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Abstract 

A brain tumor is an intracranial solid neoplasm, a tumor (defined as an abnormal growth of cells) within 

the brain or the central spinal canal. Magnetic Resonance Imaging (MRI) is one of thebest technologies currently 

being used for diagnosing braintumor. Brain tumor is diagnosed at advanced stages with thehelp of the MRI 

image. In this task, radiology experts are likely tobenefit from the support of Computer Aided Diagnosis(CAD) 

systems to builtaround robust classification processes. In this paper, a method that combines wavelet transform  

for segmentation and genetic algorithm is used to yield high diagnostic classification accuracy for a broad range 

of brain tumour pathologies.  

Keywords:Brain Tumor, MRI, Wavelet Transform,    Genetic Algorithm. 

 

1. Introduction 

Braintumor is inherently serious and life-threatening because of its invasive and infiltrative character in the 

limited space of the intracranial cavity. However, brain tumors (even malignant ones) are not invariably fatal. 

Brain tumors or intracranial neoplasm can be cancerous (malignant) or non-cancerous (benign); however, the 

definitions of malignant or benign neoplasms differs from those commonly used in other types of cancerous or 

non-cancerous neoplasm in the body. Its threat level depends on the combination of factors like the type of 

tumor, its location, its size and its state of development. Because the brain is well protected by the skull, the 

early detection of a brain tumor only occurs when diagnostic tools are directed at the intracranial cavity. Usually 

detection occurs in advanced stages when the presence of the tumor has caused unexplained symptoms. Over the 

last 20years, the overall incidence of cancer, including braincancer, has increased by more than10%, as reported 

in theNational Cancer Institute statistics (NCIS), with anaverage annual percentage change of approximately 

1%.2-6 between 1973 and 1985, there has been a dramaticage-specific increase in the incidence of brain tumors. 

 

Now days, MRI is the noninvasive and verymuch sensitive imaging test of the brain in routine clinicalpractice. 

Magnetic resonance imaging (MRI) is a noninvasive medical test that helps physicians diagnoseand treat 

medical conditions. An MRI machine uses a powerful magnetic field to align the magnetization of some atomic 

nuclei in the body, and radio frequency fields to systematically alter the alignment of this magnetization. This 

causes the nuclei to produce a rotating magnetic field detectable by the scanner—and this information is 

recorded to construct an image of the scanned area of the body. Magnetic field gradients cause nuclei at different 

locations to rotate at different speeds. By using gradients in different directions 2D images or 3D volumes can be 

obtained in any arbitrary orientation. Brain MRI is the procedure ofchoice for most brain disorders. It provides 

clearimages of the brainstem and posterior brain, whichare difficult to view on a CT scan. It is also useful forthe 

diagnosis of demyelinising disorders (disorderssuch as multiple sclerosis (MS) that cause destructionof the 

myelin sheath of the nerve).  

 

     Often, the most determinant step in this computer-based data analysis is data pre-processing. For this, we first 

use the Discrete Wavelet Transform(DWT) and a filtering process, together with data compression, for the 

decomposition of the spectra in terms of approximation and detail coefficients, in a change of representation of 

the spectra that entails minimum loss of relevant information. This decomposition by itself does not alleviate the 

high dimensionality of the data. For this reason, dimensionality reduction is implemented using Moving Window 

with Variance Analysis (MWVA)  for feature selection and Principal Components Analysis (PCA) for feature 

extraction. The processed data are classified using Artificial Neural Networks (ANN) with Bayesian 

regularization. The proposed combination of methodologies is shown to yield high diagnostic classification 

accuracy for a broad range of brain tumour pathologies, some of which have seldom been analyzed in this 

setting.  

 

     This paper is organised as follows:  in section 2, various types of brain tumor is explained with symptoms. 

