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Abstract 

The concept of Multiple-Input Multiple-Output (MIMO) radars has drawn considerable attention recently. Unlike the 
traditional Single-Input Multiple-Output (SIMO) radar which emits coherent waveforms to form a focused beam, the 
MIMO radar can transmit orthogonal (incoherent) waveforms. These waveforms can be used to increase the system 
spatial resolution. The challenge is on how to generate the large set of incoherent waveforms. Contemporary research 
has focused on using chaotic systems to generate these waveforms. With Chaotic waveforms obtained from a 
dynamical system, different radar waveforms can be generated from a single dynamical system; one only needs to 
change the control parameters and the initial conditions of the system. This scheme for radar waveform generation 
reduces the need for a comprehensive library of waveforms in a radar system and generates waveforms with good 
properties for both secure communications and high spatial resolution.  

This paper proposes the use of Rossler system– a type of a dynamical system to generate radar waveforms. Through 
Matlab/Simulink Simulations, it is shown that the Rossler waveforms, which are characterized by control variables 
and initial conditions are comparable to the Linear Frequency Modulated (LFM) waveforms, the most commonly 
used class of radar waveforms in terms of the ambiguity diagram and the frequency components and yet versatile 
enough to generate a large number of independent waveforms. An ambiguity diagram is a plot of an ambiguity 
function of a transmitted waveform and is a metric that characterizes the compromise between range and Doppler 
resolutions. It is a major tool for analyzing and studying radar waveforms. Impulsive synchronization theory is used 
to develop the ambiguity diagram. 

Keywords: Chaos, Rossler system, ambiguity function, impulsive synchronization theory 

 

1. Introduction 

Radar (Radio detection and ranging) is an electromagnetic system for the detection and location of objects. A portion 
of the transmitted signal is intercepted by a reflecting object (target) and is reradiated in all directions. The antenna 
collects the returned energy in the backscatter direction and delivers it to the receiver. The distance to the receiver is 
determined by measuring the time taken for the electromagnetic signal to travel to the target and back. If there is a 
relative motion between the radar and the target there is a shift in frequency of the reflected signal (Doppler effect) 
which is a measure of the radial component of the relative velocity. 

 
Figure 1: Simple Radar Model 
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The specifications of the waveform employed by any radar system have always been a key factor in determining 
performance and application. Radar systems typically utilize wideband waveforms that possess a narrow auto 
correlation main lobe, called the ambiguity function, in order to achieve fine range resolution. Waveform design 
problem based on optimization of the ambiguity function has been well studied (Levanon, N. and Mozeson, E., 
2004). For a given specification of the radar waveform, the resulting quantification of range and Doppler resolution 
is elegantly captured in the ambiguity diagram derived from the ambiguity function as first postulated by Woodward 
(1967). The wideband radar waveform of choice is usually the Linear Frequency Modulation (LFM) waveform. It is 
wide spread use is mostly due to specific properties that allow for stretch processing, as explained in Skolnic (2001). 
However linear FM waveform has some disadvantages. For example they have high range side lobes, unless spectral 
tapering is applied to the receive signal (which sacrifices range resolution and degrades the signal to noise ratio). 
Furthermore the set of linear-FM waveforms includes only two quasi orthogonal waveforms, that is, the ‘up-chirp,’ 
and ‘down chirp’. Many emerging radar applications often require a set of hundreds or even thousands of distinct 
quasi-orthogonal waveforms. In a quasi orthogonal waveform set, no single waveform significantly interferes with 
the detection of another waveform that is transmitted in the same frequency band and/or at the same time. An 
example of   a radar system that requires a quasi orthogonal set is a multiple-input, Multiple-Output (MIMO) radar 
system. A MIMO radar system consists of multiple apertures, where each aperture is capable of transmitting and 
receiving radar waveforms. 
Despite the use of pulse compression and other modulation techniques to achieve high range resolution, reliable 
classification of a broad range of targets in a wide variety of conditions still remains elusive. In recent years, with 
their noise-like property in the time domain and broadband characteristics in the frequency domain, possibilities of 
exploiting chaotic signals radar have been studied by many researchers. The first work incorporating the concept of 
chaos in radar involved the investigation of the ambiguity function of a chaotic phase modulated waveform (Lin, F. Y. 
and Liu J. M., 2004). Performance of chaotic frequency modulation (FM), amplitude modulation (AM), Phase 
modulation (PM) and pulse modulation radars have been reported (Carrol, T. L. and Pecora, L. M., 1991). In most of 
these works chaotic signals were generated by discrete map and employed in a radar system as baseband signal for 
modulation such as PM, FM and as a result this limits the bandwidth of the transmitted signal which in turn does not 
meet the requirements for ultra wideband radar signal. The random transmitted signal in addition to having the merit 
of high range resolution (Das, A. and Lewis, F. L., 2010), also has very low probability of intercept. One of the 
chaotic systems which have been extensively studied for the possibility of generating the chaotic radar signals is the 
Lorenz system (Willsey, M., 2006). 
The contribution of this paper is to use a specific chaotic system, the Rossler system for waveform generation by 
appropriately selecting the system parameters. Specifically section 2 outlines the salient characteristics of the Rossler 
system and how the control parameters affect its behavior, Section 3 the mathematical formulation and methodology, 
section 4 Simulation results and discussion while Section 5 concludes the paper. 
2. Theory 

