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Abstract 

The critical role played by software in socioeconomic advancement, has seen a rapid demand for software; 

creating a large backlog in affordable and quality software that needs to be written.  Although software reuse is 

capable of addressing this issue, effective reuse is seldom to come by, thus the issue still remains unresolved. In 

order to achieve effective reuse, practitioners need to focus on reusability: the property that makes software 

reusable. Although Object Oriented Software Development (OOSD) approach is capable of improving software 

reusability, a way of ascertaining if the required degree of reusability is being achieved during the OOSD process 

is required. This can be achieved through measurement. The task involved in measuring reusability of Object 

oriented (OO) software is to; determine major reusability attributes of reusable components, relate these 

characteristics with factors that influence them, link each factor with measurable OO design features that 

determines them, relate each feature with appropriate metrics, and find out how these metrics collectively 

determine the reusability of components. A novel framework for achieving this task is proposed in this paper.      

Keywords: Software reuse, Software Reusability, Software Metrics, Software Component 

 

1. Introduction 

Software reuse is the use of existing artifacts to create new software (Gill & Sikka, 2011). The purpose of 

reusing software is to address issues related to software quality and productivity; as it is often pursued to produce 

quality and reliable software that are delivered on time and within budget (Frakes & Kang, 2005). Nonetheless, 

reuse is still facing numerous issues, hence lacking adoption from practitioners (Hristov, Hummel, Huq, & Janjic, 

2012). The major hindrance to effective reuse is not the lack of components that can be reused (Hristov et al.), 

but rather most of the existing software components have little or no reusability (Sametinger, 1997). According 

to (Gill & Sikka, 2011), Reusability is the degree to which a given software component can be reused. In other 

words, Reusability is a property of a software component that indicates its probability of reuse (Frakes & Kang, 

2005). This means that, if a component’s reusability is low, then its potential for reuse becomes low as well. 

Therefore, efforts should converge at developing components with a high degree of reusability; if effective reuse 

is to be achieved. 

According to (Dubey & Rana, 2010), Object Oriented Software Development (OOSD) approach is capable of 

improving software reusability, and has become popular in today’s scenario of software development 

environment. Nonetheless, a way of ascertaining if the required degree of reusability is being achieved during 

the OOSD process is required. This can be achieved through measurement. Measurement is required in software 

engineering in order to assess quality of software products as well as improvement of their performance (Chawla 

& Nath, 2013). Pressman (2010) underscores the importance of measuring software by stating that; “if you do 

not measure, there is no real way of determining whether you are improving. And if you are not improving, you 

are lost” (p. 683). Measurement of software is achieved by use of software metrics (Rawat, Mittal, & Dubey, 

2012; Sharma & Dubey, 2012); and the task involved in reusability measurement is; relating measurable 

reusability characteristics with appropriate metrics, and find out how these metrics collectively determine the 

reusability of components (Sandhu, Kaur, & Singh, 2009). In other words, a framework that describes the 

reusability of software and that structures appropriate metrics in a way that is easy to use is requisite in effective 

reusability assessment (Hristov et al, 2012). This research focuses on the reusability of Object Oriented (OO) 

components (classes).  

 

2. Related Work 

Research on software reuse has been ongoing for a long time; with most works focusing on the aspect of 
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reusability measurement—as a way of achieving effective reuse. This has culminated into a number of metrics 

and frameworks for reusability measurement. We review some of these works below.  

2.1. Reusability Measurement Frameworks 

Caldiera and Basili (1991) propose a framework for measuring the reusability of software components. They 

define a reusability attributes model, which attempts to characterize reusability, attributes directly through 

measures of an attribute, or indirectly through measures of evidence of an attribute’s existence.  The model 

consists of three attributes that are believed to influence the reusability of components; viz., reuse costs, 

functional usefulness, and quality of components. These attributes are determined by factors, which can be 

directly or indirectly measured using four software metrics, viz. McCabe’s Cyclomatic Complexity, Halstead's 

Volume metrics, Regularity, and Reuse Frequency. 

Another reusability measurement framework has been proposed by (Washizaki, Yamamoto, & Fukazawa, 2003). 

This framework targets the JavaBeans architecture (JavaBeans components). The authors propose a component 

reusability model, in which three major reusability attributes, i.e. understandability, adaptability and portability 

are considered. They further define five metrics, for measuring factors that influence the reusability attributes. 

The metrics include; Existence of Meta-Information (EMI), Rate of Component Observability (RCO), Rate of 

Component Customizability (RCC), Self-Completeness of Component’s Return Value (SCCr), and Self-

Completeness of Component’s Parameter (SCCp). 