Section 3 deals about MRI. Section 4 describes about methodology with results and conclusion is given in 

section 5.  
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2. Brain tumor 

Brain tumors include all tumors inside the cranium or in the central spinal canal. They are created by an 

abnormal and uncontrolled cell division, normally either in the brain itself(neurons, glial cells 

(astrocytes, oligodendrocytes, epemlcells, myelinproducing Schwann cells), lymphatic tissue, blood vessels), in 

the cranial nerves, in the brain envelopes (meninges), skull, pituitary and pineal gland, or spread 

from cancers primarily located in other organs (metastatic tumors). 

Aside from exposure to vinyl chloride or ionizing radiation, there are no known environmental factors associated 

with brain tumors. Mutations and deletions of so-called tumor suppressor genes are thought to be the cause of 

some forms of brain tumors. Patients with various inherited diseases, such as Von Hippel-Lindau 

syndrome, multiple endocrine neoplasia, neurofibromatosis type 2 are at high risk of developing brain tumors. In 

a recent study by the Dutch GP Association, a list of causes of headaches  was published, that should alert GP's 

to take their diagnosis further then to choose for symptomatic treatment of headaches with simple pain 

medication (note the occurrence of brain tumors as possible cause) : 

 

 

 

 

 

Fig:1. Main anatomical regions of the vertebrate brain 
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Table:1 Symptoms of brain tumor with causes 

Alarm signals Possible cause 

First headache 

complaint from 

person over 50 

years old 

brain tumor, arteriïtis temporalis 

First migraine 

attack in person 

over 40 years old 

brain tumor 

Headache in person 

under 6 years old 
brain tumor, hydrocephalus 

Person over 50 

years old with pain 

at temples 

arteriïtis temporalis  

Pregnancy with 

unknown headache 
pre-eclampsia  

Increased 

headaches after 

trauma 

sub/epidural hematoma 

Severe headaches 

and very high blood 

pressure 

malignant hypertension  

Acute severe 

headache 
meningitis, CVA (Cerebrovascular accident or stroke), subarachnoidalhemorrhage 

Headache and fever 

(with reduced 

consciousness) 

meningitis 

Stiffness of the 

neck/neurological 

meningitis, brain tumor 
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dysfunction 

Headache with 

signs of 

elevated intracranial 

pressure 

brain tumor 

Focal neurological 

dysfunction 
brain tumor 

Early morning 

vomiting or 

vomiting unrelated 

to headache or other 

illness 

brain tumor 

Behavioral changes 

or rapid decline in 

school results 

brain tumor 

 

      The visibility of signs and symptoms of brain tumors mainly depends on two factors: tumor size (volume) 

and tumor location. The moment that symptoms will become apparent, either to the person or people around him 

(symptom onset) is an important milestone in the course of the diagnosis and treatment of the tumor. The 

symptom onset - in the timeline of the development of the neoplasm - depends in many cases on the nature of the 

tumor but in many cases is also related to the change of the neoplasm from "benign" (i.e. slow-growing/late 

symptom onset) to more malignant (fast growing/early symptom onset).Symptoms of solid neoplasms of the 

brain (primary brain tumors and secondary tumors alike) can be divided in 3 main categories : 

· Consequences of intracranial hypertension  

· Dysfunction 

· Irritation   

 

3. Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI), nuclear magnetic resonance imaging (NMRI), or magnetic resonance 

tomography (MRT) is a medical imaging technique used in radiology to visualize detailed internal structures. 

MRI makes use of the property of nuclear magnetic resonance (NMR) to image nuclei of atoms inside the body. 

MRI provides good contrast between the different soft tissues of the body, which makes it especially useful in 

imaging the brain, muscles, the heart, andcancers compared with other medical imaging techniques such 

as computed tomography (CT) or X-rays. Unlike CT scans or traditional X-rays, MRI does not use ionizing 

radiation. 

