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Abstract 

Graphs arise in a natural way in many applications, together with the need to be drawn. Except for very small 

instances, drawing a graph by hand becomes a very complex task, which must be performed by automatic tools. 

The field of graph drawing is concerned with finding algorithms to draw graph in an aesthetically pleasant way, 

based upon a certain number of aesthetic criteria that define what a good drawing, (synonyms: diagrams, 

pictures, layouts), of a graph should be. This problem can be found in many such as in the computer networks, 

data networks, class inter-relationship diagrams in object oriented databases and object oriented programs, visual 

programming interfaces, database design systems, software engineering…etc. 

Given a plane graph G, we wish to find a drawing of G in the plane such that the vertices of G are represented as 

grid points, and the edges are represented as straight-line segments between their endpoints without any edge-

intersection. Such drawings are called planar straight-line drawings of G. An additional objective is to minimize 

the area of the rectangular grid in which G is drawn. In this paper we introduce a new algorithms that finds an 

embedding of 3-planar graph. 

Keywords: 3- Planar Graph; Graph Drawing; drawing on grid. 
 

1. Introduction 

Visualization is the presentation of information graphically, rather than textually. To comprehend a large body of 

information presented in textual form, users must read each entry in turn, and recall related earlier entries. This 

task quickly exceeds the user’s ability to remember the earlier entries. On the other hand, if the same information 

is presented graphically by an appropriate visualization, then the user simply "sees" the relationship. The 

drawing of graphs is widely recognized as a very important task in diverse fields of research and development. 

Examples include VLSI design, plant layout, software engineering and bioinformatics [1,2].  Large and complex 

graphs are natural ways of describing real world systems that involve interactions between objects: persons 

and/or organizations in social networks, articles incitation networks, web sites on the World Wide Web, proteins 

in regulatory networks, etc [3,4]. 

Graphs that can be drawn without edge crossings (i.e. planar graphs) have a natural advantage for visualization 

[5]. When we want to draw a graph to make the information contained in its structure easily accessible, it is 

highly desirable to have a drawing with as few edge crossings as possible. 

A straight-line embedding of a plane graph G is a plane embedding of G in which edges are represented by 

straight-line segments joining their vertices, these straight line segments intersect only at a common vertex. 

A straight-line drawing is called a convex drawing if every facial cycle is drawn as a convex polygon. Note that 

not all planar graphs admit a convex drawing.  A straight-line drawing is called an inner-convex drawing if every 

inner facial cycle is drawn as a convex polygon [6]. 

A strictly convex drawing of a planar graph is a drawing with straight edges in which all faces, including the 

outer face, are strictly convex polygons, i. e., polygons whose interior angles are less than 180 [7,8]. However, a 

problem with graph layout methods which are capable of producing satisfactory results for a wide range of 

graphs is that they often put an extremely high demand on computational resources [9]. Visualizing graphs using 

virtual physical models is probably the most heavily used technique for drawing graphs in practice. There are 

many techniques to produce length-sensitive drawings for large graphs by reformulating the energy function 

[10,11,12]. 

One of the most popular drawing conventions is the straight-line drawing, where all the edges of a graph are 

drawn as straight-line segments. Every planar graph is known to have a planar straight-line drawing [13]. A 

straight-line drawing is called a convex drawing if every facial cycle is drawn as a convex polygon. Note that not 

all planar graphs admit a convex drawing. Tutte [14] gave a necessary and sufficient condition for a triconnected 

plane graph to admit a convex drawing. Thomassen [15] also gave a necessary and sufficient condition for a 

biconnected plane graph to admit a convex drawing. Based on Thomassen’s result, Chiba et al. [16] presented a 

linear time algorithm for finding a convex drawing (if any) for a biconnected plane graph with a specified 
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convex boundary. Tutte [14] also showed that every triconnected plane graph with a given boundary drawn as a 

convex polygon admits a convex drawing using the polygonal boundary. That is, when the vertices on the 

boundary are placed on a convex polygon, inner vertices can be placed on suitable positions so that each inner 

facial cycle forms a convex polygon. 

In paper [17], it was proved that every triconnected plane graph admits an inner-convex drawing if its boundary 

is fixed with a star-shaped polygon P, i.e., a polygon P whose kernel (the set of all points from which all points 

in P are visible) is not empty. Note that this is an extension of the classical result by Tutte [14] since any convex 

polygon is a star-shaped polygon. We also presented a linear time algorithm for computing an inner-convex 

drawing of a triconnected plane graph with a star-shaped boundary [13]. 

