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Abstract 

Image characterizations play vital roles in several disciplines of human endeavour and engineering 

education applications in particular. It can provide pre-failure warning for engineering systems; predict 

complex diffusion or seeping of radioactive substances and early detection of defective human body 

tissues among others. It is therefore the object of this study to simulate three selected known surfaces 

that are of engineering interest, pass section plane through these surfaces arbitrarily and use fractal disk 

dimension to characterize the resulting image on the sectioned plane. Three carefully selected surfaces 

based on their engineering education and application worth’s were simulated with respective relevant 

set of equations. In each case studied, the simulation was driven either by random number generation 

with seed value of 9876 coupled with relevant set of equations or by numerical integration based on 

Runge-Kutta fourth order algorithms or combination of both. However, all simulations were coded in 

FORTRAN 90 Language. Section plane was passed through each simulated surface arbitrarily and in 

two hundred (200) different times for the purpose of obtaining reliable results only. Image obtained at 

less or equal to four percent (4%) tolerance level by sectioning was characterised by optimum disks 

counting algorithms implemented over ten (10) scales of observations and five (5) different iteration 

each. The estimated disk dimension was obtained by implementing the least square regression 

procedures on optimum disks counted at corresponding scales of observations. A visual and fractal disk 

dimension characterization of selected images on sectioned plane form cases studied validated 

algorithms coded in FORTRAN 90 computer language. The surface of Case-III is the most rough with 

disk dimension of 2.032 and 1.6% relative error above the dimension of smooth surface (2.0). This is 

followed by Case-II with disk dimension of 1.905 and 4.8% relative error below the dimension of 

smooth surface. Case-I has the least disk dimension of 1.897 and with 5.2% relative error below 

smooth surface. Case-I and case-II that suffered negative relative error originated from set of linear 

systems while Case-III that suffered positive relative error originated from set of non linear systems. 

Non linearity manifested in graphical display of disk distribution by frequency in Case-III by multiple 

peaks and substantial shift above disk dimension of 1.0.This study has demonstrated the high 

potentiality of fractal disk dimension as characterising tool for images. The coded algorithms can serve 

well as instruction material for students of linear and non linear dynamic systems. 

Keywords: Fractal, Sectional Images, Fractal Disk Dimension, Dynamic Systems and Algorithms 

 

1. Introduction   

Fractal has become an important subject tool in all spheres of disciplines for characterization of 

different images of objects. According to Oldřich et al (2001), Fractals can be described as rough or 

fragmented geometric shape that can be subdivided in parts, each of which is (at least approximately) a 

reduced copy of the whole. They are crinkly objects that defy conventional measures, such as length 

and are most often characterized by their fractal dimension.  They are mathematical sets with a high 

degree of geometrical complexity that can model many natural phenomena. Almost all natural objects 

can be observed as fractals (coastlines, trees, mountains, and clouds).Their fractal dimension strictly 

exceeds topological dimension. Michael thesis in 2001 developed a structure suitable to study the 

roughness perception of natural rough Surfaces rendered on a haptic display system using fractals. He 

employed fractals to characterize one and two dimensional surface profiles using two parameters, the 

amplitude coefficient and the fractal dimension. Synthesized fractal profiles were compared to the 

profiles of actual surfaces. The Fourier Sampling theorem was applied to solve the fractal amplitude 

characterization problem for varying sensor resolutions. Synthesized fractal profiles were used to 

conduct a surface roughness perception experiment using a haptic replay device. Findings from the 

research revealed that most important factor affecting the perceived roughness of the fractal surfaces is 
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the RMS amplitude of the surface. He concluded that when comparing surfaces of fractal dimension 

1.2-1.35, it was found that the fractal dimension was negatively correlated with perceived roughness. 