 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online) 

Vol.4, No.4, 2014 

 

56 

 

Fig:2. Cutaway of MRI scanner 

A number of features of MRI scanning can give rise to risks.These include: 

· Powerful magnetic fields 

· Cryogenic liquids 

· Noise 

· Claustrophobia  

 

4. Methodology and Results 

A. Wavelet Transform 

      The Wavelet Transform (WT) is a linear operation thatdecomposes a signal into components at different 

scales [4].The WT of a function f (t) for a wavelet function ψ(t) isgiven by (1), where a is the scale and τ the 

position of thewavelet{a,τ: R}. The inverse transform is given by (2).  

 

     Wf(a, ) =                          (1) 

 

     f(t) =              (2) 

 

               dw<  
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Fig:3.Brain metastasis in the right cerebral hemisphere after MRI 

      An important development for the application of wavelettheory in Discrete Signal Processing was presented 

byMallat usingMultiresolution Analysis (MA). In thiscontext, the WT in a discrete domain is implemented via 

an octave filter bank, as a cascade of low- and high-pass filters, followed by sub-sampling as illustrated in fig.4. 

Thereconstruction procedure, except for rounding errors, leadsto the restoration of the original signal if no 

coefficient isaltered. 

 

 
 

Fig:4. Decomposition algorithm of the DWT with two decompositionlevels, the original signal x(n) is passed 

through the high-pass filters G(Z)and low-pass filters H(Z). 

 

    The application of Mallat’smodel  together withDonoho’s approach for signal filtering by thresholding and 

statistical coefficients for data compression permitreducing the noise level, as well as representing the 

MRSsignal without loss of relevant information, while keepingthe dimensionality of the system as low as 

possible.  

 

B. Wavelet Filtering with Threshold or Shrinkage 

 

      Frequently, the observed signal X(t) can be considered to 

consist of a real signal S(t) plus additive white noise N(t).Shrinkage filtering aims to denoise the observed signal 

X(t)and recover an estimate of S(t), or Ŝ(t). The suggested model 

allows this through the use of WT as described in(3), whereD(.,λ) is the filtering operator for threshold λ and 

W(ψ, j)(.)and W
−1

(ψ, j)(.) denote, in turn, the WT and its inverse, withwavelet function ψ and j decomposition 

levels. Thedenoising of the available MRS spectra was carried outaccording to the following three consecutive 

steps , eachdescribed in its own sub-section. 

Y=W(ψ,j)(X) 

Z=D(Y,λ)             (3) 
                                 Ŝ=W-1

(ψ,j)(Z) 
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B.1. Threshold calculation 

Three alternative choices of threshold were considered in theexperiments, according to the following statistical 

estimators developed by Donoho: 

- Universal threshold (Sqtwolog): The threshold is chosen tobe , where n represents the length of thesignal. 

- Threshold applying the principle of Stein’s Unbiased Risk(Rigrsure):The procedure requires obtaining a new 

vectorNV(k), rearranging data from minimum to maximum andtaking the square root. 

- Threshold Minimax: The threshold is selected following 

theminimax principle, commonly used in statistics to design 

estimators . 

Sqtwolog, Rigrsureand Minimaxare function names taken 

fromMatlab® wavelet toolbox. 

 

B.2. Threshold scaling 

       The thresholds are usually weighted by a factor σ, a scaling of the mean absolute deviation based on the 

wavelet 

decomposition level. Three types of weighting are considered: 

- One: The weighting term is scalar (e.g., σ = 1). 

- Sln: The weighting is computed by averaging the detail coefficients of the first level of decomposition, divided 

by 0.6745. 

-Mln: As Slnbut with the calculation of detail coefficientslevel by level. 

 

B.3. Implementation of the threshold 

 

     Once the threshold is calculated and scaled, the thresholding processD(Y,λ) is implemented through two 

alternativemethods: Hard thresholding (Dh(Y,λ)) and Soft thresholding (Ds(Y,λ)) according to (4). 