In 1976, Otto E Rossler (Rossler, O. E., 1976a) constructed the following three-dimensional system of differential 
equations ���� = −� − �																																																																																																																																																												(1)	

���� = � + �																																																																																																																																																												(2)	
���� = � + �(� − �)																																																																																																																																																	(3)	

where , � and � are the static or control parameters and �, � and � are dynamic parameters. The original Rossler 
chaotic system had the parameters of  = � = 0.2  and	� = 5.7 . Changing the control parameters changes the 
behavior of the system and the system is said to undergo bifurcations. Figure 2 shows that as c  is decreased periodic 
doubling occur at � ≅ 1.4. Periodic doubling further occurs at � ≅ 0.6. Towards � ≅ 0.2 the curves seem to expand 
explosively and merge together to produce an area of almost solid blue. This behavior is an indicative of the onset of 
chaos and the value � ≤ 0.2 can be used instead of � = 0.2 which has traditionally been used in this system to 
realize the chaos operating mode. 
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                       Figure 2: Onset of Chaos with b as the bifurcation parameter 

A time series of �, �	and �	 is shown in Figure 3. The initial conditions can be chosen arbitrarily. From direct 
observation of the time series, it is reasonable to say the �, � and � variables are aperiodic. 

 

Figure 3: Time series of x, y and z variables 

Chaotic systems exhibit sensitivity to initial conditions. For a chaotic system, two solutions with nearby initial 
conditions exponentially diverge. To demonstrate that the Rossler system has this sensitivity, the � state variable 
from two distinct solutions with nearby initial conditions are shown in Figure 4. In this Figure the graph labelled  �� 
is obtained with the initial conditions of � = [−8, 8, 27] while that labeled �   is obtained with the initial condition � = [−7.8, 7.8, 26.8]	. As can be seen the two signals begin nearby and rapidly diverge from each other. Although 
only �(�)	 is shown, the same behavior can be observed for both �(�) and	�(�). 
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Figure 4: State variable x: Different initial conditions 

Because of their quasi unpredictable behavior these signals are very appropriate for use in communication because of 
inherent security mechanism and spectral diversity. 

 

 

3. Mathematical formulation  

3.1 Frequency Spectrum of the Rossler Waveform 

Mathematically time scaling the Rossler equations can be used to control the bandwidth of the state variables. Also 
scaling the parameters can be used to time and amplitude scale the state variables. The variable �(�) is defined as 
shown in Equation (4) where �, � and � denote the state variable of the Rossler system. 

�(�) = !�(�)�(�)�(�)"																																																																																																																													(4)		
Next the # $�(�)%  is defined as  

																																# $�(�)% = ! −� − �� + �� + �(� − �)"																																																																																																					(5)	
Therefore the Rossler system can be written as shown in Equation (6)		�& (�) = #'�(�)(																																																																																																																														(6)	
For notational convenience  � and #(�) can be defined by dropping the t-dependence. Using this notation let �(�) 
denote the solution to Equation (7). Also let �)(�) denote the solution to Equation (8) where * is a constant greater 
than zero. 

