
Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

71

A Metrics-based Framework for Measuring the Reusability of

Object-Oriented Software Components

Sammy Olive Nyasente
*
 Prof. Waweru Mwangi, Dr. Stephen Kimani

School of Computing and IT, Jomo Kenyatta University of Agriculture and Technology, P O Box

62000-00200 Nairobi Kenya

* E-mail of the corresponding author: samqolive@yahoo.com

Abstract

The critical role played by software in socioeconomic advancement, has seen a rapid demand for software;

creating a large backlog in affordable and quality software that needs to be written. Although software reuse is

capable of addressing this issue, effective reuse is seldom to come by, thus the issue still remains unresolved. In

order to achieve effective reuse, practitioners need to focus on reusability: the property that makes software

reusable. Although Object Oriented Software Development (OOSD) approach is capable of improving software

reusability, a way of ascertaining if the required degree of reusability is being achieved during the OOSD process

is required. This can be achieved through measurement. The task involved in measuring reusability of Object

oriented (OO) software is to; determine major reusability attributes of reusable components, relate these

characteristics with factors that influence them, link each factor with measurable OO design features that

determines them, relate each feature with appropriate metrics, and find out how these metrics collectively

determine the reusability of components. A novel framework for achieving this task is proposed in this paper.

Keywords: Software reuse, Software Reusability, Software Metrics, Software Component

1. Introduction

Software reuse is the use of existing artifacts to create new software (Gill & Sikka, 2011). The purpose of

reusing software is to address issues related to software quality and productivity; as it is often pursued to produce

quality and reliable software that are delivered on time and within budget (Frakes & Kang, 2005). Nonetheless,

reuse is still facing numerous issues, hence lacking adoption from practitioners (Hristov, Hummel, Huq, & Janjic,

2012). The major hindrance to effective reuse is not the lack of components that can be reused (Hristov et al.),

but rather most of the existing software components have little or no reusability (Sametinger, 1997). According

to (Gill & Sikka, 2011), Reusability is the degree to which a given software component can be reused. In other

words, Reusability is a property of a software component that indicates its probability of reuse (Frakes & Kang,

2005). This means that, if a component’s reusability is low, then its potential for reuse becomes low as well.

Therefore, efforts should converge at developing components with a high degree of reusability; if effective reuse

is to be achieved.

According to (Dubey & Rana, 2010), Object Oriented Software Development (OOSD) approach is capable of

improving software reusability, and has become popular in today’s scenario of software development

environment. Nonetheless, a way of ascertaining if the required degree of reusability is being achieved during

the OOSD process is required. This can be achieved through measurement. Measurement is required in software

engineering in order to assess quality of software products as well as improvement of their performance (Chawla

& Nath, 2013). Pressman (2010) underscores the importance of measuring software by stating that; “if you do

not measure, there is no real way of determining whether you are improving. And if you are not improving, you

are lost” (p. 683). Measurement of software is achieved by use of software metrics (Rawat, Mittal, & Dubey,

2012; Sharma & Dubey, 2012); and the task involved in reusability measurement is; relating measurable

reusability characteristics with appropriate metrics, and find out how these metrics collectively determine the

reusability of components (Sandhu, Kaur, & Singh, 2009). In other words, a framework that describes the

reusability of software and that structures appropriate metrics in a way that is easy to use is requisite in effective

reusability assessment (Hristov et al, 2012). This research focuses on the reusability of Object Oriented (OO)

components (classes).

2. Related Work

Research on software reuse has been ongoing for a long time; with most works focusing on the aspect of

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

72

reusability measurement—as a way of achieving effective reuse. This has culminated into a number of metrics

and frameworks for reusability measurement. We review some of these works below.

2.1. Reusability Measurement Frameworks

Caldiera and Basili (1991) propose a framework for measuring the reusability of software components. They

define a reusability attributes model, which attempts to characterize reusability, attributes directly through

measures of an attribute, or indirectly through measures of evidence of an attribute’s existence. The model

consists of three attributes that are believed to influence the reusability of components; viz., reuse costs,

functional usefulness, and quality of components. These attributes are determined by factors, which can be

directly or indirectly measured using four software metrics, viz. McCabe’s Cyclomatic Complexity, Halstead's

Volume metrics, Regularity, and Reuse Frequency.

Another reusability measurement framework has been proposed by (Washizaki, Yamamoto, & Fukazawa, 2003).

This framework targets the JavaBeans architecture (JavaBeans components). The authors propose a component

reusability model, in which three major reusability attributes, i.e. understandability, adaptability and portability

are considered. They further define five metrics, for measuring factors that influence the reusability attributes.

The metrics include; Existence of Meta-Information (EMI), Rate of Component Observability (RCO), Rate of

Component Customizability (RCC), Self-Completeness of Component’s Return Value (SCCr), and Self-

Completeness of Component’s Parameter (SCCp).