 

Dh(Y,λ)=  

(4) 

   DS(Y,λ)=  

 

 

C. Wavelet Mother Selection for MRS Data 

 

       The DWT was applied to the original signal data, making thedecomposition to the maximum allowable 

level. It was implemented with different mother wavelets,ranging from different orders of Biorthogonals (1.1, 

1.3, 1.5,2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7,3.9, 4.4, 5.5, 6, 8), Coiflet(1 to 5), Daubechies (1 to 43), and Symlet (1 

to 25). Forevery mother wavelet, the absolute values of each decomposition coefficient were sorted in 

descending order,and the signal of each spectrum was reconstructed by addingconsecutive coefficients. The 

average Mean Square Error(MSE) and Signal-to-Noise Ratio (SNR) were calculatedover the whole set of 

patients for each wavelet order r,together with the Number of Decomposition Coefficients(NDC). Finally, Q1 the 

index was computed as follows: 

 

 
 

where r is the order analysed, and the Re sub index corresponds to the rescaled data between 1 and 3. The 

maximum values of Q1 indicate the orders with the best reconstruction error using the minimum NDC. 

 

      Once the initial set of wavelet orders were chosen,the filtering methodology explained in section Bwas used 

to denoise the spectrum signal and to eliminate irrelevant information. In order to determine the appropriated 

scaling, Donoho  recommends the MSE as a measure of performance for each of the experiments. Therefore, the 

MSE was calculated for each spectrum of the reconstructed signal following the scheme described in 

(3),implementing all the options allowed by the combination of threshold estimation (Sqtwolog, Rigrsureand 

Minimax), threshold scaling (Sln, One and Mln), and Hardthresholding. The Hard function was used because it 
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often yields smaller MSE than the Soft one, and also because it preserves the magnitudes of the MRS spectra. 

The results obtained show that, for all wavelets, the lower MSE is achieved when applying the Slnweighting 

scheme, regardless of the threshold calculation. The MSE of the three types of thresholds when Slnscaling is 

applied are compared in Fig.5, showing that the Rigrsure-Sln-Hard procedure produces the best results among all 

combinations. 

 

      To determine the final wavelet, the average value of severalstatistics was computed for the Rigsure-Sln-

Hardcombination. They include: SNR, Preserved Energy (EP), Percentage of Distortion (PRD) and Compression 

Ratio (CR), expressed as follows: 

 

 
 

where  is the reconstructed signal, Lo is the cardinality of the decomposition coefficients of the original signal, 

and Lc is the cardinality of decomposition coefficients different to zero. This set of statistics has been used to 

choose the optimal wavelet in previous related works concerning ECG signal filtering and classification tasks, 

among others. For a more objective criterion in choosing the optimal wavelet function, the index Q2 was 

computed: 

 

  

 
Fig:5. Comparison of the MSE for the three thresholds when Sln isapplied. 

 

The Q2 values for the wavelet functions. It can be observed that the maximum value for this index is given by 

the Biortogonal (3.3). Therefore, this wavelet was chosen as optimal for our study.  

 

D. Dimensionality Reduction and Classification 

 

   After processing the MR spectra with wavelet Biortogonal 

(3.3) and filtering it with the combination Rigsure-Sln-Hard, 

we proceeded to reduce the dimensionality of the data using MWVA and PCA, taking as input variables the 

decomposition coefficients. The MWVA is a feature selection filter method proposed in. For PCA, principal 
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components were added one at a time until the differential cumulative variance between two consecutive 

components was less than 1%. An average of 10.15 and 13 variables were obtained for MWVA and PCA 

respectively. 

 

   Feed-forward ANN with one hidden layer were used in the 

classification experiments. Each network was trained using 5, 10, 30 and 40 units in the hidden layer and one 

unit in the output layer. The networks were trained with Bayesian regularization and back-propagation, updating 

the weights and bias according to the Levenberg-Marquardt algorithm. One run of a 5-fold cross-validation was 

performed for each network, with a maximum of 500 epochs. It  shows the best resulting values of the area under 

the ROC curve (AUC) for each experiment. G1 (low grade gliomas) is the union of classes a2, oa and od. G2 

(highgrade malignant tumours) is the union of classes gl and me. In this a value of 1 in the SET column indicates 

experiments which have been reported in previous research with, at best, comparable results, while a value of 2 

indicates experiments that, to the best of our knowledge, have not been previously investigated in a similar 

setting. 

