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Abstract 

Source code analysis has many different but related and connected perspectives. As per the requirement of each 

perspective, the program code has been analyzed by specific technique. No single technique is able to achieve 

the purpose and covers all aspects of analysis. It addresses issues that are coupled together to entail development 

concerns, that will directly or indirectly affect the functionality of the program. They are categorized with 

reference to their application in the program analysis process. This paper describes all those analysis techniques 

organized in three levels analytical model which are applied to analyze and enquire the source code and its 

different aspects. 

Keywords: Monolithic, Source code, Program analysis, Walkthrough, Syntax analysis. 

 

1. Introduction 

This paper describes the details of proposed approach named as three levels analytical model. This model is 

based on application of various analysis techniques which are used to analyze supplied monolithic legacy source 

code according to specific perspective. Each analysis technique applied at level-I produce the results. These 

results are managed to store with creating a central a knowledge base by general database technique in level-II. 

This knowledge base contains much useful information about the program. The central knowledge base further 

used to generate the reports at level-III. These reports are about program, syntax, semantic, dataflow, code clones 

etc. The generated reports will play a crucial role for further development of monolithic legacy code. 

 

2. The Three Levels Analytical Model 

All The technological concerns and the business nature of the program will always lead to the process of the 

analyzing the program legacies. It is aimed at avoiding some risky processes of making need of unnecessary 

corrections on the code. This may also make the functionality of the code be tampered with. The model is 

depicted in figure 1. The details of each analysis technique used in proposed three levels analytical model are 

explained after the figure. 
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Figure 1.Three levels analytical model 

2.1. Walkthrough 

First, Walkthrough (OWASP 2008) is a thorough technical review process of code. It includes the review of 

code structure (Weber 1997). The line by line study is performed to see what is code functioning (Woody III 

2010). It also analyses, for what purpose each logical code unit has been implemented. It is beneficial for many 

aspects as to find out the followings: 

i. Features of code;  

ii. Objects of program; 

iii. Integration of modules;  

iv. Higher level abstraction; 

v. Modules hierarchies; 

vi. Data flow management; 

vii. Volume of data; 

viii. Code defects; 

ix. Logical flow; 

x. Data dictionary. 

Success of walkthrough depends on the skills of the reviewers, their experience with same domain of 

programming language and the developed code’s artifacts. Because of this reason it is considered as 

cumbersome and time consuming activity. Once the code walkthrough has been performed, it can bring a clear 

picture of functionalities, data and logics. Walkthrough documents (SWPG 2011) should be prepared with 

writing all the details of review process and findings, which will be helpful for further evolution process and 

target system verification. 

 

2.2. Syntactical Analysis 

The syntactical analysis (Hilda 2002) is performed to get the information about validity of series of tokens. 

Reserve words, identifiers and special symbols are called tokens. It is not necessary that the sequence or series of 

tokens may be meaningful; it checks its validity that is there anything wrong as per the syntax statement 

composition rules. For example “False-2” is valid but not have some sense, its sense will be identified and 

analyze in semantic analysis phase of this work. 

The syntactic analysis is performed with the help of parsing and context free grammar techniques 

(Floyd 1964). The parser get a token from the lexical analysis phase (Shinomi 2010) and produce an abstract 

syntax tree (AST) or parse tree structure. It is used to represent the structure and composition of program 

statement. Figure 2 show is the process of formation of parse tree from tokens. 
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It is a process of analyzing the entire program by use of the symbols that were used in coming up 

application. It involves the use of various parsing techniques in its structure when it comes to analyzing the code 

and the application in general.   The tenacity behind syntactic analysis is to focus the structure of the input 

content. This structure comprises of a progression of expressions, the lowest of which are the essential token and 

the biggest of which is the sentence (Trivedi 2013). The can be depicted by a tree with one node for each 

expression. The base of the tree denotes the sentence. They help in analyzing the error level in the program and 

try to debug in order to get the best deliverable results. 

Calculations over the information can be composed with property linguistic use determinations that are 

focused around a dynamic grammar. The conceptual sentence structure portrays the structure of a theoretical 

punctuation tree, much the way the solid grammar depicts the expression structure of the data. For a proper 

functionality of the program, it would be vital for the two concepts discussed be taken into consideration. This 

concept will be able to detect the occurrence of errors within some lines if codes. Proper punctuation of the code 

segment is also missing at some points that will return more error messages. The concept will help in eliminating 

the ambiguity in the program. It will ensure that all the symbols used are understandable to the maintainer. 

Top-down, bottom-up and centered lexical analyses are main class of algorithm for parsing (Eastman 

1983). These are the conceptual procedures which entails the analysis of the symbols used in the code segment. 

