21,602 8 17,267 3,135 

10 21,625 7 18,420 3,159 

11 27,252 7 21,840 3,209 

12 41,458 11 37,555 5,525 

16 12,415 2 12,383 1,220 

17 16,152 3 15,956 1,435 

19 32,245 8 22,713 3,407 

Total 1,84,431 47 1,56,269 22,835 

Mean 23,054 5.8 19,534 2,854 

 

 
Figure 1: Performance analysis of the component profile 
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Figure 2: Performance analysis of the component model for the given statements which are executed and 

succeeded 

 

V.CONCLUSION 

Software reliability quality assessment is a very useful concept in evaluating the performance of reliability and 

robustness of the given component model. The benchmark input profile can be generated and executed 

automatically in the case of a DBMS using structured query language for which a specification is available. 

Hence it can be concluded that the MTTF metric can be used to evaluate the performance of both reliability and 

robustness of the given software component model under any growth model. 
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