 

     The results of a Wilcoxon test show that the differences among the mean and median classification values for 

MWVA and PCA are statistically significant (p-value = 0.011), in favour of MWVA.  

 

5. CONCLUSIONS 

    In this study, a DWT procedure was applied to the pre-processing of MR spectra corresponding to several 

brain tumour pathologies. This procedure yielded very encouraging results in terms of diagnostic discriminatory 

binary classification. In particular, they were quite good in the classification of pathologies for which few results, 

if any, had been previously reported. The results are of special relevance for the experiments gl vs me and a2 vs 

a3, which according to existing literature are specially difficult classification problems. 

 

    The proposed methodology for selecting the optimal wavelet developed study concludes that the Biortogonal 

(3.3) wavelet, implemented with the combination Rigsure-Sln- Hard, generates the best MR spectra 

representation without loss of relevant information.  

 

ACKNOWLEDGMENT  

     The author would like to thank Dr.Abhay Kumar , Dr. Chanda Jha,  for  their insightful advice and guidance, 

and unknown reviewers for their useful remarks and suggestions. 

REFERENCES 

[1] M. Murphy, A. Loosemore et al. “The contribution of proton magnetic resonance spectroscopy (1H MRS) to 

clinical brain tumour diagnosis”, Br J Neurosurg, vol. 16, pp. 329–334, 2002. 

[2] M. Julià-Sapé, D. Acosta, M. Mier, C. Arús, D. Watson, and the INTERPRET Consortium, “A multi-centre, 

web-accessible and quality control checked database of in vivo MR spectra of brain tumour patients,” Magnetic 
Resonance Materials in Physics. MAGMA, vol. 19, pp. 22–33, 2006. 

[3] C. Arizmendi, A. Vellido, E. Romero . “Frequency selection for the diagnostic characterization of human 

brain tumours”, Frontiers in Artificial Intelligence and Applications, vol. 202, pp. 391-398, 2009. 

[4] P.D. Agoris et al. “Threshold selection for wavelet denoising of partial discharge data,” International 
Symposium on Electrical Insulation, September 2004, USA. 

[5] S. Mallat, “A Wavelet Tour of Signal Processing,” Academic Press, 1999, USA. 
[6] D. Donoho, “De-noising by soft-thresholding,” IEEE Trans. On Information theory, vol.41, Issue. 3, pp. 613-

627, 1995. 

[7] D. Guo -Fei et al. “A study of wavelet thresholding denoising,” IEEE Proceedings of ICSP, vol.1, pp. 329-

332, 2000. 

[8] O. Olarte, D. Sierra. “Determinación de los parámetros asociados al filtro wavelet por umbralización aplicado 
a filtrado de interferencias electrocardiográficas,” Universidad Industrial de Santander UIS Ingenierías, vol. 

6,Issue 2, pp 33-44, 2007. 

[9] E. Rivas, J. Burgos, J. García, “Condition assessment of power OLTC by vibration analysis using wavelet 
transform “. IEEE Transactions On Power Delivery, vol. 24, pp. 687-694, 2009. 

[10] F. Foresee, and M. T. Hagan. “Gauss-Newton approximation to Bayesian regularization,” Proceedings of 
the 1997 International Joint Conference on Neural Networks 1997, pp. 1930-1935.  



The IISTE is a pioneer in the Open-Access hosting service and academic event 

management.  The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting 

platform.   

Prospective authors of journals can find the submission instruction on the 

following page: http://www.iiste.org/journals/  All the journals articles are available 

online to the readers all over the world without financial, legal, or technical barriers 

other than those inseparable from gaining access to the internet itself.  Paper version 

of the journals is also available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Recent conferences:  http://www.iiste.org/conference/ 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/