Rosenstiehl and Tarjan [18] posed the question of whether it is always possible to find such an embedding into a 

polynomial-size grid. Later, de Fraysseix, Pach and Pollack [19] indeed gave a method that embeds an n-vertex 

planar graph into the (2n-4)×(n-2) grid in an O(n log n) time. Kant [20] developed a method for constructing 

convex grid drawing of 3-connected plane graphs in linear-time. His algorithm, related to those of Refs. [21] and 

[4a], uses a (2n-4)×(n-2) grid, and the grid size was improved to (n-2)×(n-2) by Schnyder and Totter [22] and 

Chrobak and Kant [20], independently. All these algorithms can be implemented in linear time.  

 

In this paper, we will describe a new technique for graph layout that attempts to satisfy edge length constraints. 

This technique uses a modified Kant approach of convex drawing. In this paper we will show how to construct 

convex drawings of 3-connected plane graphs into a smaller, (n-3)×(n-3), grid in linear time. In addition, The 

paper present a different techniques for orthogonal drawing of 3- planar graph aiming to improve them to get the 

optimal upper and lower area bounds.  

The remainder of the paper is organized as follows. In section 2, we give some definitions in graph drawing, 

specially, the canonical decomposition of plane graph . In sections 3, we introduce an algorithm that finds an 

embedding of G into a grid, (n-2)×(n-2). In sections 4, We will show how to modify the previous algorithm in 

order to reduce the grid size to (n-3)×(n-3). Section 5 present a new algorithm of 3-planar graph in orthogonal 

drawing. In section 6,we improve the grid size of orthogonal drawing into a smaller grid in linear time. 

 

2. The Canonical Decomposition of Plane Graph 

In this section we introduce the concept of canonical decomposition for triconnected planar graphs, The 

canonical decomposition is a generalization of the canonical ordering of De Fraysseix et al. [23]. Define a plane 

graph G to be internally 3-connected if  (a) G is 2-connected, and (b) if removing two vertices u,v disconnects G 

then u, v belong to the outer face and each connected component of G-{u, v} has a vertex of the outer face. In 

other words, G is internally 3-connected iff it can be extended to a 3-connected graph by adding a vertex and 

connecting it to all vertices on the outer face. Let G be an n-vertex 3-connected plane graph with an edge 

e(v1,v2) on the outer face.  

Let π=(V1,...,Vm) be an ordered partition of V, that is , V1È...ÈVm = V and for Vi ÇVj¹F for i¹j. Define Gk to 

be the subgraph of G induced by V1È...ÈVk, and denote by Ck the external face of Gk. We say that π is a 

canonical decomposition of G with bottom edge e(v1,v2) if: 

(CD1) Vm is a singleton, {z0}, where z0 lies on the outer face and z0Ï{v1,v2}. 

(CD2) C1 is a face of G, and each Ck is a cycle containing e(v1,v2). 

(CD3) Each Gk is 2-connected and internally 3-connected. 

(CD4) For each 2£ k £ m-1, one of the two following conditions holds: 

(i) Vk is a singleton, {z}, where z belongs to Ck and has at least one neighbor in G-Gk . 

(ii) Vk is a chain, (z1, z2,..., zt), where each zi has at least one neighbor in G-Gk , and where z1 and zt each 

have one neighbor on Gk-1 and these are the only two neighbors of Vk in Gk-1 . 

 By an ordered plane graph (G,π) we will understand a plane graph G with a given canonical 

decomposition π=V1,...,Vm. By the contour of Gk we will mean its outer face written as Ck.We will commonly 

view Ck as a path (w1,w2,...,wj) starting with w1=v1 and ending with wj=v2 , ignoring the edge e(v1,v2). We will 

also view Ck as being ordered from “left” to “right”, where w1 is the leftmost and wj is the rightmost vertex on 

Ck. Let wp be the leftmost and wq be the rightmost neighbors of v in Ck, we will say that the vertex v covers the 

vertices wp+1,..., wq-1. Throughout the rest of the paper we will call a plane graph internally convex if all its 

internal faces are convex. 

 We will use the following lemma proved by Kant in [21], and our explanation is similar to the one 

given by Chrobak and Kant [20]: 
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Lemma 1: Each 3-connected plane graph has a canonical decomposition. 

Proof: We present only a sketch. Pick an edge e(v1,v2) and a vertex z0Ï{v1,v2} on the outer face of G. Let 

Vm={z0}. Inductively, suppose that Vm,...,Vk -1 have been defined, and Gm,...,Gk -1  satisfy the lemma. If Gk is 

3-connected, let Vk  be {z}, where z is an arbitrary vertex from Ck -{v1,v2} that has neighbor in G-Gk. 