AL-Badareen, Selamat, Jabar, Din, and Turaev (2010) propose another reusability assessment framework for

systematic reuse. They categorize reusability characteristics into two main categories, viz., characteristics to

assess components before they are stored in the reuse library, and, characteristics to assess components in order

to build a new system. The first category considers the general characteristics that are required by any system,

and they include: Software coexistence, adaptability/interoperability, generality, and compliance. The second

category of characteristics considers specific characteristics that help in the system development, and they

include; component suitability, documentation and modifiability. The authors propose that existence of these

characteristics in a component should be determined by conducting tests on the component. For example, system

and hardware independence, which are the two aspects of coexistence can be determined by running the software

in different software and hardware environments respectively.

Hristov et al. (2012) propose a reusability assessment framework for ad-hoc reuse. Their framework structures

existing reusability metrics for component-based software development. They propose eight attributes that

should be considered in assessing the reusability of components in ad-hoc reuse scenario. The attributes include:

availability, documentation, complexity, quality, maintainability, adaptability, reuse and price. These attributes

can be determined by various factors which can be directly or indirectly measured using appropriate metrics,

which they propose.

Another reusability assessment framework is proposed by (Ilyas & Abbas, 2013). The authors define three major

attributes for determining reusability when extracting reusable components from existing components. The

attributes are; Component Versatility, Reliability, and Understandability. Versatility, characterizes the multiplicity

of tasks that can be simultaneously performed by a component, and it is determined by two factors, viz.,

Generality and Portability. These two factors can be determined by Generality and portability metrics

respectively. Reliability on the other hand characterizes how well a software component has performed the

required functionality. This can be determined by investigating the component's performance history in different

circumstances for a given period of time—by recording a component’s; failure history, Error rate, Error type, and

Men Time to Failure. Lastly Understandability characterizes the ease with which a software component can be

understood, and it can be determined by the readability metric.

2.2. Reusability Metrics for OO software

Chidamber and Kemerer (1994), propose six metrics for Object-Oriented design. The metrics include; Weighted

Methods per Class (WMC), Response for a Class (RFC), Lack of Cohesion in Methods (LCOM), Coupling

Between Object Classes (CBO), Depth of Inheritance Tree of a class (DIT) and Number of Children of a class

(NOC). Literature indicates that five of the metrics can be used in assessing reusability, i.e. WMC, NOC, CBO

(Chidamber & Kemerer 1994; Singh, Singh, & Singh, 2011), DIT (Chidamber & Kemerer 1994; Gill and Sikka,

2011), and LCOM (Cho, Kim, & Kim, 2001).

Cho et al. (2001) present metrics for measuring complexity, customizability and reusability of components. They

proposed four metrics to measure different aspects of a Component's complexity, which include; component

plain complexity (CPC), component static complexity (CSC), component dynamic complexity (CDC), and

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

73

component Cyclomatic complexity (CCC) metrics. The authors observe that, if a component does not provide

customizable interfaces, its reusability becomes low, because reusable components are often modified to meet

new requirements in different reuse contexts. Thus, they propose the Component variability (CV) metric to

measure a Component’s customizability. Lastly they propose two approaches for measuring the reusability of a

component viz., how a component has reusability, and, how a component is reused in a particular application.

Thus, they define the component itself reusability (CR) metric to measure the former, and the Component Reuse

Level (CRL) metrics to measure the latter.

Gill and Sikka (2011) propose five inheritance hierarchy-based metrics for assessing Reuse and Reusability of

OO software: Breadth of Inheritance Tree (BIT), Method Reuse Per Inheritance Relation (MRPIR), Attribute

Reuse Per Inheritance Relation (ARPIR), Generality of Class (GC) and Reuse Probability (RP). Two of the five

metrics viz., GC and RP can be used to measure reusability, whilst the other three are for measuring Reuse.

3. Unresolved Issues in OO Reusability Measurement

Quality characteristics of OO software are dependent on OO-design features such as inheritance, coupling,

cohesion etc., which can be measured using metrics; thus, quality assessment for OO software requires a

thorough understanding of these features (Dubey & Rana, 2010). It then follows that; an effective OO reusability

assessment framework should: (i) clearly define the attributes that affect the reusability of components (classes),

(ii) define factors that influence each of the reusability attributes (iii) relate each of the OO design features with

the factors that influence the reusability attributes, (iv) relate various OO metrics with the OO structures that

they measure, and (v) determine how these metrics collectively determine reusability of classes. No such

reusability assessment framework could be found in literature. Therefore, in spite of the existence of other

reusability assessment frameworks, and various OO metrics in literature, the issue of effective reusability

assessment of OO components remains unresolved.

4. Proposed Framework

We propose a novel framework for measuring reusability of OO classes in this paper. The framework correlates

major reusability attributes with different factors that influence them. These factors are determined by OO

features that can be measured using appropriate metrics that exist in literature. The key elements of the

framework include: the major reusability attributes; factors influencing the reusability attributes, measurable OO

structures that determine each reusability factor, metrics to measure the reusability factors, and, a reusability

calculation model.

