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Abstract

The concept of Multiple-Input Multiple-Output (MIMQadars has drawn considerable attention recdditilike the
traditional Single-Input Multiple-Output (SIMO) radwhich emits coherent waveforms to form a focuseaim, the
MIMO radar can transmit orthogonal (incoherent) efavms. These waveforms can be used to increasgytiem
spatial resolution. The challenge is on how to gateethe large set of incoherent waveforms. Contearyg research
has focused on using chaotic systems to generate tivaveforms. With Chaotic waveforms obtained fram
dynamical system, different radar waveforms cargdmerated from a single dynamical system; one nebds to
change the control parameters and the initial ¢codi of the system. This scheme for radar wavefgemeration
reduces the need for a comprehensive library ofefeans in a radar system and generates waveforthsgebd
properties for both secure communications and spgttial resolution.

This paper proposes the use of Rossler systempeaofya dynamical system to generate radar wavefofimough
Matlab/Simulink Simulations, it is shown that thesRler waveforms, which are characterized by contanables
and initial conditions are comparable to the LinBeequency Modulated (LFM) waveforms, the most camiyn

used class of radar waveforms in terms of the anityigliagram and the frequency components and getatile
enough to generate a large number of independeméfarens. An ambiguity diagram is a plot of an anulitg

function of a transmitted waveform and is a methiat characterizes the compromise between rangéapgler

resolutions. It is a major tool for analyzing ariddying radar waveforms. Impulsive synchronizatibeory is used
to develop the ambiguity diagram.

Keywords: Chaos, Rossler system, ambiguity function, impelsiynchronization theory

1. Introduction

Radar (Radio detection and ranging) is an electgmetic system for the detection and location o&otg. A portion
of the transmitted signal is intercepted by a atitey object (target) and is reradiated in all diilens. The antenna
collects the returned energy in the backscattecton and delivers it to the receiver. The distattcthe receiver is
determined by measuring the time taken for theteleragnetic signal to travel to the target and béfcthere is a
relative motion between the radar and the targaeths a shift in frequency of the reflected sigizbppler effect)
which is a measure of the radial component of ¢hetive velocity.
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Figure 1: Simple Radar Model
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The specifications of the waveform employed by aagar system have always been a key factor in méigrg
performance and application. Radar systems typiaatilize wideband waveforms that possess a naraono
correlation main lobe, called the ambiguity funotian order to achieve fine range resolution. Wawef design
problem based on optimization of the ambiguity tiowc has been well studied (Levanon, N. and Moze&on
2004). For a given specification of the radar wawuef, the resulting quantification of range and Deppesolution
is elegantly captured in the ambiguity diagramwtifrom the ambiguity function as first postulatsdWwoodward
(1967). The wideband radar waveform of choice isallg the Linear Frequency Modulation (LFM) waveforlt is
wide spread use is mostly due to specific propettiat allow for stretch processing, as explaime8kolnic (2001).
However linear FM waveform has some disadvantdgmsexample they have high range side lobes, usiesstral
tapering is applied to the receive signal (whicbrifi@es range resolution and degrades the signaloise ratio).
Furthermore the set of linear-FM waveforms includalyy two quasi orthogonal waveforms, that is, iygchirp,’
and ‘down chirp’. Many emerging radar applicati@ften require a set of hundreds or even thousahdsstinct
quasi-orthogonal waveforms. In a quasi orthogoraeform set, no single waveform significantly iféees with
the detection of another waveform that is trangditin the same frequency band and/or at the same #n
example of a radar system that requires a qutisbgonal set is a multiple-input, Multiple-Outp@MIMO) radar
system. A MIMO radar system consists of multiplerapres, where each aperture is capable of tratisghénd
receiving radar waveforms.

Despite the use of pulse compression and other latbolu techniques to achieve high range resolutietiable
classification of a broad range of targets in aenidriety of conditions still remains elusive. Btent years, with
their noise-like property in the time domain anddmtband characteristics in the frequency domaissipiities of
exploiting chaotic signals radar have been stubiechany researchers. The first work incorporatimg ¢oncept of
chaos in radar involved the investigation of thebauity function of a chaotic phase modulated wawef (Lin, F. Y.
and Liu J. M., 2004). Performance of chaotic fragrye modulation (FM), amplitude modulation (AM), Bea
modulation (PM) and pulse modulation radars hawnbyeported (Carrol, T. L. and Pecora, L. M., 199%1)most of
these works chaotic signals were generated byeatsenap and employed in a radar system as bassiarad for
modulation such as PM, FM and as a result thigdittie bandwidth of the transmitted signal whicluim does not
meet the requirements for ultra wideband radaradigrhe random transmitted signal in addition teihg the merit
of high range resolution (Das, A. and Lewis, F. 2010), also has very low probability of intercepne of the
chaotic systems which have been extensively studiethe possibility of generating the chaotic nagignals is the
Lorenz system (Willsey, M., 2006).