Alabi et al (2007) explored a fractal analysis in order to characterize the surface finish quality of 

machined work pieces. The results of the study showed an improvement in the characterization of 

machine surfaces using fractal. The corrosion of aluminium foils in a two-dimensional cell has been 

investigated experimentally (Terje et al, 1994). The corrosion was allowed to attack from only one side 

of an otherwise encapsulated metal foil. A 1M NaCl (pH=12) electrolyte was used and the experiments 

were controlled potentiostatically. The corrosion fronts were analyzed using four different methods, 

which showed that the fronts can be described in terms of self-affine fractal geometry over a significant 

range of length scales. It has been demonstrated that a certain amount of order can be extracted from an 

apparently random distribution of pores in sedimentary rocks by exploiting the scaling characteristics 

of the geometry of the porespace with the help of fractal statistics (Muller and  McCauley ,1992).A 

simple fractal model of a sedimentary rock was built and tested against both the Archie law for 

conductivity and the Carman-Kozeny equation for permeability. The study explored multifractal 

scaling of pore-volume as a tool for rock characterization by computing its experimental ( ) 

spectrum. The surface characteristics of Indium Tin Oxide (ITO) have been investigated by means of 

an AFM (atomic force microscopy, AFM) method. The results of Davood et al in 2007 demonstrated 

that the film annealed at higher annealing temperature (300°C) has higher surface roughness, which is 

due to the aggregation of the native grains into larger clusters upon annealing. The fractal analysis 

revealed that the value of fractal dimension Df falls within the range 2.16–2.20 depending upon the 

annealing temperatures and is calculated by the height–height correlation function. Salau and Ajide 

(2012) paper utilised fractal disk dimension characterization to investigate the time evolution of the 

Poincare sections of a harmonically excited Duffing oscillator. Multiple trajectories of the Duffing 

oscillator were solved simultaneously using Runge-Kutta constant step algorithms from set of 

randomly selected very close initial conditions for three different cases. The study was able to establish 

the sensitivity of Duffing to initial conditions when driven by different combination of damping 

coefficient, excitation amplitude and frequency. The study concluded that fractal disk dimension 

showed a faster, accurate and reliable alternative computational method for generating Poincare 

sections. Some complex microstructures defy description in terms of Euclidean principles (Shu-Zu and 

Angus, 1996). Fractal geometry can make numerical statements about any shape or collection of 

shapes, however irregular and chaotic they may seem. In their paper, fractal analysis was applied to the 

characterization of metallographic images. Kingsley et al (2004) paper presented the application of 

fractal analysis for analyzing various harmonic current waveforms generated by typical nonlinear loads 

such as personal computer, fluorescent lights and uninterruptible power supply. The fractal technique 

make available both time and spectral information of the nonlinear load harmonic patterns. The 

analysis results showed that the various harmonic current waveforms can be easily identified from the 

characteristics of the fractal features. The study was able to demonstrate that the fractal technique is a 

useful tool for identifying harmonic current waveforms and forms a basis towards the development of 

the harmonic load recognition system.  

  The importance of image characterizations in science and engineering applications cannot be 

overemphasized. Despite this, research efforts have not been significantly explored to characterize 

dynamic systems sectional images using fractal. This paper is intends to partly address this gap by 

specifically characterising the sectional images/surfaces of tools or systems such as Hollow sphere, 

Transmissibility ratio and Lorenz weather model using fractal disk dimension.  

 

2. Theory and Methodology  

Three systems were selected for reasons of linearity, nonlinearity, familiarity and relative degree of 

roughness of surface. These systems are hollow sphere and transmissibility ratio belonging to linear 

system and are well known to have smooth surfaces. The third system is Lorenz weather equations 

belonging to nonlinear system and the surface is known to be rough due to chaotic behaviour of the 

system. The governing equations for the three (3) systems are listed in equations (1) to (9). 

 

2.1 Hollow Sphere (Case-I): 

1 2* ( )* ( )X Radius Sin Cosϕ ϕ=                             (1) 

1 2* ( )* ( )Y Radius Sin Sinϕ ϕ=                                    (2) 
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1* ( )Z Radius Cos ϕ=                                   (3) 

In equations (1) to (3), X=Cartessian coordinate of arbitray point on the sphere in x-direction, Y= 

Cartessian coordinate of arbitray point on the sphere in y-direction and Z= Cartessian coordinate of 

arbitray point on the sphere in z-direction.  Similarly 1ϕ   and 2ϕ  =Angle measured in radian. In 

addition 10 ϕ π≤ ≤  and 20 2ϕ π≤ ≤ . A good representative number of points on the sphere and 

fairly uniformly distributed can be obtained by iterative reseting of 
1ϕ   and 

2ϕ  randomly and for 

fixed radius in equations (1) to (3). 