5. Major Reusability Characteristics for Software Components

Literature survey reveals a number of characteristics that are believed to influence reusability of software

components. Such characteristics have been presented in, (Hristov et al., 2012; Caldiera & Basili, 1991;

Washizaki et al., 2003; AL-badareen et al., 2010; Ilyas & Abbas, 2013). However, the problem is in determining

which of these attributes should be considered in assessing reusability. Westfall (2005) has commented in this

context by stating that; software entities possess many attributes that are measurable, and if all of these attributes

are considered, then there are just too many measures, which may do more harm than good. An effective

reusability assessment framework should therefore, have as few attributes as possible, but at the same time

sufficient in assessing all aspects of reusability. That is, overlapping and trivial attributes should be excluded

from such a framework. We discuss the major characteristics that we believe influence the reusability of software

components below.

5.1. Generality

Generality is defined in IEEE Standard 610.12, as "the degree to which a system or component performs a broad

range of functions." Generality increases the reusability of a component (Gill & Sikka, 2011; Sommerville,

2011). That is, if generality of a component increases, then its probability to be reused increases. The hypothesis

here is that: for any generalized component; the probability that the problem at hand may be restated as an

instance of a problem solved by the component is high. Návrat and Filkorn (2005) also comment on the

importance of generality with respect to reusability by stating that, things can only get reused if they are general

and allow turning to specifics in a clear and straightforward manner.

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

74

5.2. Understandability

A software component is more usable if it is can be easily understood (Hristov et al., 2012). More often than not,

a developer will decide to reuse a component based on how well the component meets new requirements, which

requires high understandability (Washizaki et al., 2003). According to Washizaki et al.; Understandability is

defined based on the estimated effort required to recognize the concept behind a component and its applicability.

Thus, understandability can be viewed as the property of a component "not being complex". Ghezzi, Jazayeri, &

Mandrioli (2003) underscore the importance of understandability by stating that, understandability helps in

achieving many of the other desirable qualities of software, such as evolvability and verifiability.

5.3. Portability

According to the IEEE Standard 610.12, portability is "the ease with which a system or component can be

transferred from one hardware or software environment to another". Intuitively, the easier it is to transfer a

component from one environment to another, the more the likelihood that the component will be reused in other

applications. That is to say, that if a component has little or no portability then its chances of being reused reduce.

For instance: if the effort required to modify a component in order for it to work a new environment equals the

effort required to build the same component from scratch, then the component may as well be built from scratch.

According to (Ghezzi et al., 2003), Portability is economically important because it helps amortize the

investment in the software system across different environments and different generations of the same

environment. This means, the payoff from reuse is higher for components that are environment independent.

5.4. Maintainability

The IEEE Standard 610.12 defines Maintainability as: “the ease with which a software system or component can

be modified to correct faults, improve performance or other attributes, or adapt to a changed environment.”

Ghezzi et al (2003), distinguish three categories of maintenance, viz. corrective, adaptive, and perfective.

Corrective maintenance deals with the removal of residual errors that are present in the product when delivered,

as well as errors introduced into the software during its maintenance. Perfective maintenance involves changing

the software to improve some of its qualities. Here changes are due to the need to modify the functions offered

by the application, add new functions, improve the performance of the application, make it easier to use etc.

Adaptive maintenance on the other hand, involves adjusting the applications to changes in the environment.

Maintenance is inevitable when a component is being reused in a new context, because developers may want to

modify it for any of the reasons stated above. This should be achieved with a reasonable amount of work.

Maintainability is an important characteristic because: (Ghezzi et al., 2003) there is evidence that maintenance

costs exceed 60 percent of the total costs of software.

5.5. Documentation

Documentation is intended to make software components easier to understand (AL-badareen et al, 2010; Hristov

et al., 2012). Proper documentation is of utmost importance because: (Vliet, 2000), software which is not

sufficiently documented is bound to incur high costs later on. For example: (Ghezzi et al., 2003; Vliet, 2000)

Maintenance is adversely affected by lack of proper documentation. Although documentation is largely a factor

of understandability, it should be considered as a major attribute due to the fact that; Vliet, 2000) it gets the worst

attention, which results to effects that counteract the objectives of reuse.

6. OO Design Features and Reusability Factors

Factors that influence maintainability, Portability, Understandability, and generality are determined by certain

OO design features that can be measured. Thus, these factors can be indirectly determined by measuring these

features using appropriate metrics. Documentation on the other hand is not related to any OO design features, but

it can be determined as proposed by (Hristov et al., 2012): by use of four attributes viz., amount, quality,

completeness, and, availability of legal terms and conditions. Fig.1. shows the relationship between the major

reusability attributes and the factors that influence them.

6.1. Factors influencing Maintainability

6.1.1. Ease of Modification and Debugging

Maintainability involves two aspects viz., reparability and evolvability (Ghezzi et al., 2003). The former deals

with correction of defects (debugging), whilst the latter involves modifying the software to satisfy new

requirements. Software is said to be maintainable if these two aspects (i.e. debugging and modification) can be

achieved with a reasonable amount of work. The difficulty of maintaining software is brought about by increased

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

75

software complexity (Laird & Brennan, 2006). In OO design, Complexity of software is increased if inheritance

is not used in proper range; i.e. if it is overused or misused (Chawla & Nath, 2013). This means that; in order to

achieve ease of debugging and modification, inheritance should be measured, to determine if it has been used

properly (i.e. in proper range); and if not, the design should be reviewed and improved.

