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Abstract

The main purpose of this paper is to present an approximation method for solving fuzzy integral equation. The
solution of various types of non-linear fuzzy integral equations like non-linear fuzzy Volterra integral equation,
non-linear fuzzy Fredholm integral equation and non-linear able fuzzy integral equation is determined by an
advanced iterative approach the homotopy perturbation method. The method is discussed in details and it is
illustrated by solving some numerical examples.
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1. Introduction

The topics of fuzzy integral equations have been growing rapid in recent few years [1-6]. The basic concept of
fuzzy was introduced by Zadeh [7, 8]. Later, Dubois and Prade [9, 10] presented the concept of fuzzy calculus,
then as well as time pass the concept of fuzzy integral was introduced by M. Sugeno [11, 12], then it’s becoming
a research oriented topic. Homotopy perturbation method is a coupling of perturbation method and homotopy
technique was firstly introduced by He JH in 1999 [13, 14], then it was farther developed by him [15, 16]. HPM
is one of the most advanced and affective method to find the solution of non-linear fuzzy integral equations. In
this paper we shall discuss the analysis of HPM for fuzzy integral equation and approximate solution of non-
linear fuzzy integral equations by HPM.

2. Non-Linear Fuzzy Integral Equation
An integral equation

u(rr) = o)+ 2 ke ou s M)
is called non-linear fuzzy integral equation of second kind if the unknown function appearing inside the integral
is of non-linear nature such thatu’ (¢, 7)1’ (¢,7),e""” , Inu(t, r) etc. Where u(x,7)and f(x,7) are fuzzy
functions, 7 is the fuzzy parameter whose value lies between [0,1] ie. 0<r <1, A is constant parameter,
k(x,t)is known function of two variables X and t called kernel of fuzzy integral equation, @(x)and b(x) are
limits of fuzzy integral equation, if both of limits @(x) and b(x) are constant, then integral equation is known

as Fredholm fuzzy integral equation, if one of limit can say a(x)is constant and one of limit say b(x) is

variable then equation is called fuzzy Volterra integral equation.
The parametric representation of Eq. (1) is as follows,

w(x,r) = f(x,r)+ A j:((:))k(x, (e, r)dt

u(x,r) = fn,r)+ A j:((:k(x, Dult.rdt

where u(x, ) = (u(x,),u(x,7)), f(x,r)=(f(x,7), f(x,r))and
k(x,u(t,r)=k(x,t)u(t,r) k(x,t)>0

k(e Ou(t,r) = k(x,du(t,r)  k(x,1)>0

3. Analysis of HPM to Fuzzy Integral Equations
To solve Eq. (1) by HPM 1% we construct following homotopy
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Hw,pr) == pler) =)+ p| o) = £aon) = [ ko | =0
. ©)
H(v. p.r) = (1= p)[v(e.r) — o (. + p[\_)(x, =T 0er)= [ kv, r)dt} =0

Thus the initial approximation is taken a

w,(r,r) = f(x,7)
uo(x,r) = f(x,r)
Substituting Eq. (3) in Eq. (2) reduces to

v(6r) = () + pf k0w e

Vo) = £, + p j:((:k(x,t);(t, e

The solution of Eq. (2) is assumed as

V@) =Y piv, ()

3)

“4)

)

\_/(x, r)= ipi\_/[(x, r)

Where (v, vi) are unknown to determined.
Now by putting Eq. (5) in Eq. (4) and by comparing coefficient like power of p we get
The following iterations

) [rn = £
. vo(x,r) = j_f(x,r)’
v (o) = [ kG0, (@,r)de

p (6)

vi(x,r) = j:((: k(x, O)vo(t,r)dt Q)

Thus the solution of FIE-2 is given as
u(x,r)=limv(x,r) = Z v, (x,7)
Pl i=0
®)

u :1 v = N _
u(x,r) plg}v(x,r) ; v, (x,r)

4. Numerical Applications
Example 4.1 Consider the non-linear fuzzy Volterra integral equation of 2™  kind

u(x,r) = f(x,r)+ [ u’ (), ©)
where

A=1,0<x<1,0<5¢<x,0<r<], k(x,t)=1 and f(x,r)z(i(x,r),?(x,r)) ie.
f(x,a) = (x(r* +r),x(7—7)).