 

2.2 Transmissibility Ratio (Case-II): 

This is a dynamic terminology for expressing the technology art of reducing drastically the amount of 

force transmitted to the foundation due to the vibration of machinery using springs and dampers. The 

transmissibility ratio is given by equation (4). 

2 2

2 2 2 2

1 4

(1 ) 4

o

o o

a
TR

a a

γ

γ

+
=

− +
                             (4) 

In equation (4) TR = ratio of the transmitted force to the impressed force, oa  =frequency ratio andγ   

= damping factor. By letting oX a← , Y γ←  and Z TR← , a transmissibility ratio surface can 

be created within the specified lower and upper limits of oa  and γ  respectively. A good 

representative number of points on the transmissibility ratio surface and fairly uniformly distributed 

can be obtained by iterative resetting of 
oa  and γ   randomly within their specified limits and 

evaluation of the corresponding transmissibility ratio by equation (4). 

 

2.3 Lorenz Weather Model (Case-III): 

This is a mathematical model for thermally induced fluid convection in the atmosphere proposed by 

Lorenz in 1993 (see Francis (1987). 

( )X Y Xσ
•

= −                                    (5) 

Y X Y XZρ
•

= − −                                   (6) 

Z XY Zβ
•

= −                                    (7) 

The steady solutions of the rate equations (5) to (7) can be sought numerically and simultaneously. 
Similarly, the steady values of X, Y, and Z variables can be used to represent an arbitrary points on the 
‘Lonrenz surface’ in x, y and z-Cartesian directions respectively. In equations (5) to (7) we have X = 
Amplitude of fluid velocity related variable while Y and Z measures the distribution of temperature. 
The parameters σ  and ρ are related to the Prandtl number and Rayleigh number, respectively, and 
the third parameter β  is a geometric factor. A good representative number of points on the ‘Lonrenz 
surface’ can be obtained by setting fixed value for the parameters,σ , ρ and β  and then use 
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Runge-Kutta fourth order algorithm to iteratively and simultaneously solve the rate equations (5) to (7) 
using constant time step. 

2.4 Plane Equation: 

Each of the three systems selected were simulated using their respective equations and were similarly 

sectioned several time with arbitrarily chosen cut plane. The corresponding sectional results were 

characterised with fractal disk dimension based on optimum disks counted algorithm coded in 

FORTRAN-90 Language.  The general equation of an arbitary plane is given by equation (8). 

1 2 3 4 0C X C Y C Z C+ + + =                              (8) 

In equation (8), 1C  to 4C  are constants coefficient. Similarly X, Y, and Z are arbitrary coordinates 

on the plane. Thus the constants can be solved for three set of (X, Y, Z) taken randomly on the arbitrary 

plane. 

The distance (D) between a reference point (Q) and an arbitrary point (P) on an arbitrary plane is given 

by equation (9). 

.PQ n
D

n
=

uuur

                                       (9) 

In equation (9) PQ
uuur

 is a vector quantity and n is a vector normal to the arbitary plane. Similarly n  

is the absolute length of normal vector (n). 

 

2.5 Fractal Disk Dimension: 

The three cases refers, sectioned was performed large number of time at tolerance level of less or equal 

to four percent (4%) for convenience reason only. The resulting images on the sectioned plane was 

further analysed for their corresponding dimension using optimum disks counting algorithms 

implemented in 3-dimensional Euclidean space. The disks counting was performed iteratively five time 

(5) each and over ten (10) different scales of observations that are related to the characteristic length of 

the image on the sectioned plane. Characteristic length is defined as the longest absolute distance 

between pair points of the image on the sectioned plane. The disk dimension of images obtained on 

sectioned plane were estimated by performing least square regression analysis on scales of observation 

and the corresponding minimum disks counted for full covering of the image. The scales of 

observations and corresponding minimum disks counted are expected to relate according to power law 

given by equation (10). 

sD

disksY Scale∝                                       (10) 

In proportional equation (10), disksY  =minimum number of disks required for the full cover of the 

image on the sectioned plane at specified observation scale while sD =disk dimension of the image. By 

introducing equality constant (K) in proportional equation (10) and taking the logarithm of the right 

and left sides of the resulting equation, a linear equation (11) emerged as function of 
disksY , K, 

Scale  and 
sD . 