Otherwise, if Ck contains a chain whose removal does not destroy 2-connectivity, let Vk be a maximal such 

chain –its members will have degree 2 in Gk (and will have a neighbor in G-Gk by 3-connectivity of G), and its 

two neighbors will have greater degree. If, however, no such chain exists, pick two vertices in Ck whose removal 

disconnects Gk that are as close to each other as possible in the ordering of Ck. The 3-connected component in 

between, by 3-connectivity of G, contains a vertex z having a neighbor in G-Gk. Let Vk be {z}.    

 

 

k Vk Ck 

1 9-14 9-14 

2 8 9,10,11,8,12,13,14 

3 7 9,10,11,7,8,12,13,14 

4 5,6 9,5,6,10,11,7,8,12,13,14 

5 4 9,5,6,10,11,7,4,8,12,13,14 

6 3 9,5,6,3,13,14 

7 2 9,5,2,3,13,14 

8 1 9,5,2,1,14 

Figure 1: The canonical decomposition with bottom edge e(9,14) 

 

As it was shown by Kant [21] (Theorem 2.3) a canonical decomposition can be constructed in linear time. In 

Figure 1 an example (which is given in [20]) of a canonical decomposition of a triconnected planar graph given, 

with bottom edge e(9,14). 

By P(v) we will denote the current position of vertex v in the grid, i.e., P(v):=(x(v),y(v)). By P(u,v) we denote the 

embedding of edge e(u,v), that is, the line segment that connects P(u) with P(v). To each vertex w we assign a set 

of vertices, )(wU , that will contain certain vertices that are located below w and have to be shifted right 

whenever w is shifted right. 

We will describe first an algorithm that uses the (n-2)×(n-2) grid, n³3, and then show how to improve it to (n-

3)×(n-3), n>3. 

 

3. ConvexDraw Algorithm  

The algorithm will be to add sets Vk, one by one, in forward order V1, ,..., Vm, adjusting the embedding at every 

step. For zi, i=1,2,…,t, P(zi) :=( x(zi), y(zi)), since x(zi) and  y(zi) are integers so P(zi) is always a grid point. 

Let (G,p) be a given ordered plane graph with n vertices, where p= V1,..., Vm and n³3. Suppose that 2£k£m and 

that we are about to add Vk to Gk-1. 

Algorithm ConvexDraw 

Input: A convex graph G with b vertices and m contours. 

Output: Outline graph embedded in (b-2)×(b-2) grid. 

Begin  

We initialize the embedding by drawing C1 =(v1=z1, z2,..., zt= v2), as follows :  

· P(z1):=(0,0); 

· P(zt):=(t-2,0); 

· P(zi):=(i-2,1), for all i=2,…,t-1; 

· .32,1}{)( ,...,t,, izzU ii ==  

Then, for each k= 2,…,m, we do the following: 

· Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1 . 

· Let Vk =(z1, z2,..., zt), and Vk may be a singleton or a chain. 
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· Let wp be the leftmost and wq be the rightmost neighbors of Vk in Ck-1. 

We now execute the following steps: 

Step 1: (Shift operation) for each vertex v is belong to{ , ...,jpiwU i 1 , )( += } do 

x(v) = x(v) + t; (1) 

Step 2: (Install operation) For each i=1,…,t, let P(zi) be defied by : 

x(zi) =x(wp)+i-1, (2) 

y(zi) = y(wq) + x(wq) - x(wp) - t +1; (3) 

Step 3: (Update operation) }11 , )({} {)( 11 -+=È= , ...,qpiwUzzU i
and .32}{)( ,...,t,, izzU ii ==  

End   

 

In the other words, in step 2, we draw the Vk horizontally, in such a way that the slope of the segment P(zt,wq) is 

-45
o
. Vertex z1 is placed above wp, that the slope of the segment P(wp,z1) is 90

o
. Note that by moving some of 

the points P(wi) in step 1, we ensure that all neighbors of Vk will be visible from P(zi) for i=1,2,…,t. 

Lemma 2: Let 1£k£m, and Ck=(w1=v1,w2,...,wj=v2) and b is the number of vertices of Gk . Then P(v1)=(0,0), 

P(v2)=(b-2,0), and all contour segments e(wi,wi+1), i=1,2,...,j-1, have slopes in {-45
o 
,0

o
,90

o
}. 

Proof: the proof is by induction on k. For G1 the lemma is obvious, the segment e(w1,w2) has slope of 90
o
, the 

segments e(wi,wi+1), i=2,3,…,j-2 have slope of 0
o
, and the segment e(wj-1,wj) has slope of -45

o
, and  P(v2)=(j-

2,0). 