�& = #(�)																																																																																																																																						(7)	�). = *#(�))																																																																																																																																						(8)	
If both systems have identical initial conditions then  �)(�) and �(�) are related as described in Equation (9) 

�)(�) = �(*�)																																																																																																																																	(9)	
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In other words scaling the Rossler equation by * (as shown in Equation (8) has the effect of time scaling  �(�) by *. 
Scaling �(�) by * in time domain also scales the bandwidth of 	�(�) by	*. The Fourier relationship in Equation (10) 
describes how this time scaling affects the bandwidth of �(*�)(Where  ,(-.) is the Fourier transform of �(�)). 

																														�(*�) ⟷ 1|*|, 1-.* 2																																																																																																																						(10)	It	will	 be	 shown	 through	simulation	 that	with	 the	variation	of	 the	scaling	 factor	E	and	 the	 initial	 conditions		�G, �G, �G	the	bandwidth	of	the	Rossler	waveform	can	be	varied	to	a	desired	value.	
 

3.2 Ambiguity function of the Rossler waveform (Impulsive Synchronization Theory) 

The ambiguity function of a waveform can be evaluated from the general expression given in Equation 11 (Levanon, 
N. and Mozeson, E., 2004). It is used to measure the ability of a radar waveform to measure delay and Doppler shift. 
It represents the output of a matched filter for the waveform.  

												|I(J, #K)| = LM N(�)∞

OP N∗(� + J)RS TUVW��L 																																																																																			(11) 
In the equation u(t) is the radar waveform under consideration and J is the time delay. This two dimensional function 
indicates the matched filter output in the receiver when a delay mismatch J and a Doppler mismatch  #K occur. The 
value  |I(0,0)|  represents the matched filter output without mismatch. Therefore the higher the function |I(0,0)|  
around (0,0) the better the Doppler and range resolution.  

For the chaotic signals, the analytical treatment is not possible and in this section, impulsive synchronization scheme 
(Pecora, L. M. and Carrol, T. L., 1988; Lu, W. L., 2007; Lewis F. L.  and Das, A. , 2011;Lu, J. G. , 2010; Cheng , Hu 
et al ,2010;Hu, H.P. and Zhu, Z. , 2010) is used to obtain the ambiguity diagram of the Rossler based signals for 
comparison with the LFM signal, the most commonly used radar signal. Consider two dynamical systems (Carrol, T. 
L. and Pecora, L. M., 1991)     �& = X� + Y(�)																																																																																																																														(12)																																�& = ZX� + ZY(�)																																																																																																																																			(13)    
where F:[\ → [\  is continuous (F is a function that maps n dimensional vector space into an n dimensional vector 
space which is continuous), �, � ∈ [\ (�, � are members of the _ dimensional vector space, that is �` = [��, � , �a] 
and �` = ��, � , �a) are state variables, X ∈ 	[\×\ (X is a member of the _ × _ matrix) is a constant matrix, Z is a 
constant and �&  and �&  indicate the �� ��⁄  and �� ��⁄  respectively. Suppose that the solution of equation (12) is �(�) 
with initial conditions �(0) then the system in Equation (13) has a solution of                                                   																																	�(�) = �(Z�)																																																																																																																																										(14)    
when the initial condition �(0) is set to be �(0). Obviously y(t) is the time scaling version of �(�) and can be 
obtained by solving Equation (13). It should be noted that equation (14) holds only when the two initial conditions 
are the same, because the systems work in chaotic states. Equation (14) also implies that the solution of Equation (13) 
is synchronized to the time-scaling solution of Equation (12). The scheme for generating time scaling chaotic signal 
is shown in Figure 5 which is outlined in the synchronization framework (Tao, Y. and Chuo, L.O., 1997). The driving 
system described by Equation (12) outputs the chaotic signal x(t),which is sampled to generate the impulsive series 
x(kde) with rate f de⁄ . The series data is first stored in a buffer and then delivered to the driven system with 
rate			s ΔT⁄ . The state variables of the driven system are subject to jumps at discrete instants, t = iΔT s		i = 0,1,2…⁄  . 
The driven system is governed by                  	� = ZX� + ZY(�)													& 							� ≠ klm Z⁄ 																																																																											(15) 
 																																		l�|Wnopq			r =�(�s) − �(�O) = tR						k = 0,1,2…																																																																										(16) 
where B is a constant matrix and  