The contribution of this paper is to use a spedfiaotic system, the Rossler system for waveforneggion by
appropriately selecting the system parameters.ifsgaly section 2 outlines the salient charactiécsof the Rossler
system and how the control parameters affect itsler, Section 3 the mathematical formulation erethodology,
section 4 Simulation results and discussion whéeti®n 5 concludes the paper.

2. Theory

In 1976, Otto E Rossler (Rossler, O. E., 1976astoanted the following three-dimensional systendiffierential
equations

dx_ 1
- Y7 €Y
dy

E—x+ay (2)
a0 3
dt Zx—c 3)

wherea, b andc are the static or control parameters ang andz are dynamic parameters. The original Rossler
chaotic system had the parametersact b = 0.2 andc = 5.7. Changing the control parameters changes the
behavior of the system and the system is said dengo bifurcations. Figure 2 shows thatars decreased periodic
doubling occur ab = 1.4. Periodic doubling further occurs lae= 0.6. Towardsb = 0.2 the curves seem to expand
explosively and merge together to produce an arafrmst solid blue. This behavior is an indicatofeghe onset of
chaos and the value< 0.2 can be used instead bf= 0.2 which has traditionally been used in this system t
realize the chaos operating mode.
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Figure 2: Onset of Chaoswith b asthe bifurcation parameter

A time series of,y andz is shown in Figure 3. The initial conditions can @igosen arbitrarily. From direct
observation of the time series, it is reasonabkagothex, y andz variables are aperiodic.
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Figure 3: Timeseriesof x, y and z variables

Chaotic systems exhibit sensitivity to initial caiimhs. For a chaotic system, two solutions withanmy initial
conditions exponentially diverge. To demonstratat tthe Rossler system has this sensitivity, dlstate variable
from two distinct solutions with nearby initial aditions are shown in Figure 4. In this Figure thapd labelledx,

is obtained with the initial conditions @f= [—8, 8, 27] while that labeled, is obtained with the initial condition
x =[-7.8,7.8,26.8] . As can be seen the two signals begin nearby apidly diverge from each other. Although
only x(t) is shown, the same behavior can be observed thntfo) andz(t).
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Figure4: Statevariable x: Different initial conditions

Because of their quasi unpredictable behavior tegg®als are very appropriate for use in commuitnaiecause of
inherent security mechanism and spectral diversity.

3. Mathematical formulation

3.1 Frequency Spectrum of the Rossler Waveform

Mathematically time scaling the Rossler equaticas loe used to control the bandwidth of the statmbies. Also
scaling the parameters can be used to time anditadglscale the state variables. The varialjtg is defined as
shown in Equation (4) wheve y andz denote the state variable of the Rossler system.

x(t)

x(O) =y 0)
z(t)
Next thef (g(t)) is defined as
—y—z
fz®)=( x%ay (%)
b+ z(x—c)

Therefore the Rossler system can be written as slim&quation (6)

x(t) = f(x(®) (6)

For notational convenienceg andf(x) can be defined by dropping the t-dependence. Usiisgnotation lek (t)
denote the solution to Equation (7). Alsoiét) denote the solution to Equation (8) wheris a constant greater

than zero.

()
)

If both systems have identical initial conditiohem ¥(t) andx(t) are related as described in Equation (9)

x(t) = x(qt) €)
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In other words scaling the Rossler equationylfgis shown in Equation (8) has the effect of timaing x(t) byg.
Scalingx(t) by g in time domain also scales the bandwidthwgf) by q. The Fourier relationship in Equation (10)
describes how this time scaling affects the banthwadx (qt)(Where X (jw) is the Fourier transform af(t)).

x(qt) & IqilX (]?w) (10)

It will be shown through simulation that with the variation of the scaling factor p and the initial conditions
X0, Yo, Zo the bandwidth of the Rossler waveform can be varied to a desired value.

3.2 Ambiguity function of the Rossler waveform (I mpulsive Synchronization Theory)

The ambiguity function of a waveform can be evaddtom the general expression given in EquatiofL&¥anon,
N. and Mozeson, E., 2004). It is used to measwealility of a radar waveform to measure delay Rodpler shift.
It represents the output of a matched filter fer Waveform.

2

ol = || T u® (¢ + et gt (1)

In the equation u(t) is the radar waveform undersateration and is the time delay. This two dimensional function
indicates the matched filter output in the receiben a delay mismatahand a Doppler mismatcli; occur. The
value |x(0,0)|? represents the matched filter output without misimaTherefore the higher the functify(0,0)|2
around (0,0) the better the Doppler and range uésal.