L s LY D X C= +                                       (11) 
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In equation (11), LY , LX  and C  are logarithm of 
disksY , Scale and  K respectively. The disk 

dimension of the image on the sectioned plane is therefore the slope of the line of best fit to collection 

of 
LY  and

LX . 

The dimension of the surface studied (
surfaceD ) was validated by equations (12) and (13) noting that 

aveD =average disk dimension of collection of dimension of images on large number of arbitrary 

sectioned planes (N). 

1.0surface aveD D= +                                      (12) 

1

1
( )

i N

ave s i

i

D D
N

=

=

= ∑                                   (13) 

2.6 Input Parameters Setting for Studied Cases: 

Common to all studied cases are large number of arbitrary sectioned plane (N) set at 200, disk 

dimension distribution by frequency of 20 units subinterval between lower and upper limits and ten 

(10) scales of observation for five (5) independent iterations each. 

Case-I:  

Radius of sphere used was 10 units. Number of points on the sphere generated randomly before 

sectioning commence was 9000 with generating seed value of 9876. Tolerance was set at less or equal 

four percent (4%). 

Case-II:  

Frequency ratio 0 10oa≤ ≤  and damping factor 0.1 1.0γ≤ ≤  was selected random with 

generating seed value of 9876. The number of points on the transmissibility ratio surface generated 

randomly before sectioning commence was 9000 only. Tolerance was set at less or equal four percent 

(4%). 

Case-III: 

Initial conditions (X, Y, Z) was set at (1, 0, 1) for σ =10, ρ =28, and
8

2.6667
3

β = = . The 

integration was performed with constant time step ( 0.01t∆ = ). The number of points on the ‘Lorenz 

surface’ generated was 9000 after 1000 unsteady solutions points was discarded for sectioning purpose. 

The random numbers required was generated with seed value of 9876. Tolerance was set at less or 

equal four percent (4%). 

Three systems were selected for reasons of linearity, nonlinearity, familiarity and relative degree of 

roughness of surface. These systems are hollow sphere and transmissibility ratio belonging to linear 

system and are well known to have smooth surfaces. The third system is Lorenz weather equations 

belonging to nonlinear system and the surface is known to be rough due to chaotic behaviour of the 

system. The governing equations for the three (3) systems are listed in equations (1) to (9). 
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3. Results and Discussion 

A sample sectioned results for Case-I, Case-II and Case-III are shown in figures 1 to 3 respectively. 

 

 

 

 

 

 

 

 

 

Figure 1 (a)      Figure 1 (b)  

 

 

 

  

 

 

 

 

 

    Figure 1 (c) 

Figure 1: A section through a Hollow Sphere with Plane equation: 

         182.96 124.96 16.23 439.92 0.00X Y Z+ + + =   

This plane is located at -439.92 unit perpendicular distance from the origin.Referring to figure 1, the 

images observed on the projected sectioned plane agreed perfectly with dot or circular or ellipse 

expected for section through a hollow sphere. Thus the simulation algorithms codes in FORTRAN-90 

can be adjudged working perfectly. 
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           Figure 2 (a)               Figure 2 (b) 

 

 

 

 

 

 

 

 

 

 

                               Figure 2 (c) 

Figure 2: A section through Transmissibility Ratio Surface with Plane equation: 

0.10 2.10 2.05 0.03 0.00X Y Z− + − − =  

This plane is located at 0.03 unit perpendicular distance from the origin. 
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        Figure 3 (a)                                     Figure 3 (b) 

 

 

 

 

 

                                        Figure 3 (c) 

 

Figure 3: A section through ‘Lorenz Surface’ with Plane equation: 

0.10 0.01 0.01 0.012 0.00X Y Z− + − + =  

This plane is located at -0.012unit perpendicular distance from the origin. 

