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Abstract 

The major drawback of the orthogonal frequency division multiplexing (OFDM) system is high sensitivity to 

synchronization errors caused by carrier frequency offsets (CFOs), which result in degradation in the bit error rate 

(BER) performance. This paper investigates the performance of a hybrid fractional carrier frequency offset estimator 

(FCFOE) for frequency synchronization in the OFDM system. The hybrid FCFOE exploits the pilots inserted within 

the OFDM symbol for channel estimation together with the information inherent in the cyclic prefix (CP), with a 

view to improving the estimation of the CP-based FCFOE. The performance of the developed hybrid FCFOE was 

evaluated in terms of the mean squared error (MSE) and bit error rate (BER) using OFDM-QPSK and OFDM-

16QAM schemes it turn. The simulation results show that the hybrid FCFOE only gives slightly better performance 

over the CP-based FCFOE; but the performance enhancement of the hybrid FCFOE is noticeable in OFDM-16QAM.   

Keywords: Carrier frequency offset estimation, Hybrid, Orthogonal frequency division multiplexing, 

Synchronization, Maximum likelihood, Cross-correlation. 

 

1. Introduction 

OFDM is a multicarrier transmission technique which has received a lot of attention in recent years due to its 

robustness in multipath frequency-selective fading channels; and it has been widely implemented in high speed 

digital wireless networks and applications such as the IEEE802.11a standards to provide WLAN connections (Kim & 

Park, 2007), digital video broadcasting satellite services to handheld devices (DVB-SH) (Yang et al., 2008; 

Awoseyila et al., 2009) and for high speed microwave connections such as multichannel multipoint distribution 

services (MMDS) (Rappaport, 2002). OFDM is, however, very sensitive to carrier frequency offsets (CFOs) caused 

by Doppler frequency shifts and oscillator instabilities (Morelli & Mengali, 1999; Grigoriadis & Kamath, 2008; 

Ghogho & Swami, 2008). These imperfections destroy the orthogonality among the subcarriers, and the signals of 

adjacent carriers will interfere with each other thereby introducing intercarrier interference (ICI) in addition to 

attenuation and rotation of each of the subcarriers’ phase, which invariably results in performance degradation 

(Huang & Letaief, 2006; Ruan et al., 2010; Adeyemo & Ajayi, 2011). This makes carrier frequency synchronization 

very important in order to achieve quality of service (QoS) delivery. Frequency Synchronization of an OFDM signal 

requires estimating the CFO and compensating it at the receiver (Schmidl & Cox, 1997). A number of carrier 

frequency offset estimation techniques have been proposed in the literature ranging from channel group delay 

estimation to blind methods using the received signal’s autocorrelation (Wyglinski, 2004). The CFO estimators fall 

under two main categories namely data-aided and non-data-aided (or blind). The data-aided method involves the use 

of either training symbol(s) or pilots for CFO estimation, while the blind method utilizes cyclic prefix (CP) or null 

subcarriers (NSCs) (Van de Beek et al., 1997; Ghogho et al., 2001). A training symbol is a preamble which is 

transmitted together with the data signal. Pilots represent a predefined sequence of symbols which are inserted within 

the OFDM symbol and are known by both the transmitter and the receiver. CFO normalized by subcarrier spacing is 

categorized into two namely 1) integer CFO, which is a multiple of the subcarrier spacing and 2) fractional CFO, 

which is less than half of the subcarrier spacing (Sameer & Kumar, 2007; Ruan et al., 2010). Schmidl & Cox (1997) 

developed a timing and frequency synchronization method which utilizes the autocorrelation of a training symbol 
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with two identical parts to estimate timing and fractional frequency offset in the time domain; but it suffers training 

overhead and the estimation range is low. Morelli & Mengali (1999) proposed a method that uses just one training 

symbol that composed of L > 2 identical parts, where L is the number of the complex samples in one-half of the 

training symbol, with the aim of improving on the algorithm of (Schmidl & Cox, 1997) in terms of estimation range 

and accuracy. The algorithm gave an estimation range of ±L/2 the subcarrier spacing but at the cost of computational 

complexity. Ren et al. (2005) proposed a data-aided CFO estimation method based on Constant Amplitude Zero 

Autocorrelation (CAZAC). The method utilizes a constant preamble weighted by a binary pseudo-noise (PN) 

sequence. The constant envelope preamble contains two identical halves and the estimation is based on finding the 

highest correlation between two repeated sample sequences. The fractional CFO estimation accuracy is poor due to 

the distortion of its preamble structure by the weighting PN sequence applied. 

A joint maximum likelihood (ML) estimator of time and frequency offset which utilizes the redundant information 

contained within the CP in the OFDM symbol was developed by (Van de Beek et al., 1997). The method gave a good 

performance over the additive white Gaussian noise (AWGN) channel but requires further modification to be 

effective over multipath fading channels. Luise et al. (2002) proposed a low-complexity blind CFO estimator scheme. 