 																																		R(�) = �(Z�) − �(�)																																																																																																																											(17)  
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is the synchronization error. The mechanism behind this proposed scheme is the impulsive synchronization theory. 
Under suitable choice of B and Δm the system in Equation (15) will synchronize with the system in Equation (12).                         

 

                                   Figure 5: Block diagram for generating time scaling chaotic signal 

Figure 6 shows the implementation of the ambiguity diagram. The driving system generates a chaotic signal, which 
is sampled at the interval ΔT. The sampled signal x(kΔT) is going through two channels the upper channel is used to 
generate the time scaling version of the chaotic signal x(t)  as discussed in the last section. The lower channel is used 
to generate the time-delay version of the chaotic signal x(t). The two channel outputs are used to perform the 
correlation operation. The correlation output is the desired AF value at specified (s,τ). By changing(s,τ)we can get 
the whole AF diagrams of the chaotic signals. 

 
Figure 6: Schematic block diagram for AF calculation 

Brown (1992; 1993) developed a general method of expressing any dynamical system into a general form called type 
II generalized Chua equation. To apply the impulsive synchronization theory to determine the Rossler system of 
equations ambiguity diagram, it needs to be expressed in this generalized form. Let the solutions of the following 
vector ordinary differential equation be unique in a bounded region [\(n dimensional vector)  																											�& = v(�)'� − w(�)(																																																																																																																						(18) 
where A(x)  is an n×n matrix function of x and F is a function mapping Rx to itself. A type II generalized Chua 
equation is an ordinary differential equation of the above form in which the components of the matrix v and the 
vector function w are composed of finite linear combinations of sigmoid functions. In addition to the usefulness of 
this equation for analysis, there are numerical advantages for modeling and simulation in that we are able to generate 
simple maps that are easy to evaluate on a computer and which have a wider range of dynamics. The choice of 
Rossler parameters found to give the optimal ambiguity function are  a = 0.398, b = 0.2, c = 4 and when substituted 
in the Rossler dynamics gives   

       																									!�&(�)�&(�)�&(�)" = y0.0 −1.0 −1.01.0 0.398 				0.00.0 0.0 −4.0z {
���|+} 0.00.02.0 + ��~																																																																					(19)  

The fixed points for the Rossler system of equations are determined to be: 																																		�G = 2 ± 1.7899 , �G = −�G/0.398  ,�G = −�G																																																																										(20)      
For reasons of convenience (Carrol, T. L. and Pecora L. M., 1991) we write �G as  �G = 2 ± �																																																																																																																																					(21) 
where	� = 1.7899. 
Using the � the linear part of the vector field at these fixed points is given by 

																															X =  y 0.0 			−1.0 −1.01.0 										0.398 				0.0(2 ± �) 0.398⁄ 0.0 −2.0 ± �z																																																																											 (22) 
The function F(x) serves to define the fixed points of the type –II generalized  Chua equation. It is determined by the 
fixed points of the Rossler equations. Hence from equations (20) and (21) F(x) is given by 

																														Y(�) = y 2.0 ± �−(2 ± �) 0.398⁄(2 ± �) 0.398⁄ z																																																																																																									(23) 
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Equations (22) and (23) are substituted in the driving and the driven systems as given by equations (12) and (13). 
This gives the desired type-II Chua equation for implementation. For chaotic systems �(�) → �(Z�) as � → ∞ when Δm satisfies (Brown R., 1992; 1993) 