AL-Badareen, Selamat, Jabar, Din, and Turaev (2010) propose another reusability assessment framework for 

systematic reuse. They categorize reusability characteristics into two main categories, viz., characteristics to 

assess components before they are stored in the reuse library, and, characteristics to assess components in order 

to build a new system. The first category considers the general characteristics that are required by any system, 

and they include: Software coexistence, adaptability/interoperability, generality, and compliance. The second 

category of characteristics considers specific characteristics that help in the system development, and they 

include; component suitability, documentation and modifiability. The authors propose that existence of these 

characteristics in a component should be determined by conducting tests on the component. For example, system 

and hardware independence, which are the two aspects of coexistence can be determined by running the software 

in different software and hardware environments respectively. 

Hristov et al. (2012) propose a reusability assessment framework for ad-hoc reuse. Their framework structures 

existing reusability metrics for component-based software development. They propose eight attributes that 

should be considered in assessing the reusability of components in ad-hoc reuse scenario. The attributes include: 

availability, documentation, complexity, quality, maintainability, adaptability, reuse and price. These attributes 

can be determined by various factors which can be directly or indirectly measured using appropriate metrics, 

which they propose. 

Another reusability assessment framework is proposed by (Ilyas & Abbas, 2013). The authors define three major 

attributes for determining reusability when extracting reusable components from existing components. The 

attributes are; Component Versatility, Reliability, and Understandability. Versatility, characterizes the multiplicity 

of tasks that can be simultaneously performed by a component, and it is determined by two factors, viz., 

Generality and Portability. These two factors can be determined by Generality and portability metrics 

respectively. Reliability on the other hand characterizes how well a software component has performed the 

required functionality. This can be determined by investigating the component's performance history in different 

circumstances for a given period of time—by recording a component’s; failure history, Error rate, Error type, and 

Men Time to Failure. Lastly Understandability characterizes the ease with which a software component can be 

understood, and it can be determined by the readability metric. 

2.2. Reusability Metrics for OO software 

Chidamber and Kemerer (1994), propose six metrics for Object-Oriented design. The metrics include; Weighted 

Methods per Class (WMC), Response for a Class (RFC), Lack of Cohesion in Methods (LCOM), Coupling 

Between Object Classes (CBO), Depth of Inheritance Tree of a class (DIT) and Number of Children of a class 

(NOC). Literature indicates that five of the metrics can be used in assessing reusability, i.e. WMC, NOC, CBO 

(Chidamber & Kemerer 1994; Singh, Singh, & Singh, 2011), DIT (Chidamber & Kemerer 1994; Gill and Sikka, 

2011), and LCOM (Cho, Kim, & Kim, 2001). 

Cho et al. (2001) present metrics for measuring complexity, customizability and reusability of components. They 

proposed four metrics to measure different aspects of a Component's complexity, which include; component 

plain complexity (CPC), component static complexity (CSC), component dynamic complexity (CDC), and 
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component Cyclomatic complexity (CCC) metrics. The authors observe that, if a component does not provide 

customizable interfaces, its reusability becomes low, because reusable components are often modified to meet 

new requirements in different reuse contexts. Thus, they propose the Component variability (CV) metric to 

measure a Component’s customizability. Lastly they propose two approaches for measuring the reusability of a 

component viz., how a component has reusability, and, how a component is reused in a particular application. 

Thus, they define the component itself reusability (CR) metric to measure the former, and the Component Reuse 

Level (CRL) metrics to measure the latter. 

Gill and Sikka (2011) propose five inheritance hierarchy-based metrics for assessing Reuse and Reusability of 

OO software: Breadth of Inheritance Tree (BIT), Method Reuse Per Inheritance Relation (MRPIR), Attribute 

Reuse Per Inheritance Relation (ARPIR), Generality of Class (GC) and Reuse Probability (RP). Two of the five 

metrics viz., GC and RP can be used to measure reusability, whilst the other three are for measuring Reuse.    

 

3. Unresolved Issues in OO Reusability Measurement 

Quality characteristics of OO software are dependent on OO-design features such as inheritance, coupling, 

cohesion etc., which can be measured using metrics; thus, quality assessment for OO software requires a 

thorough understanding of these features (Dubey & Rana, 2010). It then follows that; an effective OO reusability 

assessment framework should: (i) clearly define the attributes that affect the reusability of components (classes), 

(ii) define factors that influence each of the reusability attributes (iii) relate each of the OO design features with 

the factors that influence the reusability attributes, (iv) relate various OO metrics with the OO structures that 

they measure, and (v) determine how these metrics collectively determine reusability of classes. No such 

reusability assessment framework could be found in literature. Therefore, in spite of the existence of other 

reusability assessment frameworks, and various OO metrics in literature, the issue of effective reusability 

assessment of OO components remains unresolved. 