To solve Eq. (9) by homotopy perturbation method 1% we construct convex homotopy,
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H(v, p,r) = w(x,r) = (> +r)x = p[ v (t,r)dt = 0
3 B o . (10)
HW,p,r)y=v(x,r)—(7—r)x— pjo vz(t, r)dt =0

Assume the solution of Eq. (10) can be written as power series in p
v(x,r) =Y p'v,(x,r)
i=0
(I

\_/(x, r)= ipi\_/i(x, r)

Utilizing Eq. (11) in Eq. (10) and by comparing coefficients like power of p we get
2
s [vear) = £ =207 + 1)

g \_/O(X, r)= 7()6, a)=x(7-r) , (12)

v, (x,7) :§x3(r2 +7)’

" en-Lean .
v,(x,r) :EXS(,J +r)

Py 125 > (14)
va(x,7) :Exs(7—r)3

vy(x,7) :?)1T75x7(r2 +r)?

p )
- 17 A (15)
vi(x,r) =—x"(7T-r
3(x,7) 313 (7-r)

and so on...
As we know the solution is given as

u(x,r)=> v,(x,r)
o . (16)
u(x,r) =" v,(x,r)
i=0
Thus by utilizing above iterative results the approximate solution is given as
1 2 17
u(x,r) =x(r* +7r) +§x3(r2 +7)° +Ex5(r2 +7)’ +Ex7 (r*+r)t+...

- 1 2 17 a7
, e — +_ 3 — 2+_ 5 — 3+_ 7 — 4+'“
u(x,ry=x(7-r) 3x (7-7r) 15x (7-7r) 315x (7-r)
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T2 o4 06 08 10
Fig. 1 Plot of Solution of Example 1, x € [0, 1]
Example 4.2 Consider the non-linear fuzzy Volterra integral equation of 2" kind

u(x,r) = f(x,r)+ I:uz(t,r)dt, (18)

where

A=1,0<x<1,0<5¢<x,0<r<, k(x,t)=1 and f(x,r)= (j_”(x,r),?(x,r)) ie.
FEn =(€" =2 =D(e” =2 (e =121

To solve Eq. (18) by homotopy perturbation method 1% we construct convex homotopy,
1 x
H(v, p,r) = v0or) = (" = (e =D)r=p[| v (t,)dt =0

: (19)
H, p,r) =v(x,r)—(e* —%(e” ~)2-r)-p jox Vv (t,r)dt =0

Assume the solution of Eq. (19) can be written as power series in p

v(x,r) = ip"y,-(x, r)
i=0
(20)

v(x,r) = ip[;i(x, r)

Utilizing Eq. (20) in Eq. (19) and by comparing coefficients like power of p we get

vo(x.r) = f(0.r) = (e —%(e”‘ Dy

P _ 1 : 1)
vo(x,r)= f(x,r)=(e" —E(ezx -1)2-r)

‘_)I(X’r):(_ﬂ‘i‘lx-i‘ex—klezx_leSx+ie4x)r2
P 48 4 4 3 16
8 47 1 1, 1, 1 R o
r)=(———+—x+e +—e" ——e" +— 9_
vi(x,r) (48 e et e e 2—r)
o)=L AT Lo 35, 16 S p Al Tl L L1 s
pZ. 288048 8 24 96 18 192 120 96 2 8
o SSLAT Lo 35, 161, S 4l Tl L Hcé xé”)Q—r)

288048 8 24 96 18 192 120 96
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As we know the solution is given as

u(er) =3 vi(xr)

B . (24)
u(x,r) =" v,(x,r)
i=0
Thus by utilizing above iterative results the approximate solution is given as
1 47 1 1 1 1
u(x,r)=e‘r—( -yr——r’* +=xr’ +e'r’ +—e"r’ —e’r’ +—e*r’ +...
48 4 4 3 16
- _ x 1 2x 47 2 1 2 x 2 1 2x 2
ux,ry=e*2-ry——(" -)2-r)—Q2-r) +—x2-r)" +e'2-r) +—e"(2-r)".
2 48 4 4
1 1
— e Q2-r)+—e"(2-r) +... (25)
3 16
‘0.‘2‘ | ‘0.‘4‘ | ‘04‘6‘ | ‘0.‘8‘ T
Fig. 2 Plot of Solution of Example 2, x€ [0, 1]
Example 4.3 Consider the non-linear fuzzy Fredholm integral equation of 2" kind
1
u(x,r)= f(x,r)+ _[0 u’(t,r)dt, (26)
where
0<x,t<1,0<r<, k(x,t)=1 and f(x,r)=(f(x,r), f(x,r)) i.e.
f(x,]") = (}",(2—}")).
To solve Eq. (26) by homotopy perturbation method 1% we construct homotopy as follows,
1
H(v, p,r) = v(x,r)=r=p| v’ (t,r)dt =0
_ B L . 27)
HW, p,r)y=v(x,r)—(2-r)— pjo v (¢,r)dt =0.
Assume the solution of Eq. (27) can be written as power series in p
v(x,r) =Y p'v,(x,r)
i=0
_ © ' (28)
v(x,r) =D p'vi(x,r)
i=0
Utilizing Eq. (28) in Eq. (27) and by comparing coefficients like power of p we get
0 ‘_}O(xar):f(xar):r
: (29)