So suppose that it holds for Gk-1. As in the algorithm, before installing Vk, the contour Ck-1= 

(w1=v1,w2,...,wj=v2), P(v1)=(0,0).and P(v2)=(a-2,0) where a is the number of vertices in Gk-1 . Let 

wp,wp+1,..., wq  be the neighbors of Vk in Ck-1. 

When we are going to install Vk, we always have wj=v2, x(wj)= a-2 and from (1), by moving all the vertices 

wp+1,...,wj by t  to the right, x(wj)= a-2+t, but a+t equal to the number of vertices in Gk , hence P(v2)=( b-2,0). 

Let wp,wp+1,..., wq  be the neighbors of Vk in Ck-1.After installing Vk we can divide the segments of the 

contour Ck into three intervals, the first interval is {e(wi,wi+1), i:=1,2,..,p-1} , the second interval is 

{e(wp,z1),e(z1,z2), ….,e(zt-1,zt ), e(zt,wq)} and the third interval is {e(wi,wi+1), i:=q,..,j-1}.  

In the first interval, if it contains any line-segment, the slope will be the same as its slope at the contour Ck-1. 

But for the second interval, the line-segment e(wp,z1), has slope [y(z1)-y(wp)]/[ x(z1)-x(wp)], from (2) the 

denominator x(z1)-x(wp)=0, from (3) the numerator y(z1)-y(wp) greater than zero and less than infinity , so the 

line-segment e(wp,z1) has the slope equal to 90
o
. The line-segments e(zi,zi+1), i=1,2,…,t-1, have the slope equal 

to 0
o
, because y(zi+1)-y(zi) equal to zero from (3). But for the line-segments e(zt,wq), y(wq)-y(zt)= -{x(wq)-

x(zt)}, i.e., the line-segments e(zt,wq) has the slope equal to -45
o
. For the third interval, the line-segments has the 

same slopes as Ck-1 because the only change that we have shifted vertices wq,...,wj to the right by t and this will 

not effect the slopes of the line-segments from Ck-1 to Ck. Hence, the contour segments e(wi,wi+1) , i=1,2,...,j-1 

of Gk have slopes in {-45
o 
,0

o
,90

o
}.   

 The lemma above implies immediately that adding Vk does not destroy the embedding, as stated in the 

corollary below. 

Corollary 1: For each 1£k£m, when we add Vk, then after applying the shift operation, all neighbors of Vk   are 

visible, that the edges between Vk and Ck-1 do not intersect themselves or edges in Ck-1. 

 What remains to show is that do destroy the planarity property and convexity when we apply the shift 

operation. This is proven in the next lemma. 

Lemma 3: Let Gk be straight-line embedded and internally convex. Additionally, it has the following property: 

Suppose Ck=(v1=w1, w2,...,wj=v2), and any integer t. if we shift all nodes in { , ...,jpiwU i 1 , )( += } by t to the 

right, then Gk remains straight-line embedded and internally convex. 

Proof: the proof is by induction on k. For G1 the lemma is obvious, by inspection. Assume the lemma holds for 
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Gk-1, we will show that the lemma properties are preserved when we add Vk. As in the algorithm, before 

installing Vk, the contour Ck-1= (w1=v1,w2,...,wj=v2) and wp be the leftmost and wq be the rightmost neighbors 

of Vk in Ck-1. When we are going to install Vk, from (1) by moving all the vertices )( ..,. , )( 1 jp wUwU +  by t  to 

the right, we have three classes of faces in Gk-1. First class, all vertices of the face are belong 

to )( ..,. , )( 1 pwUwU , there is no any shift. Therefore, all faces of this type are not change, and its properties in 

Gk will be the same as in Gk-1. Second class, all vertices of the face are belong to )( ..,. , )( 1 jp wUwU + , so, all 

vertices shifted by t to the right. Therefore, all faces of this type are moved by t to the right and its properties in 

Gk will be the same as in Gk-1. Third class, the vertices of a face classified two to sets, the first set are belong 

to )( ..,. , )( 1 pwUwU , they not moved to the right, the second set are belong to )( ..,. , )( 1 jp wUwU + , they moved 

to the right by t, in this case, any edge of the considerable face which has one vertex element in the first set and 

the second element lies in the second set will be stretched, and this will not affect its properties. 

Let us assume now that Vk. is a singleton, Vk ={z1} . Let z1 have l neighbors among wp,wp+1,..., wq and let 

F1,F2,..., Fl-1 be the faces created when adding Vk. From the algorithm all these faces preserved the lemma 

properties. The proof when Vk is a chain is very similar.   