It can be in either language, natural language or even in the computer languages. It will take into use the normal 

rules and formal grammars that are used in constructing the program. Languages could be believed to be a 

probable combination of syntax analysis, which is the much concerned with the analysis of the context free 

grammars approach in the collection of codes. 

It majorly entails the analysis of the grammar used in building an application. It applies the concept of 

parsing. This is the concept of making some of the programs code segments be understood by the analyst. It 

implies part of analysis task. It gives the interpretation of entire program and grammar of used in coming up 

application. 

The concept of parsing in the program analysis takes some major approaches. This includes Top-Down 

approach of analyzing the code. This may include some other sub sections like the case of the syntax analysis. 

This is a recursive descent mechanism. 

 
Figure 2.Parse tree formation from tokens 

 

2.2.1. Top-Down Analysis Approach: Top-down analysis of program is the inverse of a base up program 

analysis. It refers to a style of analysis where an application is analyzed from the beginning with an abnormal 

state representation of what it should do. It is separating the particular into easier and less difficult pieces, until a 

level has been arrived at that relates to the primitives of the programs. 

Top-down analysis has a tendency to analyze modules that are focused around usefulness. In this style 

of analysis, there is an incredible risk that execution subtle elements of numerous information structures must be 

imparted in the middle of code modules, and consequently all around uncovered. This thusly makes it enticing 

for different code modules to utilize these execution points of interest, accordingly making undesirable 

conditions between diverse parts of the application’s code. 

 

2.2.2. Bottom-Up Analysis Approach: It is another approach which is used in the analysis of legacy code. It at 

some points plays the same role as that of the top down approach. It is only the opposite approach into coming 

Lexical analyzer 

      Source program code Parse tree 
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up with a solution from top-down. It consists of analysis of various artifacts as data type, text, numbers and main 

program components. It also focuses on to find a relationship among all these. This analysis technique (Paul 

2007) has been very popular in recent years not only in complex code even in other sectors as testing, 

comprehension, data mining etc. 

 

2.2.3 Lexical Analyzer: Lexical analyzer is a tool that performs analysis which includes the extraction of 

individual words, lexemes from program code. Different parts of the lexical analyzer incorporate the evacuation 

of whitespace and remarks and taking care of compiler mandates. The tokenization methodology takes data and 

afterward passes this info through an essential word recognizer, an identifier recognizer, a numeric consistent 

recognizer and a string steady recognizer, each one being placed into their yield focused around disambiguating 

tenets (Shen 1980). 

The program under focus is passed to the compiler style lexical analyzer and broken into tokens. The 

resulting token sequence should be then scanned to identify duplicated tokens while the original source code is 

kept as clones. The token then should be non parameter and parameter tokens by use of the lexical analyzer. 

Parameter tokens are the identifiers and literals in the source code.  The lexical analyzer further separates the non 

parameter token found on a line by a hash factor and encodes the parameter tokens by a position index. The 

lexical examination methodology begins with a meaning of what it intends to be a token in the dialect with 

normal articulations or language structures, then this is meant an unique computational model for perceiving 

tokens, which is then meant an implementable model for perceiving the characterized tokens. 

 

2.3. Semantic Analysis 

Syntactical analysis generally verifies that the tokens are arranged in language grammatical correct order nothing 

is wrong as per the rules of language grammar context. After performing the syntactical analysis (Landauer 1998) 

of legacy code, it is very useful to analyze its semantics. It investigates whether the correct or valid language 

tokens arranged and written in a meaningful way or have some meaningful sense (Allen 2009). The semantic 

information can be sourced from the identifier names for the source code or the comments and documentation 

exist. Semantic analysis provides the legacy program with tools as well as services that help to service orient the 

program. To carry out a semantic analysis for the program under focus, a static program should be used to 

provide information on the semantics of the source code. It represents the monolithic legacy program in a 

program dependency graph (PDG). Once the program is represented as a graph, the nodes represent the 

statements and the expressions. On the other hand, the dependent data and controls are represented relatively. 

Therefore, it is easier to understand the source code. Semantic analysis generally includes the tracking of 

following according to their correct, valid, meaningful occurrence and implication to a correct result. 

i. Variable declaration and scope; 

ii. Function declaration and call; 

iii. Types and declarations;  

iv. Static and dynamic type checking;  

v. Identifiers and its usability;  

vi. Type conversions;  

vii. Constants; 

viii. Expressions; 

ix. Arrays;  

x. Struct and enums;  

xi. Pointers;  

xii. Checking begin and end of code modules. 

Above mentioned are given as example elements for investigation but not limited to. This analysis can 

include many more code elements to check the meaningfulness of artifacts found in legacy code. 