  

4. Proposed Framework 

We propose a novel framework for measuring reusability of OO classes in this paper. The framework correlates 

major reusability attributes with different factors that influence them. These factors are determined by OO 

features that can be measured using appropriate metrics that exist in literature. The key elements of the 

framework include: the major reusability attributes; factors influencing the reusability attributes, measurable OO 

structures that determine each reusability factor, metrics to measure the reusability factors, and, a reusability 

calculation model.  

 

5. Major Reusability Characteristics for Software Components 

Literature survey reveals a number of characteristics that are believed to influence reusability of software 

components. Such characteristics have been presented in, (Hristov et al., 2012; Caldiera & Basili, 1991; 

Washizaki et al., 2003; AL-badareen et al., 2010; Ilyas & Abbas, 2013). However, the problem is in determining 

which of these attributes should be considered in assessing reusability. Westfall (2005) has commented in this 

context by stating that; software entities possess many attributes that are measurable, and if all of these attributes 

are considered, then there are just too many measures, which may do more harm than good. An effective 

reusability assessment framework should therefore, have as few attributes as possible, but at the same time 

sufficient in assessing all aspects of reusability. That is, overlapping and trivial attributes should be excluded 

from such a framework. We discuss the major characteristics that we believe influence the reusability of software 

components below.   

5.1. Generality  

Generality is defined in IEEE Standard 610.12, as "the degree to which a system or component performs a broad 

range of functions." Generality increases the reusability of a component (Gill & Sikka, 2011; Sommerville, 

2011). That is, if generality of a component increases, then its probability to be reused increases. The hypothesis 

here is that: for any generalized component; the probability that the problem at hand may be restated as an 

instance of a problem solved by the component is high. Návrat and Filkorn (2005) also comment on the 

importance of generality with respect to reusability by stating that, things can only get reused if they are general 

and allow turning to specifics in a clear and straightforward manner.  
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5.2. Understandability  

A software component is more usable if it is can be easily understood (Hristov et al., 2012). More often than not, 

a developer will decide to reuse a component based on how well the component meets new requirements, which 

requires high understandability (Washizaki et al., 2003). According to Washizaki et al.; Understandability is 

defined based on the estimated effort required to recognize the concept behind a component and its applicability. 

Thus, understandability can be viewed as the property of a component "not being complex". Ghezzi, Jazayeri, & 

Mandrioli (2003) underscore the importance of understandability by stating that, understandability helps in 

achieving many of the other desirable qualities of software, such as evolvability and verifiability.  

5.3. Portability 

According to the IEEE Standard 610.12, portability is "the ease with which a system or component can be 

transferred from one hardware or software environment to another". Intuitively, the easier it is to transfer a 

component from one environment to another, the more the likelihood that the component will be reused in other 

applications. That is to say, that if a component has little or no portability then its chances of being reused reduce. 

For instance: if the effort required to modify a component in order for it to work a new environment equals the 

effort required to build the same component from scratch, then the component may as well be built from scratch. 

According to (Ghezzi et al., 2003), Portability is economically important because it helps amortize the 

investment in the software system across different environments and different generations of the same 

environment. This means, the payoff from reuse is higher for components that are environment independent. 

5.4. Maintainability 

The IEEE Standard 610.12 defines Maintainability as: “the ease with which a software system or component can 

be modified to correct faults, improve performance or other attributes, or adapt to a changed environment.” 

Ghezzi et al (2003), distinguish three categories of maintenance, viz. corrective, adaptive, and perfective. 

Corrective maintenance deals with the removal of residual errors that are present in the product when delivered, 

as well as errors introduced into the software during its maintenance. Perfective maintenance involves changing 

the software to improve some of its qualities. Here changes are due to the need to modify the functions offered 

by the application, add new functions, improve the performance of the application, make it easier to use etc. 

Adaptive maintenance on the other hand, involves adjusting the applications to changes in the environment. 

Maintenance is inevitable when a component is being reused in a new context, because developers may want to 

modify it for any of the reasons stated above. This should be achieved with a reasonable amount of work. 

Maintainability is an important characteristic because: (Ghezzi et al., 2003) there is evidence that maintenance 

costs exceed 60 percent of the total costs of software. 