 

4 Improving the Grid Size 

Now we sketch how to modify the algorithm ConvexDraw in order to reduce the grid size to (n-3)×(n-3). First 

we pick Vm ={z0} to be the neighbor of v2 different from v1 on the outer face of G. We construct a canonical 

decomposition and run the algorithm ConvexDraw for m-1 steps. In the last step, having already embedded Gm-

1, we set P(z0):=(1,n-3) and we do not shift any vertices to the right. 

 

Algorithm MConvexDraw 

Input: A convex graph G with b vertices and m contours. 

Output: Outline graph embedded in (b-2)×(b-2) grid. 

Begin  

We initialize the embedding by drawing C1 =(v1=z1, z2,..., zt= v2), as follows :  

· P(z1):=(0,0); 

· P(zt):=(t-2,0); 

· P(zi):=(i-2,1), for all i=2,…,t-1; 

· .32,1}{)( ,...,t,, izzU ii ==  

For each k= 2,…,m-1, we do the following: 

· Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1 . 

· Let Vk =(z1, z2,..., zt), and Vk may be a singleton or a chain. 

· Let wp be the leftmost and wq be the rightmost neighbors of Vk in Ck-1. 

· Calculate the shift operation. 

· Install operation. 

· Execute the update operation. 

 Finally , for k= m, we put P(Vm={z0}) =(1,n-3) 

End   

 Let us call this algorithm MConvexDraw. In order to show correctness, we only need to show that adding z0will 

result in a correct, convex embedding.  By lemma 2 and the algorithm, before adding z0we have 

x(w1)=x(w2)=….=x(wp)=0, and  x(wq)=n-3, where wq=v2. The edge with slope -45
o 

from v2 contains the point 

(1,n-4). This implies that all vertices wp,...,wq are visible from (1,n-3). The convexity of the outer face follows 

from the choice of z0. Consequently, we obtain the following theorems:  
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(a) Gm-2 (b) Gm 

Figure 2: The drawing of the graph G 

 

Table 1: The values of the different variables in ConvexDraw. 

k Vk wp wq 
x-coordinates of vertices 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 9-14 - -         0 0 1 2 3 4 

2 8 11 12        1 0 0 1 3 4 5 

3 7 11 8       1 2 0 0 1 4 5 6 

4 5,6 9 10     0 1 3 4 0 2 3 6 7 8 

5 4 7 8    3 0 1 3 5 0 2 3 7 8 9 

6 3 6 13   1 4 0 1 4 6 0 3 4 8 9 10 

7 2 5 3  0 2 5 0 2 5 7 0 4 5 9 10 11 

8 1 2 14 1 0 2 5 0 2 5 7 0 4 5 9 10 11 

y-coordinates 11 11 9 5 2 2 4 3 0 1 1 1 1 0 

 

Theorem 1: Given a 3-connected plane graph G, algorithm MConvexDraw constructs a straight-line convex 

embedding of G into a (n-3) × (n-3) grid. 

Theorem 2: Given a plane graph G, the above algorithm MConvexDraw computes a convex embedding of G 

into the (n-3) × (n-3) grid in O(n) time. 

 In Figure 2 an example of a drawing is given. After adding vertex 3, we have U(w)={w} for 

wÎ{5,6,9,13,14}, U(3)={3,4,7,8,10,11,12}. Therefore, when adding vertex 2, the vertices in U(3)ÈU(6)ÈU(13) 

ÈU(14) ={3,4,6,7,8,10,11,12, 13,14} will be shifted right. After adding vertex 2, we have U(w)={w} for 

wÎ{5,9,13,14}, U(3)={3,4, 7,8,10,11,12} and U(2)={2,6}. Table 1 show the values of the different variables in 

ConvexDraw. Notice that the drawing is not strictly convex, i.e. there are angles of size 180
 o
. 

The 3-regular plane graphs are plane graphs where every vertex has exactly 3 neighbours. Especially in the 

mathematical literature 3-regular graphs are also called "cubic" graphs. 

Lemma 6 Let (G,π) given a 3-plane graph . Algorithm MConvexDraw constructs a straight-line convex 

embedding of G at most in (2f-7) × (2f-7) grid.  

Proof: Assume first that G is 3-plane graph. By Euler's formula, N is even, number of edges M=3N/2 and 

f=N/2+2. Let a canonical decomposition of G be given. Science N=2f-4, and from Theorem 1, the grid size is at 

most in (2f-7) × (2f-7).   