 

2.4. Control Flow Analysis 

Control flow analysis is an analysis technique that analyzes the control flow in a program (Nielson & Hankin 

2011). It is analysis of sequence of operations. Basically the control flow of a program is depicted by flow chart 

but at higher level a control flow graph (CFG) is prepared to show the control flow (Midtgaard 20YY). To 

produce CFG following elements must be analyzed. 

i. Iterative statements; 

ii. Branching instructions; 

iii. Jumping instructions; 

iv. Use of unconditional jumping as “goto”; 

v. Dominators; 

vi. Dependence analysis.  
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The figure 3 presents a code segment and figure 4 presents its control flow graph. 

     Line No.     Code 

  1  x := 0 

  2  y := x * y                    

  3   Lebal1: z := y/d 

  4  if c < y goto Label2 

  5  p := y / z 

  6  f := p + 1 

  7  Label2: g := f 

  8   q := i - k 

  9   if p > 0 goto Label3 

  10   goto Label1 

  11   Label3: return 

Figure 3.Sample code segment with unconditional branching 

 

CFG of above code segment is as follows: 

 
Figure 4.Control flow graph 

 

2.5. Data Flow Analysis 

Data flow analysis (Foster 2011) is conducted to obtain information for finding the values of variables or data 

holding entities at various stages in program. Control flow graph is used to access those stages in program where 

a value is assigned to variable and the stages up to which it is flowing. The blocks of control flow graph are 
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represented as stage of program. Following should perform to conduct data flow analysis.  

i. Derive data flow equations for each node of the control flow graph; 

ii. Information at the boundaries of blocks; 

iii. Exit state of a block; 

iv. Use of  iterative algorithm for data flow equations;  

v. In state and out state of blocks; 

vi. Forward analysis and reaching definition; 

vii. Backward analysis; 

viii. Live variable analysis;  

ix. Removal of dead code; 

x. Document data flow. 

 

2.6. Code Clone Analysis 

The process of clone detection recognizes repetitive bits of source code created by copy and paste program 

development technique. About whether, these redundancies are liable to be altered conflictingly and, 

consequently, bring about blunders. Further, excess source code blows up the estimation unnecessarily and 

builds support costs. The code clone is a duplicate code written somewhere in program (Prem 2013). The need to 

incorporate the code clone is for easy program development when some similar or near to functionality is 

required. Already written code is copied and pasted at other part as it is or slightly modified, it creates easiness 

while developing but create a big problem while maintaining the program. It has become very difficult to 

identify that which clone should keep or which has to be removed. On the other hand, while updating one code 

then it is essential to update the corresponding clone (Miryung 2005). It produced the side effect too. 

Considerably more discriminating is the risk of presenting bugs, the designers who change a bit of code are 

generally not mindful that duplicates exist inside the module. Therefore, inconsistencies can emerge which can 

result in bugs. Studies demonstrate that around half of all unintentionally presented changes are really mistakes.  

Identification of clones can be used by analyzing the graphs developed during the syntax or semantic analysis. 

To identify the code clone for the legacy program under focus recommend the use of the parse tree developed 

after the syntax analysis. The tree matching approach is used to find similar sub trees hence finding clones. If the 

names of the variables, tokens and literal values have been abstracted; sophisticated methods are required to find 

the clones. For the code segment under focus, use dynamic programming technique. The code is divided in 

blocks and the blocks are compared to each other by analyzing each statement of a block against another 

statement of a block. The minimum distance between the clones is used in the hypothesis where by the smaller 

the minimum distance, the higher the likelihood of the existence of the clones. However, some clones are 

difficult to identify. Therefore, the clones can be identified using trained neural networks. The neural networks 

are trained to identify the clone according to the features that they have been given of the hard to get clones. 

Teamscale (cqse 2014) utilizes a very powerful repetition examination innovation that has been 

exhibited in numerous experimental commitments on universal gatherings. Teamscale is not just equipped for 

recognizing accurate duplicates of code sections yet utilizes standardized procedures and can in this manner even 

report clones that contrast in some unessential parts. By utilizing replicated code redundancies are brought into 

the code-base that raise viability endeavors on the grounds that adjustments must be rehash in different spots. 

CCFinder (ccfinder 2014) and CloneWarrior (Khan el.al. 2014) are helpful tools to identify the code clone. 

 

2.7. Cluster Analysis 

Cluster analysis technique is used to look for interrelated items in a data-set. For the monolithic COBOL legacy 

analysis of the variables leads to establishment of a set. Variables are analyzed by looking at their distribution in 

the legacy code. The variables should be separated between important and unimportant variables using data 

persistence and manual inspection by the person performing the legacy program analysis. Then the location of a 

variable in the code is determined as well as its usage per section of program. The results should be placed in a 

matrix that is used for the analysis. The hamming distance, which is the distance between two variables, is 

calculated by subtracting the matrix obtained for one variable form the matrix of another variable. The longer the 

distance, the dissimilar the matrix and the variables can be. The dissimilarity can be used as an input in the 

clustering algorithm. To analyze the clusters of the COBOL program use agglomerative hierarchical clustering 

algorithm (AGNES). The AGNES algorithm places every variable of the program in its particular cluster. The 

algorithm then creates new clusters that hold two or more neighboring clusters. The algorithm will terminate if 

only one cluster remains. 