5.5. Documentation 

Documentation is intended to make software components easier to understand (AL-badareen et al, 2010; Hristov 

et al., 2012). Proper documentation is of utmost importance because: (Vliet, 2000), software which is not 

sufficiently documented is bound to incur high costs later on. For example: (Ghezzi et al., 2003; Vliet, 2000) 

Maintenance is adversely affected by lack of proper documentation. Although documentation is largely a factor 

of understandability, it should be considered as a major attribute due to the fact that; Vliet, 2000) it gets the worst 

attention, which results to effects that counteract the objectives of reuse. 

 

6. OO Design Features and Reusability Factors 

Factors that influence maintainability, Portability, Understandability, and generality are determined by certain 

OO design features that can be measured. Thus, these factors can be indirectly determined by measuring these 

features using appropriate metrics. Documentation on the other hand is not related to any OO design features, but 

it can be determined as proposed by (Hristov et al., 2012): by use of four attributes viz., amount, quality, 

completeness, and, availability of legal terms and conditions. Fig.1. shows the relationship between the major 

reusability attributes and the factors that influence them.   

6.1. Factors influencing Maintainability 

6.1.1. Ease of Modification and Debugging 

Maintainability involves two aspects viz., reparability and evolvability (Ghezzi et al., 2003). The former deals 

with correction of defects (debugging), whilst the latter involves modifying the software to satisfy new 

requirements. Software is said to be maintainable if these two aspects (i.e. debugging and modification) can be 

achieved with a reasonable amount of work. The difficulty of maintaining software is brought about by increased 
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software complexity (Laird & Brennan, 2006). In OO design, Complexity of software is increased if inheritance 

is not used in proper range; i.e. if it is overused or misused (Chawla & Nath, 2013). This means that; in order to 

achieve ease of debugging and modification, inheritance should be measured, to determine if it has been used 

properly (i.e. in proper range); and if not, the design should be reviewed and improved. 

6.1.2. Component Independence 

Coupling characterizes a module's relationship to other modules. It measures the interdependence of two 

modules; where modules that are dependent on each other heavily are said to have high coupling (Ghezzi et al., 

2003). When classes of a system are highly dependent on each other, it is more likely that changing one class 

will affect other classes of the system (Sommerville, 2011). This means that, high interdependence between 

classes makes software modification difficult to perform. That is, high coupling will make it difficult to modify a 

component in order to fit new reuse contexts. Reusable classes should therefore exhibit a high degree of 

independence (i.e. low coupling). That is to say; that the degree of independence of a class can be easily 

determined by measuring coupling. 

6.2. Factors influencing Portability 

Low coupling (high degree of independence) according to (Ghezzi et al., 2003) enables a module to be reused 

separately. If a component is heavily dependent on other components, reusing it without the other components 

may not be possible, or it may require a lot of modifications for it to be reused separately. According to 

(Sametinger, 1997), low coupling is important with respect to component portability; as a component is also 

(indirectly) dependent on platforms of components with which it interacts. Washizaki et al. (2003) consider 

external dependency as one of the factors that affect portability, and according to them; external dependency 

indicates a component’s degree of independence from other components of the software which originally used 

the component. This means that, external dependency and coupling are semantically equal in this context. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Factors influencing Generality 

Generality of OO software is achieved through generalization; i.e. by factoring out what is common to different 

components in the parent class, and then single out the variations subclasses. More often than not, all those 

features that are likely to be sufficiently general to be reused are factored out in the parent class (Ghezzi et al., 

2003). Generalization is implemented using Inheritance mechanisms built into the OO languages; i.e. all reusable 

features that are factored out in the parent class are absorbed by heir classes, which are derived from the parent 

classes (Sommerville, 2011). According to (Gill & Sikka, 2011), the level of generalization of a class is 

determined by its relative abstraction level. 

6.4. Factors influencing Understandability 

6.4.1 Component cohesiveness and component independence  

Understandability of a component is determined by coupling and cohesion; i.e. for a component to be 

understandable, it should have high cohesion and low coupling (Ghezzi et al., 2003).  The authors state that, 

different elements of a module cooperate to perform the functionality of a module, and thus they are grouped 
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Fig. 1 Factors Influencing the Reusability of OO Components 
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together for logical reasons and not by sheer chance. Lack of cohesion or low cohesion increases complexity, 

whilst high cohesion increases simplicity (understandability) (Cho et al., 2001). On the other hand, a high level 

of component independence enables components to be analyzed and understood separately (Ghezzi et al., 2003). 