vo(x,r) = f(x,7) = (2—7)
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2
o v, (x,r)=r
vi(x,r)=(2-r)? (30)
o v, (x,r) =27
va(x,r) =22 -r)’ (1)
s |vs(xr) = 5r
p * - 4 29
vi(x,7)=52-7r) (32)

b

As we know the solution is given as

u(x.r) =3 v, (6.r)

. . (33)
u(x,r)= Zvi (x,r).
i=0
Thus by utilizing above iterative results the approximate solution is given as
u(x,r)y=r+r>+2r +5r* + ...
— . (34)
ux,r)=Q2-r)+Q2-r +2Q2-r) +52-r)* +...
10 r
gl
s
i
2
Tos 10 15 20 25 30
Fig. 3 Plot of solution of Example 3, x€ [0, 3]
Example 4.4 Consider the non-linear fuzzy Fredholm integral equation of 1 kind
1
Sy =] et @, (35)

where

0<x,t<1,0<r<1, k(x,t)=€e"" and f(x,r)= (f (x,r), 7(x,r)) ie.
f(x,r)=(e'r,e*(3-r)).

We first set
w(x,r) =u’(x,r)

u(x,r) = wix,r) (36)

To carry out Eq. (35) into

feer) = [ e w(e.r)dr, (37)
Which is equivalent to
W) = S ()= [ (e 2wt r) = wix, ) a9

Now to solve Eq. (38) by homotopy perturbation method 1% we define homotopy as follows,
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X 1 x—2t
H(w, p,r) = w(x,r)—e'r+ p| (€7 w(t,r) = v(x,r))dt = 0
B B 0 1 ~ - . (39)
Hw,p,r)=w(x,r)—e*3-r)+ pIO e 'v(t,r) —v(x,r))dt = 0
Assume the solution of Eq. (39) can be written as power series in p
v(x,r) =Y p'v,(x,r)
i=0
_ © ' (40)
v(x,r) = Zp’ vi(x,7)
i=0
Utilizing Eq. (40) in Eq. (39) and by comparing coefficients like power of p we get
0 vo(x,r) = f(x,r)=e'r
P v (3 (41
vo(x,r)= f(x,r)=e"3-r)
pl . v, (x,7) = e 'r
vi(x,r)=e""'(3-r) (42)
pz v, (x,r)= ey
va(x,r)=e">(3-r) (43)
p3 vy (x,r)= ey
vi(x,r)=e""(3—-r) (44)
As we know the solution is given as
w(x,r) = v (x,r)
0 (45)
w(x,r) = z v, (x,7).
i=0
Thus by utilizing the above iterative results the series form solution is given as
wx,r)=er(l+e ' +e?+e” +..)
_ . (46)
wx,r)=e " G-r)l+e'+e’+e’ +..)
And the exact form solution is given as
x+1
w(x,r)=r(—-)
e—1
x+1 (47)
- e
w(x,r)=0G-r) )
e—1

Now by doing back substitution from Eq. (36) the exact solution is given as
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u(x,r)=w(x,r) =

(43)
J(x,r) = w/;(x,r = \/(3
25
2of
15|
10f
i
R
Fig. 4 Plot of Solution of Example 4, x& [0, 5]
Example 4.5 Consider the non-linear singular fuzzy integral equation of 2" kind
u(x,r)=f(x,r)+ .[ (t r) (49)

where

A=1,0<x<1,0<¢<x,0<r<], k(x,t)=\/1_ and f(x,r)=(f(x,r),7(x,r)) ie.
x—t -

f(x,r)=((xr —%XZI’Z ),(x(3—7r) —%xZ 3-r)?)).