6.1.2. Component Independence

Coupling characterizes a module's relationship to other modules. It measures the interdependence of two

modules; where modules that are dependent on each other heavily are said to have high coupling (Ghezzi et al.,

2003). When classes of a system are highly dependent on each other, it is more likely that changing one class

will affect other classes of the system (Sommerville, 2011). This means that, high interdependence between

classes makes software modification difficult to perform. That is, high coupling will make it difficult to modify a

component in order to fit new reuse contexts. Reusable classes should therefore exhibit a high degree of

independence (i.e. low coupling). That is to say; that the degree of independence of a class can be easily

determined by measuring coupling.

6.2. Factors influencing Portability

Low coupling (high degree of independence) according to (Ghezzi et al., 2003) enables a module to be reused

separately. If a component is heavily dependent on other components, reusing it without the other components

may not be possible, or it may require a lot of modifications for it to be reused separately. According to

(Sametinger, 1997), low coupling is important with respect to component portability; as a component is also

(indirectly) dependent on platforms of components with which it interacts. Washizaki et al. (2003) consider

external dependency as one of the factors that affect portability, and according to them; external dependency

indicates a component’s degree of independence from other components of the software which originally used

the component. This means that, external dependency and coupling are semantically equal in this context.

6.3. Factors influencing Generality

Generality of OO software is achieved through generalization; i.e. by factoring out what is common to different

components in the parent class, and then single out the variations subclasses. More often than not, all those

features that are likely to be sufficiently general to be reused are factored out in the parent class (Ghezzi et al.,

2003). Generalization is implemented using Inheritance mechanisms built into the OO languages; i.e. all reusable

features that are factored out in the parent class are absorbed by heir classes, which are derived from the parent

classes (Sommerville, 2011). According to (Gill & Sikka, 2011), the level of generalization of a class is

determined by its relative abstraction level.

6.4. Factors influencing Understandability

6.4.1 Component cohesiveness and component independence

Understandability of a component is determined by coupling and cohesion; i.e. for a component to be

understandable, it should have high cohesion and low coupling (Ghezzi et al., 2003). The authors state that,

different elements of a module cooperate to perform the functionality of a module, and thus they are grouped

Maintainability

Understandability

Ease of Modification & Debugging

Inheritance

Component cohesiveness Component

Independence

 Component Independence
Coupling

Component

Independence

Availability of

legal terms &

conditions

Completeness

Quality

Amount

Coupling

Reusability

Documentation Portability

Generality

Cohesion

 Coupling

Inheritance

Level of

Generalization

Fig. 1 Factors Influencing the Reusability of OO Components

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

76

together for logical reasons and not by sheer chance. Lack of cohesion or low cohesion increases complexity,

whilst high cohesion increases simplicity (understandability) (Cho et al., 2001). On the other hand, a high level

of component independence enables components to be analyzed and understood separately (Ghezzi et al., 2003).

That is, if a component is highly dependent on other components, reference to the components to which it is

dependent on, is required in order to understand it. This reference is minimized if the degree of independence of

the component is high, thus understanding it, becomes easier.

7. Candidate Metrics for the proposed Framework

Literature survey revealed some metrics that can be used to quantify the major reusability attributes. Below is the

initial suggestion of these metrics:

7.1. Measuring Maintainability

The two factors influencing maintainability viz., Component independence, and Ease of maintenance and

debugging are determined by Coupling and inheritance respectively. Thus, coupling metrics such as CBO can be

used to determine component independence. Low values for CBO indicates high degree of independence. Ease

of debugging and modification on the other hand, can be determined by inheritance metrics such as the NOC

metric. Low values for NOC indicate a low degree of Component’s complexity hence easy to modify and debug.

7.2. Measuring Understandability

The two factors that influence Understandability i.e. Component independence and Component Cohesiveness are

related to coupling and cohesion respectively. The CBO metric can be used to determine component

independence, with Low CBO values being desirable. Cohesiveness on the other hand can be measured using

cohesion metrics such as the LCOM metric. Low LCOM values (high cohesiveness) are desirable.

7.3. Measuring portability

Component portability is determined by component independence. Therefore, the CBO metric can be used to

determine portability.

7.4. Measuring Generality

Generality of a component is determined by a component’s level of generalization, which is determined by its

relative abstraction level. This concept is related to inheritance; therefore inheritance-hierarchy-based metrics

such as the GC metric can be used to measure the generality of classes, where higher values of GC indicating

high degree of generality.

7.5. Measuring Documentation

There are four factors used to determine documentation i.e. amount of documentation; quality; completeness;

and, availability of legal terms and conditions. The amount of documentation can be measured through size, e.g.

in kilobytes (kB) etc, whereas the existence of legal terms and conditions is a Boolean metric; i.e. either this

information is provided or not (Hristov et al., 2012). Hristov et al. state that, Quality and Completeness are

subjective measures, which should be measured on an ordinal scale based on advice of an expert. However,

Quality can be determined by evaluating certain features for producing quality documentation, whereas

completeness can be determined by evaluating if documentation possesses all the necessary parts.