That is, if a component is highly dependent on other components, reference to the components to which it is 

dependent on, is required in order to understand it. This reference is minimized if the degree of independence of 

the component is high, thus understanding it, becomes easier. 

 

7. Candidate Metrics for the proposed Framework 

Literature survey revealed some metrics that can be used to quantify the major reusability attributes. Below is the 

initial suggestion of these metrics: 

7.1. Measuring Maintainability 

The two factors influencing maintainability viz., Component independence, and Ease of maintenance and 

debugging are determined by Coupling and inheritance respectively. Thus, coupling metrics such as CBO can be 

used to determine component independence. Low values for CBO indicates high degree of independence. Ease 

of debugging and modification on the other hand, can be determined by inheritance metrics such as the NOC 

metric. Low values for NOC indicate a low degree of Component’s complexity hence easy to modify and debug.  

7.2. Measuring Understandability 

The two factors that influence Understandability i.e. Component independence and Component Cohesiveness are 

related to coupling and cohesion respectively. The CBO metric can be used to determine component 

independence, with Low CBO values being desirable. Cohesiveness on the other hand can be measured using 

cohesion metrics such as the LCOM metric. Low LCOM values (high cohesiveness) are desirable. 

7.3. Measuring portability 

Component portability is determined by component independence. Therefore, the CBO metric can be used to 

determine portability. 

7.4. Measuring Generality 

Generality of a component is determined by a component’s level of generalization, which is determined by its 

relative abstraction level. This concept is related to inheritance; therefore inheritance-hierarchy-based metrics 

such as the GC metric can be used to measure the generality of classes, where higher values of GC indicating 

high degree of generality. 

7.5. Measuring Documentation 

There are four factors used to determine documentation i.e. amount of documentation; quality; completeness; 

and, availability of legal terms and conditions. The amount of documentation can be measured through size, e.g. 

in kilobytes (kB) etc, whereas the existence of legal terms and conditions is a Boolean metric; i.e. either this 

information is provided or not (Hristov et al., 2012). Hristov et al. state that, Quality and Completeness are 

subjective measures, which should be measured on an ordinal scale based on advice of an expert. However, 

Quality can be determined by evaluating certain features for producing quality documentation, whereas 

completeness can be determined by evaluating if documentation possesses all the necessary parts. 

Sommerville (2001) proposes three features that determine documentation quality viz., document structure, 

documentation standards and writing style. Document structure is the way in which the material in the document 

is organized. This has a major impact on readability and usability and it is important to design this carefully 

when creating documentation. It allows each part to be read as a single item and reduces problems of cross-

referencing when changes have to be made. Documentation Standards on the other hand, ensure that produced 

documentation has a consistent appearance. According to Sommerville, documentation standards are dependent 

on the nature of the project, and therefore it is important that, appropriate standards that suit each project are 

chosen. In addition to the above, good documentation is fundamentally dependent on the writing style (writer’s 

ability to construct clear and concise technical prose). That is; good documentation requires good writing. 

Sommerville (2001) also gives a suggestion of seven parts that documentation for large systems that are 

developed to a customer’s specification should include, and three parts that documentation for small systems that 

are developed as software products should have. Reusable components fall into the latter category, and 

documentation for such systems should include at least the following parts: specification of the system, an 

architectural design document, and, the program source code. 
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8. The Reusability Calculation Model for OO Components 

In order to measure the reusability of classes, it is necessary to define a reusability calculation model. This model 

is based on the reusability attributes model shown in fig. 2. The relationship between the major reusability 

attributes, the factors that influence these attributes, and the metrics for measuring these factors are shown in this 

model. Theoretically, the reusability of a software component (denote by Rc), can be calculated using the 

expression: 

        RC=Maintainability+Portability+Documentation+Generality+Understandability  (1) 

The values of the five attributes are obtained by measuring the attributes using appropriate metrics (as indicated 

in fig. 2). These attributes are considered to be of equal importance; hence, weighting values are assigned to 

them, because some attributes are influence by more factors than others. Therefore Reusability of a software 

component can then be calculated using the expression: 

     RC= w1 .Mai + w2 .Port + w3.Doc + w4Gen + w5Und           (2) 

Where:  

w1 to w5 are weighting values, and Mai, Port, Doc, Gen, and Und; are composite metrics for the reusability 

attributes (i.e. Maintainability, portability, Documentation, generality, and understandability— respectively). The 

composite metrics values should be adjusted to a common scale to facilitate comparison of reusability of 

different components in the same context (Hristov et al., 2012). Hristov et al. states that normalizing these values 

to the range of (0...1), is common in software metrics. The values of the weights; w1, w2, w3, w4 and w5 are 0.2, 