 

5. The Orthogonal Algorithm of 3-planar Graph 

In this section we explain the leftmost canonical (lmc-) ordering for tri-connected planar graphs, which can be 

used in various ways to get better planar drawing algorithms. The lmc-ordering can be constructed in linear time 

[21]. Let an embedding of a 3-planar graph G be given. The vertices of a triconnected planar graph G can be 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online) 

Vol.4, No.4, 2014 

 

113 

ordered in a sequence v1, v2,..., vn such that v2 and vn are neighbors of v1 and share a common face, and for every 

k, k>3 , one condition from the following is satisfied: 

1. The singleton vertex vk is in the exterior face of the biconnected Gk and has at least two neighbors on the 

outerface of Gk-1. and  vk has at least one neighbor in G - Gk.  

2. There exists an t ³ 1 such that vk ,... , vk+t is a chain in the exterior face of Gk+t  and has exactly two 

neighbors on the outerface of Gk-1. The subgraph. Gk+t of G is biconnected, and the vertices vk,..., vk+t have 

degree 2 in Gk+t. 

This means that starting with an edge (v1, v2) one can add in every step either a vertex vk or a face (which is 

implied by the chain vk,..., vk+t and the involved vertices of Gk-1). We call this added face Fk. This means that at 

any step k during the canonical ordering, when we can add both vi (or Fi) and vj (or Fj), then we take this vertex 

or face, for which the right point wt is minimal with respect to t. 

 

 

k Vk 

1 1,3,4,5,6,2 

2 7,8,9,10 

3 11 

4 12 

5 14,13 

6 15 

7 16,17 

8 18 

9 19 

10 20 

Figure 3: A graph with lmc- ordering and corresponding variable-values at some step. 

 

In Figure 3 an example of the lmc-ordering is given. By an ordered plane graph (G,π) we will understand a plane 

graph G with a given lmc-ordering π=V1,...,VM. By the contour of Gk we will mean its outer face written as Ck. 

We will commonly view Ck as a path (w1,w2,...,wj) starting with w1=v1 and ending with wj=v2 , ignoring the edge 

e(v1, v2). We will also view Ck as being ordered from “left” to “right”, where w1 is the leftmost and wj is the 

rightmost vertex on Ck. Let wp be the leftmost and wq be the rightmost neighbors of v in Ck, we will say that the 

vertex v covers the vertices wp+1,..., wq-1. 

The vertices wl (p<l<q) of Vk on Ck-1 are called internal vertices. All these edges from wi (p£ i £ q) to Vk are 

called incoming edges of Vk . The other edges of Vk are called outgoing edges of Vk. By P(v) we will denote the 

current position of vertex v in the grid, i.e., P(v):=(x(v),y(v)). By P(u,v) we denote the embedding of edge e(u,v), 

that is, the line segment that connects P(u) with P(v). To each vertex w we assign a set of vertices, U (w), that 

will contain certain vertices that are located below w and have to be shifted right whenever w is shifted right. The 

precise definition of U(w) is part of  the  algorithm  and is given throw it. 

Assume first that G is triconnected. By Euler's formula, n is even, m=3n/2 and  f=n/2 + 2. Let an lmc-ordering of 

G be given. There are four directions to connect an edge at v, namely, left, right, up and down of v. A direction is 

called free if there is no edge connected in that direction of v yet. The idea for the OrthDraw algorithm is as 

follows: we add v to  Gk-1 such that down(v) is not free in Gk. Let wp and wq be the left- and right-vertex of v.  

Every vertex v (except vn) has one outgoing edge, and we connect this edge via up(v) at v. We start with placing 

the vertices z1= v1, z2, z3,…., zt=v2 of  the first face are placed on the horizontal line at positions (0,1), (1,1), (2,1), 

…, (t-1,1), i.e. v1 and v2 at (0,1) and (t-1,1). edge (v1, v2) goes via down(v1) and down(v2), hence via (0,0) and (t-

1,0), and z2 via right(v1), z3 via right(z2),…., and zt-1 via left(v2).  

In every step k, 1 < k <M, let y(wa)=max { y(wp), y(wp+1), …, y(wq)}from the right. if t=1 , we place x(z1) =x(wp), 

y(z1)= y(wa)+1, i.e. we have one bend of edge (z1,wq) at position (x(wq), y(z1)). Otherwise, t>1, we place z1, z2,…. 

zt-1, and zt on a horizontal line of height y(wa)+1, with wp and wq the left- and right-vertex of Vk. In this case ( t 

>1) we shift the drawing such that x(z1) =x(wp) and x(zt) =x(wq). Let wg the first node of chain wp+1 ,… , wq-1 ,such 

that x(wg) =…= x(wq-1) = x(wq ).  