Sommerville (2001) proposes three features that determine documentation quality viz., document structure,

documentation standards and writing style. Document structure is the way in which the material in the document

is organized. This has a major impact on readability and usability and it is important to design this carefully

when creating documentation. It allows each part to be read as a single item and reduces problems of cross-

referencing when changes have to be made. Documentation Standards on the other hand, ensure that produced

documentation has a consistent appearance. According to Sommerville, documentation standards are dependent

on the nature of the project, and therefore it is important that, appropriate standards that suit each project are

chosen. In addition to the above, good documentation is fundamentally dependent on the writing style (writer’s

ability to construct clear and concise technical prose). That is; good documentation requires good writing.

Sommerville (2001) also gives a suggestion of seven parts that documentation for large systems that are

developed to a customer’s specification should include, and three parts that documentation for small systems that

are developed as software products should have. Reusable components fall into the latter category, and

documentation for such systems should include at least the following parts: specification of the system, an

architectural design document, and, the program source code.

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

77

8. The Reusability Calculation Model for OO Components

In order to measure the reusability of classes, it is necessary to define a reusability calculation model. This model

is based on the reusability attributes model shown in fig. 2. The relationship between the major reusability

attributes, the factors that influence these attributes, and the metrics for measuring these factors are shown in this

model. Theoretically, the reusability of a software component (denote by Rc), can be calculated using the

expression:

 RC=Maintainability+Portability+Documentation+Generality+Understandability (1)

The values of the five attributes are obtained by measuring the attributes using appropriate metrics (as indicated

in fig. 2). These attributes are considered to be of equal importance; hence, weighting values are assigned to

them, because some attributes are influence by more factors than others. Therefore Reusability of a software

component can then be calculated using the expression:

 RC= w1 .Mai + w2 .Port + w3.Doc + w4Gen + w5Und (2)

Where:

w1 to w5 are weighting values, and Mai, Port, Doc, Gen, and Und; are composite metrics for the reusability

attributes (i.e. Maintainability, portability, Documentation, generality, and understandability— respectively). The

composite metrics values should be adjusted to a common scale to facilitate comparison of reusability of

different components in the same context (Hristov et al., 2012). Hristov et al. states that normalizing these values

to the range of (0...1), is common in software metrics. The values of the weights; w1, w2, w3, w4 and w5 are 0.2,

0.1, 0.4, 0.1, and 0.2 respectively. This is based on the fact that each reusability attribute is determined by a

varying number of factors, and there are a total of ten factors in the reusability attributes model. To obtain the

Reusability (Rc) of a software component, metrics values for each of the reusability attributes should be obtained;

by using appropriate metrics to measure the factors that affect each attribute—(with metric values for attributes

that are determined by multiple factors being normalized to the range of (0...1)), then these composite metrics

values should be aggregated into the reusability calculation model (in equation 2).

9. Experimentation and Results

To demonstrate how the proposed model can be used to measure reusability of OO components, we use it to

calculate the reusability of a sample (non-graphical user interface-based) java payroll application (obtained from

Component Independence NOC

Understandability Generality

GC
Level of

Generalization

Ease of Modification &

Debugging

Component cohesiveness

Component

Independence

Coupling

Component

Independence

Availability

of legal terms

& conditions

Completeness

Quality

Amount

Coupling

Reusability

Documentation Portability Maintainability

Cohesion

 Coupling

Inheritance

Inheritance

CBO CBO

CBO LCOM

CBO: Coupling between object classes| NOC: Number of children|

LCOM: Lack of cohesion in methods | GC: Generality of a class |

Fig. 2 Reusability Attributes model for OO Components

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

78

(Deitel & Deitel, 2012)). The UML block diagram of the application is shown in fig.3. The Employee class is a

subclass of Java.lang.Object, because: (Deitel & Deitel, 2012) all java classes inherit from class object. The

methods and instance variables in each of the classes are also listed in table 1 to 5.

Table 1. Instance Variables in the Abstract Class Employee

Method Instance Variables

<<Constructor>> Employee firstName, lastName, socialSecurityNumber

setFirstName firstName

getFirstName firstName

setLastName lastName

getLastName lastName

setSocialSecurityNumber socialSecurityNumber

getSocialSecurityNumber socialSecurityNumber

toString firstName, lastName, socialSecurityNumber

earnings ABSTRACT

Table 2. Instance Variables in the Subclass SalariedEmployee

Method Instance Variables

SalariedEmployee firstName, lastName, socialSecurityNumber, weeklySalary

setWeeklySalary weeklySalary

getWeeklySalary weeklySalary

earnings weeklySalary

toString firstName, lastName, socialSecurityNumber, weeklySalary

Java.lang.Object (1)

Employee (2)

SalariedEmployee (3) Commission-Employee (4) Hourly-Employee (5)

BasePlusCommissionEmployee (6)