0.1, 0.4, 0.1, and 0.2 respectively. This is based on the fact that each reusability attribute is determined by a 

varying number of factors, and there are a total of ten factors in the reusability attributes model. To obtain the 

Reusability (Rc) of a software component, metrics values for each of the reusability attributes should be obtained; 

by using appropriate metrics to measure the factors that affect each attribute—(with metric values for attributes 

that are determined by multiple factors being normalized to the range of (0...1)), then these composite metrics 

values should be aggregated into the reusability calculation model (in equation 2). 

 

9. Experimentation and Results 

To demonstrate how the proposed model can be used to measure reusability of OO components, we use it to 

calculate the reusability of a sample (non-graphical user interface-based) java payroll application (obtained from 
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(Deitel & Deitel, 2012)). The UML block diagram of the application is shown in fig.3. The Employee class is a 

subclass of Java.lang.Object, because: (Deitel & Deitel, 2012) all java classes inherit from class object. The 

methods and instance variables in each of the classes are also listed in table 1 to 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Instance Variables in the Abstract Class Employee 

Method Instance Variables 

<<Constructor>> Employee firstName, lastName, socialSecurityNumber 

setFirstName firstName 

getFirstName firstName 

setLastName lastName 

getLastName lastName 

setSocialSecurityNumber socialSecurityNumber 

getSocialSecurityNumber socialSecurityNumber 

toString firstName, lastName, socialSecurityNumber 

earnings ABSTRACT 

 

Table 2. Instance Variables in the Subclass SalariedEmployee 

Method Instance Variables 

SalariedEmployee firstName, lastName, socialSecurityNumber, weeklySalary 

setWeeklySalary weeklySalary 

getWeeklySalary weeklySalary 

earnings weeklySalary 

toString firstName, lastName, socialSecurityNumber, weeklySalary 

 

Java.lang.Object (1) 

Employee (2) 

SalariedEmployee (3) Commission-Employee (4) Hourly-Employee (5) 

BasePlusCommissionEmployee (6) 

Fig. 2. The Class Hierarchy payroll Application 
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Table 3. Instance Variables in the Subclass HourlyEmployee 

Method Instance Variables 

HourlyEmployee firstName, lastName, socialSecurityNumber, wage, hours 

setWage wage 

getWage wage 

setHours hours 

getHours hours 

earnings wage, hours 

toString  firstName, lastName, socialSecurityNumber, wage, hours 

 

Table 4. Instance Variables in the Subclass CommissionEmployee 

Method Instance Variables 

CommissionEmployee firstName, lastName, socialSecurityNumber, grossSales, 

commissionRate 

setCommissionRate commissionRate 

getCommissionRate  commissionRate 

setGrossSales grossSales 

getGrossSales grossSales 

earnings commissionRate, grossSales 

toString firstName, lastName, socialSecurityNumber, grossSales, 

commissionRate 

 

Table 5. Instance Variables In The Subclass BasePlusCommissionEmployee 

Method  Instance Variables 

BasePlusCommission-

Employee 

firstName, lastName, socialSecurityNumber, grossSales, commissionRate, baseSalary 

setBaseSalary baseSalary 

getBaseSalary baseSalary 

earnings baseSalary, commissionRate, grossSales 

toString firstName, lastName, socialSecurityNumber, grossSales, commissionRate, baseSalary 

 

9.1. Measuring OO Features for the Payroll Application 

We use the proposed metrics to measure different OO features of the payroll application, and then, the obtained 

values are analyzed to determine the values for the reusability attributes; which are aggregated into the 

reusability calculation model. 

9.1.1. Coupling between Object Classes (CBO) Metric 

Singh et al. (2011) define Coupling as, "the measure of strength of association established by a connection from 

one entity to another." The CBO metric is used to measure of how much coupling exists between classes 

(Sommerville, 2011). The CBO metric of a class is the count of the number of other classes to which that class is 

coupled with (Chidamber & Kemerer, 1994). CBO relates to the notion that an object is coupled to another 

object if methods of one object uses methods or instance variables of another (Chidamber & Kemerer, 1994). 

According to (Chidamber & Kemerer, 1991), any evidence of a method of one object using methods or instance 

variables of another object constitutes coupling.  
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9.1.2. Number of Children (NOC) Metric 

The NOC of a class is the number of immediate subclasses subordinated to it in the class hierarchy (Chidamber 

& Kemerer, 1991, 1994). 