 

2.8. Program Slicing 

Slicing is the abstraction of the monolithic legacy program based on the behavior. A slice is an executable part of 

the program. Slicing helps in breaking the program into small parts that can be easily analyzed by the 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online) 

Vol.5, No.2, 2015 

 

40 

maintainers.  It also allows analysis of the program according to the data flow. Therefore, maintenance engineer 

is able to understand the working of the program. To slice the program on focus it uses a slicing criteria <P, V>, 

where V is the variable at a given point P in the program. The slice is made up of all program statements that 

may have an effect on the value V at the point p. 

To slice the legacy program to tokens, use a work on the dependence graph. A work on the dependence 

graph is a graph that shows the dependency of objects to one another. Develop the graph for the legacy program 

and then insert the start node and the end node. Then to slice the program, traverse the graph from a given point 

P in the graph tracing back all nodes that directly or indirectly depend on the node. Again using the data flow 

analysis, trace all the nodes from the point P that have a dependency on the graph according to the data flow. 

Mark all the visited nodes and delete the unvisited nodes. The remaining graph makes a token of the program. 

The token is used to analyze the legacy program. Other tokens can be realized by choosing different points P and 

then tracing the dependent nodes. 

However, slicing the program in this manner is challenging due to the intensity if that data flow 

analysis. To overcome this challenge, it is recommended to use the creative approach that incrementally analyses 

the data flows. Once an analysis of the data flow is done, there is no need to analyze it again in the next point of 

slicing the program. 

On the other hand, it also refers to the computational technique of a given combination of statements 

that are believed to be affecting the program at some given point of the execution process (mharman 2014). It is 

vital in the debugging process to help in realizing the source of errors that could exist in a program or just within 

the segment of a code. Static and dynamic slicing (Agrawal 1990) are two forms of the techniques. It involves 

the original statement that is believed to be affecting the program operation. It tends to reduce the cases of the 

redundancy in the program segment (Weiser 1984).Like, for example, in the code segment below, written in C 

language; 

 

int i; 

int sum = 0; 

int product=1; 

for (i=1;i<N; ++i) { 

sum=sum+i; 

product=product*i} 

write(sum); 

write (product);   

Figure 5.A sample C code 

A sliced component of the program is given by; 

 

int i; 

int sum = 0; 

for (i=1;i<N; ++i) { 

sum=sum+i;      } 

write(sum); 

Figure 6.A sample sliced code segment 

2.9. Concept Analysis 

Concept analysis of the legacy program is closely followed by cluster analysis. The techniques are mostly used 

to detect objects within the source code.  Concept analysis is a method for analyzing the relationship between the 

entities and their variables (Ganter et.al. 2003). Conduct a concept analysis for the identification of entities and 

their variables is the first step. For instance in a K = (R, O, A) binary equation R and O represents the set of 

objects and attributes respectively while A is the binary relationship.  The concept in this case is represented by 

the set sharing the common attributes. The use of the Birkhoff’s concept lattice (Ganter et.al. 1980) to find all the 

concepts for the program is recommended.  

Using the deterministic approach to traverse the graph, a node should be labeled to have a certain 

attribute if it is the most general attribute in the concept.  On the other hand, a labeling of an object to a node, the 

most specific object of the concept is selected. Consequently, it is simple using the graph to identify the objects, 

their attributes and their relationships. To identify the attributes for a given node, get all the attributes on the 

node as well as the attributes above the node. On the other hand, the objects of the node are objects on the node 

and those below the node. An attribute therefore is used on the same node and below it. 

 

3. Conclusion & Future Work 

Program analysis has been a critical activity in all type of development of legacy programs. The work presented 
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in this paper proposes a model that is consisting of many sub-activities for analysis of program source code to 

investigate and understand according many aspects of program and its source code. The study is based on 

monolithic type of program code. Model has three levels. This paper has explained the procedure adopted to 

perform activities in first main analytical level. Rest of the two levels have undertaken for further research work. 

The future research will explain that how the derived and extracted data, information will be stored in central 

knowledge base and in what form? What will be methods and procedures for retrieval of information? The 

retrieved information will be generated in the form of reports in the last level of proposed future work. The 

research work is able to analyze the monolithic type of program source code significantly and successfully.    
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