Fig. 2. The Class Hierarchy payroll Application

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

79

Table 3. Instance Variables in the Subclass HourlyEmployee

Method Instance Variables

HourlyEmployee firstName, lastName, socialSecurityNumber, wage, hours

setWage wage

getWage wage

setHours hours

getHours hours

earnings wage, hours

toString firstName, lastName, socialSecurityNumber, wage, hours

Table 4. Instance Variables in the Subclass CommissionEmployee

Method Instance Variables

CommissionEmployee firstName, lastName, socialSecurityNumber, grossSales,

commissionRate

setCommissionRate commissionRate

getCommissionRate commissionRate

setGrossSales grossSales

getGrossSales grossSales

earnings commissionRate, grossSales

toString firstName, lastName, socialSecurityNumber, grossSales,

commissionRate

Table 5. Instance Variables In The Subclass BasePlusCommissionEmployee

Method Instance Variables

BasePlusCommission-

Employee

firstName, lastName, socialSecurityNumber, grossSales, commissionRate, baseSalary

setBaseSalary baseSalary

getBaseSalary baseSalary

earnings baseSalary, commissionRate, grossSales

toString firstName, lastName, socialSecurityNumber, grossSales, commissionRate, baseSalary

9.1. Measuring OO Features for the Payroll Application

We use the proposed metrics to measure different OO features of the payroll application, and then, the obtained

values are analyzed to determine the values for the reusability attributes; which are aggregated into the

reusability calculation model.

9.1.1. Coupling between Object Classes (CBO) Metric

Singh et al. (2011) define Coupling as, "the measure of strength of association established by a connection from

one entity to another." The CBO metric is used to measure of how much coupling exists between classes

(Sommerville, 2011). The CBO metric of a class is the count of the number of other classes to which that class is

coupled with (Chidamber & Kemerer, 1994). CBO relates to the notion that an object is coupled to another

object if methods of one object uses methods or instance variables of another (Chidamber & Kemerer, 1994).

According to (Chidamber & Kemerer, 1991), any evidence of a method of one object using methods or instance

variables of another object constitutes coupling.

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

80

9.1.2. Number of Children (NOC) Metric

The NOC of a class is the number of immediate subclasses subordinated to it in the class hierarchy (Chidamber

& Kemerer, 1991, 1994).

9.1.3. Generality of Class (GC) Metric: Generality of Class (GC) is the measure of its relative abstraction level,

and it is obtained by dividing the abstraction level of the class by the total number of possible abstraction levels

(Gill & Sikka, 2011).

9.1.4. Lack of Cohesion in Methods (LCOM) Metric

Cohesion can be defined as, the degree to which methods of a class are related to one another and work together

to provide well bounded behavior (Singh et al., 2011). The LCOM metric is used to measure the cohesiveness of

a class, by using instance variables to measure the degree of similarity of methods of a class, and it is defined as

(Chidamber & Kemerer, 1994):

Consider a class C1 with n methods, M1, M2, ...,Mn. Let {Ij} = set of instance variables used by method Mi. There

are n such sets {I1}, ... , {In}. Let P = {(Ii, Ij) | Ii ∩ Ij =Ø} and Q = {(Ii, Ij) | Ii ∩ Ij ≠ Ø}. If all n sets {I1}, ... , {In}

are Ø then let P = Ø.

Example (Chidamber & Kemerer, 1994): Consider a class C with three methods M1, M2and M3. Let {I1} = {a, b,

c, d, e} and {I2} = {a, b, e} and {I3} = {x, y, z}. {I1} ∩ {I2} is nonempty, (i.e. {I1} ∩ {I2} ≠ Ø), but {I1} ∩ {I3}

and {I2} ∩ {I3} are null sets. LCOM is (the number of null intersections – number of nonempty intersections),

which in this case is 1. According to (Chidamber & Kemerer, 1994), the LCOM value provides a measure of

relative desperate nature of methods of a class.

The values obtained after measuring different OO structures of the payroll application are summarized in table 6

and 7. These values are analyzed and their interpretation given.

TABLE 6. Summary for NOC, CBO and GC Measures for the Payroll Application

Metric Values Classes

1 2 3 4 5 6 Total

NOC

Computed 0.2 0.6 0 0.2 0 0 1

Maximum 1 1 1 1 1 1 6

CBO

Computed 0.2 0.8 0.2 0.4 0.2 0.2 2

Maximum 1 1 1 1 1 1 6

GC

Computed 1 0.75 0.5 0.5 0.5 0.25 3.5

Maximum 1 1 1 1 1 1 6

NOC: The computed value of NOC is 1, compared to the maximum value of 6 (i.e. the NOC value is 0.17). The

lesser value for NOC indicates that the component is not complex, hence easy to debug and modify. The NOC

values can be seen as “the difficulty of debugging and modification”; and therefore ease of modification and

debugging can be obtained by subtracting the “difficulty of debugging and modification” from 1, since the

highest possible value for ease of debugging and modification is 1. Thus, the value for ease of debugging and

modification is 0.83.

CBO: The computed value for CBO is 2 compared to the maximum value of 6. Thus, the degree of

interdependence between classes is 0.33. To get the degree of independence, the degree of interdependence is

subtracted from 1; where 1 is the highest possible (normalized) value for the degree of independence. Thus, the

degree of independence for the payroll application is 0.67. Although literature suggests that, CBO should be

measured by counting the number of distinct non-inheritance related class hierarchies on which a class depends

(Cho et al., 2001; Sharma & Dubey, 2012), Couplings due to inheritance are considered in the computation of

CBO like in the case of (Chawla & Nath, 2013).