To solve Eq. (49) by homotopy perturbation method 1% we construct homotopy as follows,

H(wp.r) = ()~ (o= 2 xer) = £ 0D ( D=0
(50)
- - 16 3 v (t r)
Hw,p,r)y=v(x,r)—(x(3-r ——x2 3-r)%) - dt=0
(v, o) = V(6,) = (¥(3 =) = =7 € ””IJ?
Assume the solution of Eq. (50) can be written as power series in p
v(x,r) =Y p'v,(x,r)
i=0
_ © ' (51)
v(x,r) = ) p'vi(x,r)
i=0
Utilizing Eq. (51) in Eq. (50) and by comparing coefficients like power of p we get
16 >
vy (6r) = () = a7 =L
0. -
p - 5 ) (52)

vo(x,r) = f(x,r)=x(3—-7) —%xz (3-r)
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5 11

Py 2—l7DC4 3 131072 ?}/‘4

v(ar) =t r
o 15 12 155925
- 16 3 , T . , 131072 U N (53)
vilx,r)=—x2@B-r)y —m"B-r)y +——x23-r
o) =gt @) ) st G

o

As we know the solution is given as
u(x,r) =Y v,(x,r)
=0 (54)

;(x, r)= iv_i(x, r)

We observe the noise term phenomena appears between coefficients of P and P thus by utilizing above
iterative results and cancelling terms the exact solution is given as

u(x,r)=xr
:( ) ' (55)
u(x,r)y=x(3-r)

20F

150

10F

05t

0.‘2 0.‘4 0.‘6 0.‘8 1.6
Fig. 5 Plot of Solution of Example 5, x € [0, 1]
Example 4.6 Consider the non-linear Able’s fuzzy integral equation of 1% kind
u-(t,r
( )dt (56)

fmm=jJ——

where

1 _
A=1,0<x<1,0<t<x,0<5r<1, k(x,t)= and f(x,r)= x,r), f(x,r)) i.e.
(x,1) NP, S(x,r)y=(f(x,r), f(x,7))
fmﬂ#%rgﬁrnﬂ
Consider the transformation

w(x,r) =u’(x,7)

u(x,r)=3ywix,r).

Carries Eq. (57) into
u)j

Equivalent to
w(x r) w(t,r)—w(x, r)
f(x,r)= j Sdi+ | —

(57)

w(t r)
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S(x,r) xw(t,r)—w(x,r)
w(x,r) = (58)
2/x 2J_ ! Jx -1
To solve Eq. (58) by HPM first we construct convex homotopy as follows,
16
H(vpr)—v(xr)——rx+ dt =0
2«/_ )=
. (59)
H(v,p,r):v(x,r)—g(S—rfx}+ dt =0
Assume the solution of Eq. (59) an be written as power series in p
v(x,r) =Y p'v,(x,r)
- . (60)
v(x,r) = z pvi(x,r)
i=0
Now by putting Eq. (60) in Eq. (59) and by comparing coefficients like power of p we get
1
vo(x,r) = —6r3x
0. 35
p'iy e (61)
vo(x,r) = —(5 —r)’x’
16
v (x,r)=—r’(l1- T —)x’
P 16 16 ©
vi(x,r)=—0G-r)’1-—)x°
1(x,r) 35 (5-r)( 5)
16 16 .,
vy(x,r)y=—r(1-—)"x
? 22 (%r) 35 -3
1 63
vZ(xr)——(s— ") (- i))ﬁ (63)
As we know the solution is given as
w(x,r)= > v,(x,r)
i;O (64)
w(x,r) = > v, (x,r)
i=0
Thus by utilizing the above iterative results the series form solution is given as
v_v(x,r):ﬁr%c3 +Er3(1—— ’ +Er3(1——)2x3 +...
35 35 35 (65)
- 16 3 3 16 3 16
wx,r)=—0O-ryx +—0G6-r)y(1-
(x,7) 35( ) 3)5( ) ( 35)
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And the exact form solution is given as

w(x,r)=r’x’

_ . (66)
w(x,r)=(05-r)x
Now by doing back substitution from Eq. (57) the exact solution is given as
u(x,r)=3jw(x,r)=rx
(67)

;(x,r) = %/;(x,r) =(5- r)x.

41
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Fig. 6 Plot of Solution of example 6, x € [0, 1]

5. Conclusion

In this paper, some nonlinear fuzzy integral equations were handled by the homotopy perturbation method. The
HPM has been shown to solve easily, accurately and affectingly a wide range of fuzzy non-linear problems
which converge rapidly. Obtained results show that this new technique is easy to implement and produces
accurate results. A considerable advantage of the used technique is that the approximate solutions are found very
easily. The method can also be extended to the system of nonlinear fuzzy integral equations of mixed type with
variable coefficients, but some modifications are needed.
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