9.1.3. Generality of Class (GC) Metric: Generality of Class (GC) is the measure of its relative abstraction level, 

and it is obtained by dividing the abstraction level of the class by the total number of possible abstraction levels 

(Gill & Sikka, 2011). 

9.1.4. Lack of Cohesion in Methods (LCOM) Metric 

Cohesion can be defined as, the degree to which methods of a class are related to one another and work together 

to provide well bounded behavior (Singh et al., 2011). The LCOM metric is used to measure the cohesiveness of 

a class, by using instance variables to measure the degree of similarity of methods of a class, and it is defined as 

(Chidamber & Kemerer, 1994): 

Consider a class C1 with n methods, M1, M2, ...,Mn. Let {Ij} = set of instance variables used by method Mi. There 

are n such sets {I1}, ... , {In}. Let P = {(Ii, Ij) | Ii ∩ Ij =Ø} and Q = {(Ii, Ij) | Ii ∩ Ij ≠ Ø}. If all n sets {I1}, ... , {In} 

are Ø then let P = Ø. 

 

Example (Chidamber & Kemerer, 1994): Consider a class C with three methods M1, M2and M3. Let {I1} = {a, b, 

c, d, e} and {I2} = {a, b, e} and {I3} = {x, y, z}. {I1} ∩ {I2} is nonempty, (i.e. {I1} ∩ {I2} ≠ Ø), but {I1} ∩ {I3} 

and {I2} ∩ {I3} are null sets. LCOM is (the number of null intersections – number of nonempty intersections), 

which in this case is 1. According to (Chidamber & Kemerer, 1994), the LCOM value provides a measure of 

relative desperate nature of methods of a class. 

The values obtained after measuring different OO structures of the payroll application are summarized in table 6 

and 7. These values are analyzed and their interpretation given. 

 

TABLE 6. Summary for NOC, CBO and GC Measures for the Payroll Application 

Metric Values Classes 

1 2 3 4 5 6 Total 

 

NOC 

Computed 0.2 0.6 0 0.2 0 0 1 

Maximum 1 1 1 1 1 1 6 

 

CBO 

Computed 0.2 0.8 0.2 0.4 0.2 0.2 2 

Maximum 1 1 1 1 1 1 6 

 

GC 

Computed 1 0.75 0.5 0.5 0.5 0.25 3.5 

Maximum 1 1 1 1 1 1 6 

 

NOC: The computed value of NOC is 1, compared to the maximum value of 6 (i.e. the NOC value is 0.17). The 

lesser value for NOC indicates that the component is not complex, hence easy to debug and modify. The NOC 

values can be seen as “the difficulty of debugging and modification”; and therefore ease of modification and 

debugging can be obtained by subtracting the “difficulty of debugging and modification” from 1, since the 

highest possible value for ease of debugging and modification is 1. Thus, the value for ease of debugging and 

modification is 0.83. 

CBO: The computed value for CBO is 2 compared to the maximum value of 6. Thus, the degree of 

interdependence between classes is 0.33. To get the degree of independence, the degree of interdependence is 

subtracted from 1; where 1 is the highest possible (normalized) value for the degree of independence. Thus, the 

degree of independence for the payroll application is 0.67. Although literature suggests that, CBO should be 

measured by counting the number of distinct non-inheritance related class hierarchies on which a class depends 

(Cho et al., 2001; Sharma & Dubey, 2012), Couplings due to inheritance are considered in the computation of 

CBO like in the case of (Chawla & Nath, 2013). 

(3) 
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GC: The computed value for GC is 3.5, compared to the maximum value of 6. Therefore, the level of 

generalization for the payroll application is 0.58. 

LCOM: The number of non-null intersections of instance variable pairs of methods (|Q|), of each class of the 

payroll application is greater than the number of null intersections (|P|), (i.e. |P| < |Q|); therefore, the LCOM 

value for all classes of the payroll application is 0. To find the cohesiveness of a class, its LCOM value should be 

subtracted from 1—as the LCOM value measures the relative desperateness of a class, and the highest possible 

(normalized) value for cohesion is 1. Therefore, average cohesiveness for the payroll component is 1. The 

computed LCOM and cohesion values for each class of the Payroll application are summarized in table VII. The 

computed LCOM values are normalized with respect to the highest possible LCOM value, which is the total 

number of paired instance variables of methods of a class. That is to say that, a class has the highest value for 

LCOM if none of its paired methods have similar instance variables (i.e. when |Q| = 0). 