(3)

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

81

GC: The computed value for GC is 3.5, compared to the maximum value of 6. Therefore, the level of

generalization for the payroll application is 0.58.

LCOM: The number of non-null intersections of instance variable pairs of methods (|Q|), of each class of the

payroll application is greater than the number of null intersections (|P|), (i.e. |P| < |Q|); therefore, the LCOM

value for all classes of the payroll application is 0. To find the cohesiveness of a class, its LCOM value should be

subtracted from 1—as the LCOM value measures the relative desperateness of a class, and the highest possible

(normalized) value for cohesion is 1. Therefore, average cohesiveness for the payroll component is 1. The

computed LCOM and cohesion values for each class of the Payroll application are summarized in table VII. The

computed LCOM values are normalized with respect to the highest possible LCOM value, which is the total

number of paired instance variables of methods of a class. That is to say that, a class has the highest value for

LCOM if none of its paired methods have similar instance variables (i.e. when |Q| = 0).

Table 7. Summary of the LCOM Measure for the Payroll Application

Class No. of Methods Highest possible

LCOM Value

Computed (Normalized)

LCOM value

Cohesiveness

1

2 8 28 0 1

3 5 10 0 1

4 7 21 0 1

5 7 21 0 1

6 5 10 0 1

9.2. Measuring Documentation

9.2.1. Documentation Quality

The computed value for documentation quality is 15 out of a possible value of 15. Therefore the value for quality

is 1.The criteria used in calculating the value for quality is given in table 8.

Table 8. Measure for Documentation Quality

Factor Criterion Comment value

on a scale of

1-5

Max

value

Quality Document

structure

-Well structured.

5 5

Document

standards

-Good programming practice adopted (e.g. Excellent use of

comments).

-Standard notation used (e.g. use of UML for class diagrams)

5 5

Writing style -Clear and concise technical prose used. 5 5

TOTAL 15 15

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

82

9.2.2. Completeness

Two out of the three documentation components are given, thus documentation can be said to be 67% complete.

In other words, the degree of completeness of the documentation is 0.67.

Table 9. Measure for Completeness of Documentation

Documentation Component Provided Not Provided

System Specification ü

An architectural design document ü

The program source code ü

9.2.3. Availability of legal terms and conditions

The legal terms and conditions for use of the entire text are available; therefore a value is 1 assigned.

9.2.4. Amount of documentation

Prima-facially the amount of documentation provided is small. For amount of documentation, a value 5 on a

scale of 1 – 5 is assigned (with 5 representing the smallest possible amount of documentation). Therefore, the

value for amount of documentation becomes 1.

9.3. Aggregating The Values Into The Reusability Calculation Model

To calculate the reusability of the sample payroll component, the composite metrics viz., Mai, Port, Doc, Gen,

and Und; for the five attributes are first calculated, and then aggregated into the reusability calculation model:

 RC= w1 .Mai + w2 .Port + w3.Doc + w4Gen + w5Und

w1 = 0.2 w2 = 0.1 w3 = 0.4 w4 = 0.1 w5 = 0.2

Mai = 0.5 (Component independence + Ease of modification and debugging) => 0.5(0.67 + 0.83) = 0.75

Port = Component independence => 0.67

Doc = 0.25(0.67 + 1 + 1 + 1) = 0.92

Gen = Level of generalization => 0.58

Und = 0.5 (Component independence + Cohesiveness) => 0.5(0.67 + 1) =0.84

Therefore:

Rc = 0.2 (0.75) + 0.1(0.67) + 0.4(0.92) + 0.1(0.58) + 0.2(0.84) = 0.811

9.4. Interpretation

The Reusability for the sample payroll application is 0.811, compared to the maximum value of 1. Therefore it

can be concluded that reusability for the component is relatively high (i.e. the reusability of the component is at

81%).

10. Conclusion and Future Work

Software measurement is a key element in software Engineering; as it is used in evaluating quality of software,

hence finding ways of improvement. Thus, measuring Reusability is inevitable; if effective reuse is to be

achieved. We reviewed some research works on reusability measurement, in order to understand the current state

of research on OO software reusability measurement: where we reviewed and presented a number of reusability

measurement frameworks and metrics that exist in literature. We also observed in this paper that software

entities possess several measurable attributes, and trying to measure all of these attributes may be

counterproductive. Thus, an effective software measurement framework should exclude trivial as well as

overlapping attributes. We also discussed major attributes that we believed influence reusability. We also noted

in this paper that, in OO software, factors that influence the reusability attributes are related with several OO

design features, like inheritance, coupling etc, which can be measured using OO metrics. Thus, OO reusability

measurement requires a thorough understanding of how various OO design features influence the reusability

factors.

