
Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.3, 2014

8

Quality Assessment of Software Reliability Growth Models

Chandra Mouli Venkata Srinivas Akana

Research Scholar, Dept. of CSE, JNTUK, Kakinada, Andhra Pradesh, India

Email: mouliac@yahoo.com

Dr. C. Divakar

Principal, Pydah College of Engineering & Technology, Visakhapatnam, AP, India

 Email: divakar_c@yahoo.com

Dr. Ch. Satyanarayana

Professor, Dept of CSE, JNTUK, Kakinada., AP., India.

Email: chsatyanarayana@yahoo.com

Abstract

The two main important properties of software components are reliability and robustness. Reliability can be

defined as the probability of failure free operation and on the other hand the robustness can be defined as how far

the software can be able to with stand for intrusion attacks. In both the cases there should be some metric to

evaluate the performance of these properties. In this paper metrics are been described which can be used to

assess the quality of performance for these properties within a software reliability growth model.

Keywords: Software growth model, reliability, robustness, Quality metrics

I.INTRODCUTION

A software component model is a minimal software item for which a separate specification is available [1].

Component-based software engineering (CBSE) seeks to build software systems by composition of pre-existing

software components. Two related problems in CBSE are:

(1) How to predict the properties of the assembled system given the properties of individual components and

(2) How to guarantee that one component can be substituted for another without changing the properties of the

overall system

Software failures are caused by errors that arise due to faults in the software that have been introduced during

software development [5]. A delayed failure is defined for the present research as a failure that occurs some time

after the condition that causes the failure and the proposition that delayed failure of software components is a

consequence of long-latency error propagation and that the conventional approach to software testing is unlikely

to detect this type of software failure

In this paper metrics are been described to characterise a given type of software component and use these metric

for the performance evaluation of software reliability growth models.

Software component:

This provides the interface between request and response interfaces see below figure 1

An input to the component arrives in a request and the corresponding output from the component appears in a

response. An input to the component may be either valid or invalid; specified component behaviour is to produce

a correct response to a valid input and to reject an invalid input.

This paper is organized as follows ,in section I a basic introduction for quality assessment is discussed, in section

II previous done work with some examples are quoted and in section III describing about the metric and ending

with results and conclusion in section Iv and V .

II.RELATED WORK

Mukherjee et.al in [8] presents robustness benchmarks for Unix-like operating systems and gives general design

criteria for robustness benchmarks. Slutz et.al in [9] describes a system for random generation of SQL (RAGS).

This system combines a random testing approach with grammar–based generation to generate large numbers of

valid SQL statements; this was successfully used for testing SQL database systems.As stated in [6] shooman’s

model provides an equation to estimate the expected number of software failures (nf)

+ (1)

Where n is the number of software tests, f1 is the execution path usage ratio and q is the probability of failure of

the path and n is the number of execution paths. Using the above equation (1) the software system probability of

failure Qs can be defined as

Component

 Request
 Response

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.3, 2014

9

 (2)

The above equation describes the system unreliability is equal to the sum of the likelihood of failure over every

execution path weighted by its corresponding execution path usage ratio. The software reliability Rs is defined as

 (3)

III.RELIABILITY QUALITY METRICS

Reliability can be defined as the probability of failure free operation under stated conditions for specific period

of time [2].Assessment of reliability performance for a component are usually defined for the expected input

profile in actual operational use.

The commonly used metric for assessment are, Mean time to time failure (MTTF), mean time between failures

(MTBF) and robustness [3].In [4] storey has given the definition as a function of time R(t) at a constant failure

rate of λ

 (4)

Where λ is the probability that there is no failure before time t

Then the MTTF can be given as

 (5)

And (6)

Where MTTR is the mean time of recovery defined as the average time a component takes to recover from a

failure. The measures MTBF, MTTF and MTTR are usually considered to apply in the case of a system

operating continuously; however for a system operating on demand as is the case here, equivalent definitions

apply where time is treated in discrete units [7].

IV RESULTS AND ANALYSIS

For the experimental analysis a test was conducted on 10k randomly generated statements .At initial state the

database was empty creation of tables proceeded till all the tables defined in the input profile has been created

for certain runs.

Table I: Tabulated values of acceptance and Error

Run Executed Error Accepted Succeeded

3 11,682 1 10,135 1,745

6 21,602 8 17,267 3,135

10 21,625 7 18,420 3,159

11 27,252 7 21,840 3,209

12 41,458 11 37,555 5,525

16 12,415 2 12,383 1,220

17 16,152 3 15,956 1,435

19 32,245 8 22,713 3,407

Total 1,84,431 47 1,56,269 22,835

Mean 23,054 5.8 19,534 2,854

Figure 1: Performance analysis of the component profile

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.3, 2014

10

Figure 2: Performance analysis of the component model for the given statements which are executed and

succeeded

V.CONCLUSION

Software reliability quality assessment is a very useful concept in evaluating the performance of reliability and

robustness of the given component model. The benchmark input profile can be generated and executed

automatically in the case of a DBMS using structured query language for which a specification is available.

Hence it can be concluded that the MTTF metric can be used to evaluate the performance of both reliability and

robustness of the given software component model under any growth model.

REFERENCES

[1] BCS Specialist Interest Group in Software Testing (2004), “Working draft of BS 7925-1 Glossary of terms

used in software testing”, version 6.3.

[2] Glossary Working Party of the International Software Testing Qualification Board (ISTQB), van Veenendaal,

E. (ed.) (2006), Standard glossary of terms used in Software Testing, Version 1.2.

[3] Standards Coordinating Committee of the IEEE Computer Society (1991), IEEE standard computer

dictionary 610.

[4] Storey, N (1996), Safety-Critical Computer Systems, Prentice Hall.

[5] Ammann, P, Offutt, J, Introduction to Software Testing, Cambridge University Press, 2008

[6] M.L. Shooman, "A Micro Software Reliability Model for Prediction and Test Apportionment", Proceedings

1991 International Symposium on Software Engineering (Austin, Texas), May 1991, pp. 52-59.

[7] Fenton, N, Pfleeger, S (1997), Software Metrics: A Rigorous & Practical Approach (2
nd

 edition), PWS

Publishing Company

[8] Mukherjee, A, Siewiorek, D (1997), “Measuring Software Dependability by Robustness Benchmarking”,

IEEE Transactions on Software Engineering.

[9] Slutz, D (1998), “Massive Stochastic Testing of SQL”, VLDB'98 Proceedings of 24th International

Conference on Very Large Data Bases.

[10] Binder, R.V, Testing Object Oriented Systems: Models Patterns and Tools, Addison-Wesley, 2000.

[11] Binder, R.V, “Automated Testing with an Operational Profile”, DoD Software Tech News, Volume 8,

Number 1, 2004.

[12] Chen, T.Y, Merkel, R (2007), “Quasi-Random Testing”, IEEE Transactions on Reliability, Vol. 56, No. 3.