The method exploits the time-frequency-domain exchange inherent to the modulation scheme together with virtual 

carriers. The estimation range is however low. Sameer & Kumar (2007) proposed the use of CP for fractional CFO 

estimation in the time domain, and observed that the CP-based method gives low computational complexity with low 

estimation range. However, the CP can be badly distorted in a very harsh multipath channel (Wu & Abu-Rgheff, 

2010). 

Hence, this paper attempts to combine both the information in the pilot subcarriers and the CP of the OFDM symbol 

so as to achieve better estimation accuracy as well as low computational cost. 

 

2. The OFDM Signal Model 

The samples of the OFDM symbol after the inverse discrete Fourier transform (IDFT) can be expressed as: 
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where kH  is the frequency response of the channel at the k
th

 subcarrier frequency; kS
 
is the received symbol at the 

k
th

 subcarrier, )(nw  is the AWGN and ε  is the CFO to be estimated which results in phase rotation of Nnεπ2  in 

the received signal. 

The mean squared error (MSE) of the CFO estimator is obtained by: 
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iteration. The MSE is plotted together with the Cramer-Rao Bound (CRB), which is the benchmark, given as: 
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where SNR is the signal-to-noise ratio and N is the IDFT size, that is the number of OFDM subcarriers. 
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3. Fractional Carrier Frequency Offset Estimator 

3.1 Cyclic Prefix-based FCFOE 

Assuming perfect timing estimation at the OFDM receiver, by cross-correlating the cyclic prefix samples with the 

corresponding samples in the OFDM symbol a coarse (or fractional) CFO is estimated in the time-domain as: 

       )()(
1

* NnynyR
Ld

dn

c += ∑
−+

=

              (5) 

 

where ( )*⋅  denotes complex conjugate, d  is the timing metric which is assumed to be zero because perfect timing is 

assumed and L  is the length of the CP. Using the log-likelihood function, LLF (Van de Beek et al., 1997), the 

maximum likelihood (ML) estimation of the fractional frequency offset is obtained by: 
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where

 

arg denotes the argument of a complex number.  

 

3.2 Pilot-based FCFOE 

This involves symbol by symbol multiplication of the complex conjugate of the received pilots with the expected 

pilot symbols. By cross-correlating the received pilot samples with the known samples at the receiver, a coarse CFO 

estimate can be obtained as: 
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where pΓ  is the indices of the pilot subcarriers, )(ky
 
is the received pilot symbol at point k , )(nx  is the 

corresponding known pilot symbol. The FCFOE can be obtained by: 

 

]arg[
2

1
ˆ

2 pf R
π

ε =                                  (6) 

 

The pilots are equallydistributed within the OFDM symbol. 

 

 

3.3 Hybrid FCFOE 

The resultant FCFOE in the time domain is the average of the fractional CFO estimates obtained from the CP and 

pilot sequence, and it is given as: 
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This is a time-domain carrier frequency synchronization, and gives the fractional part of the CFO estimate because 

the value of fε̂  is a fractional part of the CFO, so the CFO synchronization performed in this stage is less accurate 

but of low complexity. The fractional CFO is corrected here before taken DFT of the received signal. Figure 1 shows 

the structure of the hybrid FCFOE.  

 
Simulation parameter Specification 

Number of channel realizations 100 

Path delays (samples) [0, 10, 20, 30, 40, 50]  

Average path gains (dB) [-4.8434,-6.2911,-7.7387,-9.1864,-10.6340,-12.0817] 

Mobile speed 120 km/h 

Carrier frequency 2 GHz 

IDFT size  1024 

System bandwidth 5 MHz 

Sampling frequency 4.44 Msps 

Length of Cyclic Prefix 128 samples 

 

4. Results and Discussion 

The performance of the developed hybrid fractional CFO estimator was investigated by computer simulation using 

MATLAB software package. Two OFDM symbols were transmitted and the primary modulation schemes used are 

quaternary phase-shift keying (QPSK) and sixteen quadrature amplitude modulation (16-QAM) in turn. Multipath 

Rician fading channel with a Rician factor of three is used, and the fading taps gains follow an exponential power 

delay profile. At the receiver after the DFT the pilot samples are extracted and used to estimate the channel based on 

Least Square (LS) estimation. The pilot samples are chosen from a subset of a 64-QAM constellation. The number of 

pilots used is 128 samples except stated otherwise; and the frequency offsets created are 0.125 and 0.25 in turn. The 

mean MSE and mean BER results taking the SNR from 0 to 20 dB are presented. The OFDM-QPSK signal 

constellation before and after the effect of the frequency offset are shown in Figure 2(a) and Figure 2(b) respectively; 

the application of CFO results in scattered constellation. 