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

83

In this paper, we have proposed a novel reusability measurement framework for OO software that considers

three measurable features (i.e. Inheritance, coupling and cohesion) as the determinants for OO component

reusability. However there might be other several design features like, polymorphism, information hiding etc.

that may influence components reusability. Future research works should examine how other features influence

reusability, and present metrics for quantifying these features. Moreover, automating every aspect of the

proposed model should be the focus of future research works, in order to reduce the intellectual effort required to

use the model, and facilitate its implementation in practice.

References

AL-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din, J., & Turaev, S. (2010). Reusable Software Components

Framework. Advances. in Proc Communications, Computers, Systems, Circuits and Devices, (pp. 126-130).

Puerto De La Cruz, Tenerife.

Budhija, N., Singh, B., & Ahuja, S. P. (2013). Detection of Reusable Components in object Oriented

Programming Using Quality Metrics. 3 (1).

Caldiera, G., & Basili, V. R. (1991). Identifying and Qualifying Software Components. IEEE Computer , 24.

Chawla, S., & Nath, R. (2013). Evaluating Inheritance and Coupling Metrics. 4 (7).

Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object Oriented Design. IEEE Transactions on

Software Engineering , 20 (6), 476-493.

Chidamber, S. R., & Kemerer, C. F. (1991). Towards a Metrics Suite for Object Oriented Design. ACM

Conference. OOPSLA (pp. 197-211). Phoenix: ACM.

Cho, S. E., Kim, M. S., & Kim, D. S. (2001). Component Metrics to Measure Component Quality. Asia-Pacific

Software Engineering Conference (APSEC’01). Eighth. IEEE.

Deitel, P., & Deitel, H. (2012). Java: How to Program (Vol. 9th ed). Prentice Hall.

Dubey, S. K., & Rana, A. (2010). A Comprehensive Assessment of Object-Oriented Software Systems Using

Metrics Approach. International Journal on Computer Science and Engineering (IJCSE) , 2 (8), 2726-2730.

Frakes, W. B., & Kang, K. (2005). Software Reuse Research: Status and Future. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING , 31 (7), 529-536.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2003). Fundamentals of Software Engineering (2nd Edition ed.). New

Jersey: Prentice-Hall.

Gill, N. S., & Sikka, S. (2011). Inheritance Hierarchy Based Reuse & Reusability Metrics in OOSD.

International Journal on Computer Science and Engineering (IJCSE), 3 (6), 2300-2309.

Hristov, D., Hummel, O., Huq, M., & Janjic, W. (2012). Structuring Software Reusability Metrics. International

Conference on Software Engineering Advances. IARIA.

Ilyas, M., & Abbas, M. (2013). Role of Formalism in Software Reusability’s Effectiveness. International

Journal of Database Theory and Application , 6 (4), 119-130.

Laird, L. M., & Brennan, M. C. (2006). Software Measurement and Estimation A Practical Approach. Hoboken,

New Jersey: John Wiley & Sons, Inc.

Návrat, P., & Filkorn, R. (2005). A Note on the Role of Abstraction and Generality in Software Development.

Journal of Computer Science , 1 (1), 98-102.

Pressman, R. S. (2010). Software Engineering: A prectitioner's Approach (7th ed). New York: McGraw-Hill.

Rawat, M. S., Mittal, A., & Dubey, S. K. (2012). Survey on Impact of Software Metrics on Software Quality.

International Journal of Advanced Computer Science and Applications (IJACSA) , 3 (1), 137-141.

Sametinger, J. (1997). Software Engineering with Reusable Components. Berlin: Springer-Verlag.

Sandhu, P. S., Kaur, H., & Singh, A. (2009). Modeling of Reusability of Object Oriented Software System.

World Academy of Science, Engineering and Technology , 162-165.

Sharma, A., & Dubey, K. S. (2012). Comparison of Software Quality Metrics for Object-Oriented System.

International Journal of Computer Science & Management Studies (IJCSMS) , 12 (Special Issue), 12-24.

Singh, G., Singh, D., & Singh, V. (2011). A Study of Software Metrics. International Journal of Computational

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5782 (print) ISSN 2225-0506 (online)

Vol.4, No.4, 2014

84

Engineering & Management , 22-27.

Sommerville (2001). Software Documentation. Retrieved from:

http://www.literateprogramming.com/documentation.pdf

Sommerville, I. (2011). Software Engineering (9th Edition ed.). Boston: Pearson Education.

Vliet, H. V. (2000). Software Engineering Principles and Practice (2nd Editions ed.). Wiley and Sons.

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003). A Metrics Suite for Measuring Reusability of Software

Components. International Software Metrics Symposium, (pp. 211-223).

Westfall, L. (2005). 12 Steps to Useful Software Metrics, the Westfall team: Retrieved from:

http://www.westfallteam.com/Papers/12_steps_paper.pdf

The IISTE is a pioneer in the Open-Access hosting service and academic event

management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting

platform.

Prospective authors of journals can find the submission instruction on the

following page: http://www.iiste.org/journals/ All the journals articles are available

online to the readers all over the world without financial, legal, or technical barriers

other than those inseparable from gaining access to the internet itself. Paper version

of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Recent conferences: http://www.iiste.org/conference/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/