      							Δm = �x(���)�s |��| , ξ → 1																																																																																																																																														(24) 
where  �� is the largest eigenvalue of 	(� + �`)(� + �)  and * is the largest of (X + X`)   is a constant and I is an 
identity matrix. The proof can be found in (Tao, Y.  and Chuo, L. O., 1997). In the following MATLAB Simulations 
the function “ode45” is used to solve (23) and (24) with step size 10O�   = 1	and initial conditions set as '(��(0), � (0), �a(0)) = (−0.4, −0.6,0.7)( and ((��(0), � (0), �a(0))	= (1, 0, 0). The matrix B is chosen as (Brown, 
R., 1993) 

t = }−1.1 0 00 −1 00 0 −1~ 

The other parameters are chosen as (, �, �, Z) = (0.398, 2, 4, 1). 
By implementing each of the functions in Figure 6 using MATLAB Simulink toolbox and the user defined System-
function provision in the Simulink the ambiguity diagram in the contour form was obtained as shown in Figure 8. 

4. Simulation Results and Discussion  

4.1 The Ambiguity diagram 

Figure 7 and 8 shows the ambiguity diagrams of the LFM waveform and the Rossler waveform respectively. While 
that of the LFM is smooth having its peak at A1 and no side lobes that of the Rossler waveform peaks at A with some 
minor lobes labelled D. The minor lobes indicate possible presence of clutter, or the undesired echo from the radar 
environment as a result of using this waveform but these can be easily eliminated through filtering. 

 
              Figure 7: Ambiguity diagram of an LFM Waveform 
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                   Figure 8 :  Ambiguity diagram of the Rossler Waveform 

4.2 The bandwidth of the Waveform 

The LFM waveform has an instantaneous frequency that linearly increases or decreases with time. The set of LFM 
waveforms thus includes only two quasi –orthogonal waveforms, that is ‘up-chirp’ when the frequency is increasing 
linearly and ‘down-chirp’ when the frequency is decreasing linearly. Figure 9 shows the up-chirp LFM waveform 

and its fast Fourier transform. As is the case with discrete Fourier transforms the first 
�  samples contains the positive 

frequency components and the negative frequency components appear in the second half of the array. Only one half 
of the spectrum needs to be transmitted.           

From the result of Figure 10 it is clear that if the control parameters , � and � are kept constant and the scaling 
factor * is varied then the bandwidth of the waveform varies within some limit. This implies that a random choice of  *	 , will result in different independent waveforms with different spectral components. However for large variations 
the control parameters must be varied. This important since the control parameters determines whether the system 
operates in the chaotic region or not.  
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Figure 9: Up chirp LFM Waveform and its Frequency Spectrum 

 
                     Figure 10: Variation of the bandwidth of the Rossler waveform with the scaling factor    

From Figure 10,for the control parameter *1 = 1,the spectral component of the Rossler waveform is almost identical 
to that of the LFM in Figure 9. However, an increase of the scaling parameter to *2 = 2, reduces the bandwidth  as 
predicted by Equation (11). The importance of this is that by varying *, different Rossler waveforms with different 
spectral components will be obtained. 
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5. Conclusion 

This paper proposed the use of Rossler waveform to generate and optimize independent waveforms that can be used 
in MIMO radars. It has been observed that by variation of the parameters different waveforms of different frequency 
components can be generated, unlike the LFM where only to independent waveforms is possible. By using the 
ambiguity diagram it is shown that these waveforms meet the requirements of radar waveforms and compares well 
with the LFM waveforms. The ambiguity diagram can be adjusted to obtain a sharp peak, a key requirement in fine 
and Doppler and range resolution. By using a scaling factor the bandwidth of the Rossler waveforms can easily be 
scaled to the desired range. With the inherent characteristics of chaotic waveforms that includes possibility of secure 
detection and low probability of intercept because of their quasi random nature, the Rossler waveforms would be 
ideal for use as radar waveforms. However these two metrics cannot be considered in isolation and this research now 
focuses on the other metrics for evaluating the radar waveform metrics such as the autocorrelation and cross 
correlation functions. The other metrics to be considered is the Peak-to-RMS ratio which determines the amount of 
power that can be transmitted. 
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