For the chaotic signals, the analytical treatmemtat possible and in this section, impulsive syactzation scheme
(Pecora, L. M. and Carrol, T. L., 1988; Lu, W. 2Q07; Lewis F. L. and Das, A., 2011;Lu, J. G01@, Cheng , Hu
et al ,2010;Hu, H.P. and Zhu, Z. , 2010) is useoltain the ambiguity diagram of the Rossler basigdals for
comparison with the LFM signal, the most commorggdi radar signal. Consider two dynamical systenasr¢G; T.
L. and Pecora, L. M., 1991)

X =Ax+ F(x) 12)

y = sAy + sF(y) (13)
where FR™ — R™ is continuous (F is a function that maps n din@red vector space into an n dimensional vector
space which is continuous),y € R" (x,y are members of the dimensional vector space, thatcs = [x;, x,, x5]
andy” =y,,y,,y;) are state variabled,e R™" (4 is a member of the x n matrix) is a constant matrix,is a
constant ana andy indicate thedx/dt anddy/dt respectively. Suppose that the solution of equati®) isx(t)
with initial conditionsx(0) then the system in Equation (13) has a solution of

y(t) = x(st) (14)
when the initial conditiory(0) is set to be:(0). Obviously y(t) is the time scaling version xdft) and can be
obtained by solving Equation (13). It should beeqbthat equation (14) holds only when the two ahitionditions
are the same, because the systems work in chaatiss sEquation (14) also implies that the solutb&quation (13)
is synchronized to the time-scaling solution of &ipn (12). The scheme for generating time scatimgptic signal
is shown in Figure 5 which is outlined in the syratization framework (Tao, Y. and Chuo, L.O., 199e driving
system described by Equation (IR)tputs the chaotic signal x(t),which is sampledi¢nerate the impulsive series
x(kAT) with rate1/AT. The series data is first stored in a buffer amehtdelivered to the driven system with
rate s/AT. The state variables of the driven system areestitp jumps at discrete instantss iAT/s i = 0,1,2 ....
The driven system is governed by

y = sAy + sF(y) t #iAT/s (15)
Ay|, _iar =y(t") —y(t)=Be i=012.. (16)

whereB is a constant matrix and

e(t) = x(st) - y(©) 7)
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is the synchronization error. The mechanism belinsl proposed scheme is the impulsive synchromizatiheory.
Under suitable choice & andAT the system in Equation (15) will synchronize vitte system in Equation (12).

5 "y KATE (ST
Driving System 0 el Buffer L] Diven sysem [

Figure5: Block diagram for generating time scaling chaotic signal

Figure 6 shows the implementation of the ambigdiagram. The driving system generates a chaotitakigvhich
is sampled at the intervAll. The sampled signal xfK") is going through two channels the upper channesésl to
generate the time scaling version of the chaoginaix(t) as discussed in the last section. Thefachannel is used
to generate the time-delay version of the chadtioa x(t). The two channel outputs are used tdoper the
correlation operation. The correlation output ie ttesired AF value at specifiedt(s,By changing(s)we can get
the whole AF diagrams of the chaotic signals.

Y(KAT/s)|  Driven y(t)=x(st)
"] System
X(t) X(kAT) Correlation AF(x;s,1)

AT Operation

Buffer

Driving System

X(kAT-1 Driven
System | y(t)=x(t-1])

Delay

Figure 6: Schematic block diagram for AF calculation

Brown (1992; 1993) developed a general method pfessing any dynamical system into a general faibed type
Il generalized Chua equation. To apply the imp@ssynchronization theory to determine the Rossstesn of
equations ambiguity diagram, it needs to be exprk#s this generalized form. Let the solutions la# following
vector ordinary differential equation be uniqueibounded regioR™(n dimensional vector)

% =A)(x — F(x)) (18)
where A(x) is an nxn matrix function of x and Fasfunction mappin®" to itself. A type Il generalized Chua
equation is an ordinary differential equation of thbove form in which the components of the matrand the
vector functionF are composed of finite linear combinations of sigpnfunctions. In addition to the usefulness of
this equation for analysis, there are numericabathges for modeling and simulation in that wezdnle to generate
simple maps that are easy to evaluate on a compuatewhich have a wider range of dynamics. The cghofif
Rossler parameters found to give the optimal anityidunction area = 0.398,b = 0.2, c = 4 and when substituted
in the Rossler dynamics gives

x(t) 0.0 —1.0 —1.07/x 0.0
y(t) =[1.o 0.398 0.0]<y>+( 0.0 ) (19)

Z(t) 0.0 00 —4.01%2/ \2.0+xz
The fixed points for the Rossler system of equatiare determined to be:
Xo =2+ 1.7899 ,y, = —x,/0.398 z, = -, (20)
For reasons of convenience (Carrol, T. L. and RecoM., 1991) we write;, as
Xo=2%21 (21)

wherel = 1.7899.
Using thed the linear part of the vector field at these fixmiints is given by