The vertices wl (p<l<q) of Vk on Ck-1 are called internal vertices. All these edges from wi (p£ i £ q)  to Vk are 

called incoming edges of Vk . The other edges of Vk are called outgoing edges of Vk. Since incoming(Vk) =2 for 

1<k<M and incoming(vn) =3, it follows that  M = f-2, where f the number of faces in G. Notice that f =n/2 + 2 (n 

is even).  

The complete  OrthDraw algorithm can now be described as follows: 
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Algorithm OrthDraw 

Input: A 3-planar graph G with lmc-ordering. 

Output: Orthogonal drawing of G embedded in (m+1)´ (n/2) grid. 

Begin  

We initialize the embedding by drawing C1 =(v1=z1, z2,..., zt = v2), as follows: 

· P(zi):=(i-1,1), for all i=1,…,t; 

· U(zi):={zi}, for all i=1,…,t. 

Then, for each k= 2,…,M-1, we do the following: 

· Let Ck-1 = (v1=w1,w2,...,wj= v2) be the contour of Gk-1 .  

· Let Vk ={ z1, z2,..., zt }; Vk may be a singleton or a chain.  

· Let wp be the leftmost and wq be the rightmost neighbors of Vk in Ck-1. 

    Step 1: (Shift operation)  

       If (x(wq)-x(wp) < t-1 ) then  

           If (x(wp+1) =x(wp)) then } , )({ q, ...,jiwUv i =Î  else }1 , )({ , ...,jpiwUv i +=Î  do 

                         x(v) = x(v) + t - x(wq) + x(wp) -1; 

    Step 2: (Install operation)   

If t=1 then P(zt):=(x(wp) , y(wa)+1); 

For each i=1,…,t-1 , let P(zi) be defied by 

P(zi):= (x(wp)+i-1 , y(wa)+1); and P(zt):= (x(wq) , y(zt):= y(wa)+1); 

        Step 3: (Update operation)   

})(),()({ )( 121 -++= gw ...,Uw,UwUwU ppp
. 

})(),()({ )( 11 -+= qq w ...,Uw,UwUwU gg
. 

tizzU ii ,...,2,1},{ )( ==  

Then, for k= M, let the vertices wp ,wc , wq. are the neighbors of vn in Gn-1 , then we place P(vn)=(x(wc), 

y(wa)+1). 

End  

 

Lemma 4 Using OrthDraw algorithm, the number of bends is at most  (n /2)+2. 

Proof: From the initialization step, the first face has 2 bends between v1 and v2. As a result adding the last vertex 

vn, the last three faces will be added and 2 bends will be produced. Adding the remaining f-4 faces (adding any 

one of them will produce at most one bend) will produces at most  f-4 bends.  i.e. the  total number of bends = 

2+2+(f-4) = f = (n/2) +2. ! 

 

Lemma 5  Let (G,π) given with m (the number of Vi with ti =1). The grid size is at most (m+1)´ (n/2) . 

Proof: First, the y-direction: Edge (v1,v2) gives 1 unit in the  y-direction. Then  adding  (n/2)-2  times  a  face 

with  t ³ 1  vertices,  increasing   the y-direction by 1 unit. Adding vn increases the y-direction by 1 unit. 

Counting this together leads to at most n/2 units in y-direction.  

Secondary, the x-direction: Edge (v1,v2) gives t1-1 units, (where t1 is the number of vertices in the first face)  in x-

direction. Then adding all the faces fi , for all  2£ i £(n /2)-1 

 gives ( ti-1  units  for  every   face  in   the   x-direction)   at   most in the x-direction . Counting this together 

leads to å å å
-

=

-

=

-

=

=---=-=-
1)2/(

2

1)2/(

1

1)2/(

1

2/)1)2/(()1(1)1(
n

i

n

i

n

i

ii nnntt . at most n/2 units in x-direction.  

Let  m be the number of Vi which has a singleton nodes, then the number of Vi with ti ³ 2 is  (n/2)- m . in the case 

when ti ³ 2, really we add exactly ti-2 units in the x-direction instead of at most ti-1(except for the first face) units 

which considered above. Then, the grid size is exactly (n/2) -[(n/2)- m-1]= m+1 in the x-direction. ! 

 

 Figure 4 describes OrthDraw algorithm steps using a given example in Figure 3. 
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Figure 4: Graph layout steps to illustrates the OrthDraw algorithm 

 

 

 

   
(i) first case (ii) second case (iii) third case 

Figure 5: The improvement cases of OrthDraw algorithm 
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6. Modified Orthogonal 3-planar Graph Algorithm 

To minimize the resultant area and number of bends in OrthDraw algorithm. There are three cases of adding the 

singleton vertex in which we can reduce the Y-direction and the number of bends. See Figure 5.  