Figures 1 to 3 shows sample of the variability of structure of the surfaces studied. The disk dimension 

estimated for the structured solution points on the sectioned planes were 0.890, 0.605 and 1.077 for 

Case-I, Case-II and case-III respectively. Thus the structured solution points from Lorenz system is the 

most rough, followed by hollow sphere and transmissibility ratio respectively. These observation 

matches perfectly with visual assessment of the images. 
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Table 1: Disk Dimension Distribution Based on Natural Distribution of Solution Points on 200 

Arbitrarily Selected Sectioned Planes 

S/N Case-I Case-II Case-III 

AD FQ AQ AD FQ AQ AD FQ AQ 

1 0.129 0.005 0.001 0.035 0.002 0.000 0.245 0.005 0.001 

2 0.207 0.000 0.000 0.104 0.000 0.000 0.303 0.000 0.000 

3 0.285 0.005 0.001 0.173 0.000 0.000 0.361 0.000 0.000 

4 0.363 0.010 0.004 0.242 0.000 0.000 0.418 0.000 0.000 

5 0.441 0.005 0.002 0.311 0.000 0.000 0.476 0.010 0.005 

6 0.519 0.015 0.008 0.381 0.000 0.000 0.533 0.005 0.003 

7 0.596 0.050 0.030 0.450 0.000 0.000 0.591 0.010 0.006 

8 0.674 0.065 0.044 0.519 0.008 0.004 0.649 0.005 0.003 

9 0.752 0.075 0.056 0.588 0.018 0.011 0.706 0.010 0.007 

10 0.830 0.120 0.100 0.657 0.044 0.029 0.764 0.010 0.008 

11 0.908 0.240 0.218 0.726 0.060 0.044 0.821 0.065 0.053 

12 0.986 0.250 0.247 0.796 0.094 0.075 0.879 0.045 0.040 

13 1.064 0.075 0.080 0.865 0.268 0.232 0.937 0.115 0.108 

14 1.142 0.015 0.017 0.934 0.212 0.198 0.994 0.180 0.179 

15 1.220 0.015 0.018 1.003 0.130 0.130 1.052 0.160 0.168 

16 1.298 0.015 0.019 1.072 0.116 0.124 1.110 0.135 0.150 

17 1.376 0.005 0.007 1.142 0.022 0.025 1.167 0.050 0.058 

18 1.454 0.015 0.022 1.211 0.010 0.012 1.225 0.050 0.061 

19 1.532 0.005 0.008 1.280 0.010 0.013 1.282 0.095 0.122 

20 1.610 0.010 0.016 1.349 0.006 0.008 1.340 0.045 0.060 

aveD     0.897     0.905     1.032 

surfaceD   1.897   1.905   2.032 

Error relative to 

smooth surface 

(2.0)  -5.2%   -4.8%   1.6 

Note: AD=Estimated disk dimension, FQ=Frequency and AQ=product of AD & FQ. 

 

Referring to table 1, ‘Lorenz surface’ is the most rough with disk dimension of 2.032 and 1.6% relative 

error above the dimension of smooth surface (2.0). This is followed by Transmissibility ratio surface 

with disk dimension of 1.905 and 4.8% relative error below the dimension of smooth surface. The 

surface of a hollow sphere has the least disk dimension of 1.897 and with 5.2% relative error below 

smooth surface. The hollow sphere surface and transmissibility ratio surface that suffered negative 

relative error originated from set of linear systems while ‘Lorenz surface’ that suffered positive relative 

error originated from set of non linear systems. Thus it can be argued that disk dimension measure is 

very sensitive to system degree of nonlinearity. 
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Figure 4: Disk Dimension Distribution Predicted for Case-I 

 

 

 

 

 

Figure 5: Disk Dimension Distribution Predicted for Case-II 

 

 

 

 

 

Figure 6: Disk Dimension Distribution Predicted for Case-III 

Figures 4, 5 and 6 presents the same information contained in table 1 graphically. Figure 6 can be 

differentiated by multiple peaks and substantial shift above disk dimension of 1.0. This again is a clear 

manifestation of the non linear origin of the system it is associated. 

4. Conclusions 

This study has demonstrated successfully the integration of concept of randomness, numerical 

integration with Runge-Kutta fourth order algorithms using constant time step, vectors analysis and 

fractal characterization in relation to systems that are of particular interests in engineering education 

and application. Bearing in mind possible computation errors, the relative roughness of one third of the 

studied surfaces was validated with an estimated disk dimension of 2.032 which is 1.6% greater than 

dimension (2.0) for smooth surface. In addition two third of the studied surfaces were adjudged smooth 

with estimated disk dimension of 1.897 and 1.905 that are lesser than dimension (2.0) of smooth 

surface by 5.2 % and 4.8% respectively. The disk dimension characterised the degree of non linearity 

inherent in the studied cases.  
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