0.0 ~1.0 ~1.0
A= 1.0 0.398 0.0 (22)
(2 +1)/0.398 0.0 -20+ 21

The function F(x) serves to define the fixed poiitshe type —Il generalized Chua equation. Haetermined by the
fixed points of the Rossler equations. Hence fropmations (20) and (21) F(x) is given by
20+2
Flx)=|-2% A)/0.398]

(2+1)/0.398

(23)
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Equations (22) and (23) are substituted in theimgivand the driven systems as given by equatio}y ghd (13).
This gives the desired type-Il Chua equation foplamentation. For chaotic system@) — x(st) ast —» o when
AT satisfies (Brown R., 1992; 1993)

T = In(8d1) E_) 1 (24)

q+2|aal’
where d, is the largest eigenvalue ¢f + BT)(I + B) andg is the largest of4A + A7) a is a constant and | is an
identity matrix. The proof can be found in (Tao, ahd Chuo, L. O., 1997). In the following MATLABrSBulations
the function “ode45” is used to solve (23) and (24}h step sizel0~5 a =1 and initial conditions set as

((x,(0),x,(0),x5(0)) = (—0.4,—0.6,0.7)) and (y,(0),,(0),y3(0)) = (1, 0, 0). The matriB is chosen as (Brown,

R., 1993)
-1.1 0 0
B = ( 0 -1 0 )
0 0 -1
The other parameters are chosefa@s, ¢, s) = (0.398,2,4,1).

By implementing each of the functions in Figuresing MATLAB Simulink toolbox and the user definegisfem-
function provision in the Simulink the ambiguityadiram in the contour form was obtained as showigare 8.

4. Simulation Results and Discussion

4.1 The Ambiguity diagram

Figure 7 and 8 shows the ambiguity diagrams ofLffé waveform and the Rossler waveform respectivéiile

that of the LFM is smooth having its peak at A1 aondcside lobes that of the Rossler waveform peaRsvdth some
minor lobes labelled D. The minor lobes indicatsgible presence of clutter, or the undesired eotro the radar
environment as a result of using this waveformtbese can be easily eliminated through filtering.
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Figure 7: Ambiguity diagram of an LFM Waveform
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Figure8: Ambiguity diagram of the Rossler Waveform
4.2 The bandwidth of the Waveform

The LFM waveform has an instantaneous frequendylithearly increases or decreases with time. Theos&FM
waveforms thus includes only two quasi —orthogaveveforms, that is ‘up-chirp’ when the frequencyrisreasing
linearly and ‘down-chirp’ when the frequency is deasing linearly. Figure 9 shows the up-chirp LFMveform

and its fast Fourier transform. As is the case wifitcrete Fourier transforms the fiE’sSamples contains the positive

frequency components and the negative frequencyooants appear in the second half of the arrayy Omé half
of the spectrum needs to be transmitted.

From the result of Figure 10 it is clear that iEthontrol parameters b andc are kept constant and the scaling
factorq is varied then the bandwidth of the waveform \&arigthin some limit. This implies that a random ieoof

q , will result in different independent waveform#wdifferent spectral components. However for éaxgriations
the control parameters must be varied. This imporsince the control parameters determines whetieesystem
operates in the chaotic region or not.
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Figure 9: Up chirp LFM Waveform and its Frequency Spectrum
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Figure 10: Variation of the bandwidth of the Rossler waveform with the scaling factor

From Figure 10,for the control paramegdr= 1,the spectral component of the Rossler waveforainist identical
to that of the LFM in Figure 9. However, an increas the scaling parameterd@ = 2, reduces the bandwidth as
predicted by Equation (11). The importance of thithat by varying;, different Rossler waveforms with different
spectral components will be obtained.
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5. Conclusion

This paper proposed the use of Rossler waveforgeterate and optimize independent waveforms thmbeaused
in MIMO radars. It has been observed that by vemabf the parameters different waveforms of déferfrequency
components can be generated, unlike the LFM whahg @ independent waveforms is possible. By udimg

ambiguity diagram it is shown that these wavefomeset the requirements of radar waveforms and cozspaell

with the LFM waveforms. The ambiguity diagram canduljusted to obtain a sharp peak, a key requireimdime

and Doppler and range resolution. By using a sgdtctor the bandwidth of the Rossler waveforms easily be
scaled to the desired range. With the inherentadhearistics of chaotic waveforms that includes gy of secure

detection and low probability of intercept becao$dheir quasi random nature, the Rossler wavefonosld be

ideal for use as radar waveforms. However thesentetics cannot be considered in isolation andrésgarch now
focuses on the other metrics for evaluating thearadaveform metrics such as the autocorrelation enods

correlation functions. The other metrics to be ab@i®d is the Peak-to-RMS ratio which determinesamount of
power that can be transmitted.
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