The first case, when p=a and x(wp+1) = x(wp), the vertex in position ( x(wq),  y(wa) ) is added, this will reduce the 

y-direction by 1 unit and the number of bends by 1.  

The second case, when q=a and x(wq)=x(wq-1),we adding the vertex in position ( x(wp), y(wa) ), and this also will 

reduce the y-direction by 1 unit and the number of bends by 1. 

The third case, for vn, let the vertices wp ,wc , wq are the neighbors of vn in GM-1 , when wa¹wc and x(wq-1) = x(wq), 

we place P(vn) = ( x(wc), y(wa) ), and this also will reduce the y-direction by 1 unit and 1 bend. 

 

In the following, we rewrite OrthDraw algorithm after modification which will be called MOrthDraw Algorithm. 

Algorithm MOrthDraw 

Input: A 3-planar graph G with lmc-ordering. 

Output: Orthogonal drawing of G embedded in (m+1)´ (n/2) grid. 

Begin  

We initialize the embedding by drawing C1 =(v1=z1, z2,..., zt = v2), as follows: 

· P(zi):=(i-1,1), for all i=1,…,t; 

· U(zi):={zi}, for all i=1,…,t. 

Then, for each k= 2,…,M-1, we do the following: 

· Let Ck-1 = (v1=w1,w2,...,wj= v2) be the contour of Gk-1 .  

· Let Vk ={ z1, z2,..., zt }; Vk may be a singleton or a chain. 

· Let wp be the leftmost and wq be the rightmost neighbors of Vk in Ck-1. 

    Step 1: (Shift operation)  

       If (x(wq)-x(wp) < t-1 ) then  

           If (x(wp+1) =x(wp)) then } , )({ q, ...,jiwUv i =Î  else }1 , )({ , ...,jpiwUv i +=Î  do 

                         x(v) = x(v) + t - x(wq) + x(wp) -1; 

    Step 2: (Install operation)   

           If  t>1  then Begin 

           For i=1 to t-1  do p(zi):=( x(wp)+i-1, y(wa)+1 );  and     p(zt):=( x(wq) , y(wa)+1 ); 

 End Else 

                Begin 

                 If  y(wp) >y(wq)  then 

      If (p=a) and (x(wp+1)=x(wp)) then p(z1):=(x(wq), y(wa) ) Else p(z1):=(x(wq), y(wa) +1) 

                Else If  y(wp) < y(wq)  then 

               If (q=a) and (x(wq-1)=x(wq)) then p(z1):=(x(wp), y(wa) )  Else p(z1):=(x(wp), y(wa) +1) 

               Else p(z1):=(x(wp), y(wa) +1) 

            End; 

        Step 3: (Update operation)   

       })(),()({ )( 121 -++= gw ...,Uw,UwUwU ppp
. 

       })(),()({ )( 11 -+= qq w ...,Uw,UwUwU gg
. 

       tizzU ii ,...,2,1},{ )( ==  

Then, for k = M, let  the vertices  wp , wc , wq. are  the neighbors  of  vn in GM-1, then  if  (wa ¹ wc ) and  

(x(wp+1)=x(wp)  or  x(wq-1)=x(wq)),  we  place  P(vn)=(x(wc), y(wa)). Other wise, P(vn)=(x(wc), y(wa)+1). 

End  

 

Theorem 4 There  is   a    linear    time   space   algorithm   to   draw a 3-planar graph orthogonal on at most 

(m+1)´ën/2û grid and ën/2û+1 bends as an  upper  bound. And  at least (m+1) ´ ën/2 -mû  grid and ën/2û+1-m 

bends as a lower bound. In this orthogonal   drawing,   there is a spanning tree of n-1 straight-line edges, all m-

n+1 non-tree edges have at most one bend (n>6). 
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Figure 6: Graph layout steps to illustrates the MOrthDraw algorithm 
 

7. Conclusion 

In this paper, we described a new technique for graph layout that attempts to satisfy edge length 

constraints. This technique uses a modified Kant approach of  convex drawing, one part for the edge lengths, the 

other to guide the relative placement of other node pairs. It can be transformed to a form that is suitable for 

solution using convex programming. The results produced are good and the algorithm is scalable to large graphs. 

In addition, the paper present a different techniques for orthogonal drawing of 3- planar graph aiming to improve 

them to get the optimal upper and lower area bounds. The algorithm improves the lower and upper bounds of 

grid area and minimizes the number of bends over the previous algorithms. 
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