Figure 3 shows the comparison of the CP-based FCFOE and hybrid FCFOE for CFO of 0.125 in terms of MSE. The 

mean MSE results for the CP-based and the hybrid FCFOEs in OFDM-QPSK are 4.9881e-004 and 0.0017 

respectively; while in OFDM-16QAM, the CP-based gives 6.1716e-004 and the hybrid method gives 9.8675e-004 as 

against the CRB mean MSE of 3.6331e-005. The results for CFO of 0.25 are presented in Figure 4. In the OFDM-

QPSK scheme, the CP-based gives 4.1378e-004 and the hybrid method gives 0.0012; while in the OFDM-16QAM, 

the CP-based and the hybrid methods give 3.9267e-004 and 9.3640e-004, respectively, as against 3.6331e-005 for 

the CRB.   

Figure 5 presents the effect of the CFO value on the estimators’ performance in OFDM-QPSK. For the CFOs of 

0.125 and 0.25, the CP-based FCFOE gives the mean MSE of 4.9881e-004 and 4.1378e-004 respectively. On the 

other hand, the hybrid FCFOE gives the mean MSE of 0.0017 and 0.0012 for CFO of 0.125 and 0.25, respectively. 

The results for the OFDM-16QAM scheme are shown in Figure 6. For the CFOs of 0.125 and 0.25, the CP-based 

FCFOE gives the mean MSE of 6.1716e-004 and 3.9267e-004 respectively; while the hybrid FCFOE gives the mean 

MSE of 9.8675e-004 and 9.3640e-004 for CFO of 0.125 and 0.25, respectively. 

The effect of the number of pilots used on the performance of the hybrid FCFOE in OFDM-QPSK is presented in 

Figure 7. For CFO of 0.125, the mean MSE are 8.9272e-004 and 0.0017 for 64 and 128 pilots, respectively; while for 

CFO of 0.25, the mean MSE are 0.0021 and 0.0012 for 64 and 128 pilots, respectively. Figure 8 shows the results for 

the OFDM-16QAM scheme. For CFO of 0.125, the mean MSE are 0.0014 and 9.8675e-004 for 64 and 128 pilots, 

respectively; while for CFO of 0.25, the mean MSE are 0.0013 and 9.3640e-004 for 64 and 128 pilots, respectively. 

The BER performances of the FCFOEs for CFO of 0.125 are presented in Figure 9. In the OFDM-QPSK scheme, the 

CP-based and the hybrid FCFOEs give mean BER of 0.0776 and 0.0771, respectively; while in the OFDM-16QAM, 

the CP-based gives 0.0939 and the hybrid gives 0.0937. Figure 10 shows the BER results for CFO of 0.25. In the 
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OFDM-QPSK scheme, the CP-based and the hybrid FCFOEs give mean BER of 0.0787 and 0.0789, respectively; 

while in the OFDM-16QAM, the CP-based gives 0.0939 and the hybrid gives 0.0916.   

      

5. Conclusion 

5.1 Conclusion 

A hybrid fractional carrier frequency offset estimation technique that combines the information in both the pilots and 

cyclic prefix in the OFDM signal has been developed and the performance compared with the CP-based technique 

for 128 pilots. Using the CFO estimates obtained by the estimators, the mean MSE and mean BER were computed. 

The results obtained from computer simulation reveal that with CFO of 0.125 the hybrid method gives about 0.32% 

and 0.11% lower BER compared with the CP-based method in the OFDM-QPSK and OFDM-16QAM, respectively; 

and about 1.24% BER advantage over the CP-based method for CFO of 0.25 in the OFDM-16QAM. This implies 

that the hybrid FCFOE gives a relative improvement over the CP-based FCFOE, which is noticeable in the OFDM-

16QAM scheme. Generally, the estimation errors for the CFO of 0.25 are lower than those for CFO of 0.125. Also, 

increasing the number of pilots used in the hybrid FCFOE improves the performance of the estimator, which is 

revealed by the MSE results obtained for the 64 and 128 pilots in turn.                   

 

5.2 Recommendations 

The developed hybrid FCFOE is still sub-optimal due to the estimation variance it suffers; hence, the technique can 

be improved upon by maximizing the LLF function. Also, by distinctively arranging the pilots within the OFDM 

symbol, better information about the CFO can be obtained. 
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Figure 1: Structure of the Hybrid Fractional CFO Estimator 

 

 

     
 

Figure 2(a): Constellation diagram of OFDM-QPSK  Figure 2(b): Constellation diagram of OFDM-QPSK 
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Figure 3: Mean-Squared Error of Fractional CFO Estimators for CFO of 0.125 

 

 
     

Figure 4: Mean-Squared Error of Fractional CFO Estimators for CFO of 0.25 
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Figure 5: Mean-Squared Error of Fractional CFO Estimator for OFDM-QPSK 

 

 
Figure 6: Mean-Squared Error of Fractional CFO Estimator for OFDM-16QAM 
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Figure 7: Effect of the number of pilots used for the hybrid FCFOE in OFDM-QPSK 

 

 
Figure 8: Effect of the number of pilots used for the hybrid FCFOE in OFDM-16QAM 
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Figure 9: Bit Error Rate performance of the fractional CFO estimators for CFO of 0.125 

 

 

 
Figure 10: Bit Error Rate performance of the fractional CFO estimators for CFO of 0.25 
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