 

Table 7. Summary of the LCOM Measure for the Payroll Application 

Class No. of Methods Highest possible 

LCOM Value 

Computed (Normalized) 

LCOM value 

Cohesiveness 

1       

2 8 28 0 1 

3 5 10 0 1 

4 7 21 0 1 

5 7 21 0 1 

6  5 10 0 1 

 

9.2. Measuring Documentation 

9.2.1. Documentation Quality 

The computed value for documentation quality is 15 out of a possible value of 15. Therefore the value for quality 

is 1.The criteria used in calculating the value for quality is given in table 8.  

 

Table 8. Measure for Documentation Quality 

Factor  Criterion Comment  value 

on a scale of 

1-5 

Max 

value 

Quality Document 

structure 

-Well structured. 

 

5 5 

Document 

standards 

-Good programming practice adopted (e.g. Excellent use of 

comments). 

-Standard notation used (e.g. use of UML for class diagrams) 

5 5 

Writing style -Clear and concise technical prose used. 5 5 

TOTAL 15 15 
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9.2.2. Completeness 

Two out of the three documentation components are given, thus documentation can be said to be 67% complete. 

In other words, the degree of completeness of the documentation is 0.67.  

 

Table 9. Measure for Completeness of Documentation 

Documentation Component Provided Not Provided 

System Specification ü   

An architectural design document  ü  

The program source code ü   

 

9.2.3. Availability of legal terms and conditions 

The legal terms and conditions for use of the entire text are available; therefore a value is 1 assigned.  

9.2.4. Amount of documentation 

Prima-facially the amount of documentation provided is small. For amount of documentation, a value 5 on a 

scale of 1 – 5 is assigned (with 5 representing the smallest possible amount of documentation). Therefore, the 

value for amount of documentation becomes 1. 

9.3. Aggregating The Values Into The Reusability Calculation Model 

To calculate the reusability of the sample payroll component, the composite metrics viz., Mai, Port, Doc, Gen, 

and Und; for the five attributes are first calculated, and then aggregated into the reusability calculation model: 

   RC= w1 .Mai + w2 .Port + w3.Doc + w4Gen + w5Und 

w1 = 0.2 w2 = 0.1 w3 = 0.4 w4 = 0.1 w5 = 0.2 

Mai = 0.5 (Component independence + Ease of modification and debugging) => 0.5(0.67 + 0.83) = 0.75 

Port = Component independence => 0.67 

Doc = 0.25(0.67 + 1 + 1 + 1) = 0.92 

Gen = Level of generalization => 0.58 

Und = 0.5 (Component independence + Cohesiveness) => 0.5(0.67 + 1) =0.84 

 

Therefore: 

Rc = 0.2 (0.75) + 0.1(0.67) + 0.4(0.92) + 0.1(0.58) + 0.2(0.84) = 0.811 

9.4. Interpretation 

The Reusability for the sample payroll application is 0.811, compared to the maximum value of 1. Therefore it 

can be concluded that reusability for the component is relatively high (i.e. the reusability of the component is at 

81%). 

 

10. Conclusion and Future Work 

Software measurement is a key element in software Engineering; as it is used in evaluating quality of software, 

hence finding ways of improvement. Thus, measuring Reusability is inevitable; if effective reuse is to be 

achieved. We reviewed some research works on reusability measurement, in order to understand the current state 

of research on OO software reusability measurement: where we reviewed and presented a number of reusability 

measurement frameworks and metrics that exist in literature. We also observed in this paper that software 

entities possess several measurable attributes, and trying to measure all of these attributes may be 

counterproductive. Thus, an effective software measurement framework should exclude trivial as well as 

overlapping attributes. We also discussed major attributes that we believed influence reusability. We also noted 

in this paper that, in OO software, factors that influence the reusability attributes are related with several OO 

design features, like inheritance, coupling etc, which can be measured using OO metrics. Thus, OO reusability 

measurement requires a thorough understanding of how various OO design features influence the reusability 

factors.  
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In this paper, we have proposed a novel reusability measurement framework for OO software that considers 

three measurable features (i.e. Inheritance, coupling and cohesion) as the determinants for OO component 

reusability. However there might be other several design features like, polymorphism, information hiding etc. 

that may influence components reusability. Future research works should examine how other features influence 

reusability, and present metrics for quantifying these features. Moreover, automating every aspect of the 

proposed model should be the focus of future research works, in order to reduce the intellectual effort required to 

use the model, and facilitate its implementation in practice. 
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