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Abstract 

Real life world datasets exhibit a multiclass classification structure characterized by imbalance classes. Minority 

classes are treated as outliers’ classes. The study used cross-industry process for data mining methodology. A 

heterogeneous multiclass ensemble was developed by combining several strategies and ensemble techniques. The 

datasets used were drawn from UCI machine learning repository. Experiments for validating the model were 

conducted and represented in form of tables and figures. An ensemble filter selection method was developed and 

used for preprocessing datasets. Point-outliers were filtered using Inter quartile range filter algorithm. Datasets 

were resampled using Synthetic minority oversampling technique (SMOTE) algorithm. Multiclass datasets were 

transformed to binary classes using OnevsOne decomposing technique. An Ensemble model was developed using 

adaboost and random subspace algorithms utilizing random forest as the base classifier. The classifiers built were 

combined using voting methodology. The model was validated with classification and outlier metric performance 

measures such as Recall, Precision, F-measure and AUCROC values. The classifiers were evaluated using 10 fold 

stratified cross validation. The model showed better performance in terms of outlier detection and classification 

prediction for multiclass problem. The model outperformed other well-known existing classification and outlier 

detection algorithms such as Naïve bayes, KNN, Bagging, JRipper, Decision trees, RandomTree and Random 

forest. The study findings established ensemble techniques, resampling datasets and decomposing multiclass 

results in an improved detection of minority outlier (rare) classes.  
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1. INTRODUCTION 

Outlier detection has continued to be an active research area in the field of data mining due to its challenges and 

wide application. ( Wang & Huang, 2017) affirms that outlier detection is one the important research area of data 

mining, which plays vital role in data cleansing and detection of rare events or abnormal incidents. From a 

statistical perspective, outliers are described as those observations that are significantly different from the majority. 

Depending on the specific applications, outliers are also referred to as anomalies, discordant observations, 

exceptions, faults, defects, aberrations, noise, errors, damage, surprise, novelty, peculiarities or 

contaminants(Chandola, et. al, 2007). 

With the emerging technologies such as cloud computing, internet of things and social networks, outlier 

detection has continued to obtain wide applications. Outlier detection provide useful, sufficient and meaningful 

knowledge in data preprocessing, equipment fault diagnosis, credit fraud detection, traffic incident detection, 

network intrusion and others (Chandarana, 2015) According to (Bansal, Gaur, & Singh, 2016), outlier detection is 

one of the major issues in data mining. Outliers may appear as a deviation from the rest of the objects as if it was 

generated from a different mechanism (Hawkins, 1980) or may be represented as rare events or minority class in 

a classification problem (Seiffert, 2007). 

Real world problem is characterized by presence of multiclass problem. The latter is more often than not 

composed of imbalance dataset representation. The rare classes’ form the class of interest since the existing 

classification algorithms were designed with bias towards prediction of majority classes. Thus several strategies 

and techniques are required when solving the problem of multiclass. According to (Elkano, Galar, Sanz, Lucca, & 

Bustince, 2017) decomposition strategies have been demonstrated to be a successful methodology for multiclass 

classification problems. 

Authors (Lin & Yan, 2015) assert that classification and prediction through data mining can grasp the basic 

trend of the development of the unknown data. Since outliers can manifest themselves as rare events in a multiclass 

classification problem, it is practical to combine the study of multiclass classification and outlier detection. Thus 

a novel prediction method should be developed that improves on the prediction of the minority classes and 

safeguard the integrity performance of the majority classes.  

The next section 2 provides related work while the proposed method is presented in section 3. Section 4 

provide experiments and analysis while section 5 concludes the paper. 
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2.0 RELATED WORKS 

Data mining techniques have been applied and integrated on several fields such as machine learning, statistics, 

artificial intelligence, and database systems, for analysis of large volumes of data (Allahyari, Trippe, & Gutierrez, 

2017). According to (Han, 2015), predictive activities of data mining include classification and regression. The 

primary objective of supervised learning is to build a concise model of the distribution of class labels in terms of 

predictor features (Kotsiantis & Kanellopoulos, 2012). 

Supervised outlier detection techniques assume the availability of a training data set which has labeled 

instances for normal as well as outlier class in a classification problem (Gogoi, Bhattacharyya, Borah, & Kalita, 

2011). Typical practical approach in such case is to build predictive models for both normal and outlier classes. 

Any unseen data example is compared against the two models to determine the appropriate class it belongs to. 

Supervised outlier detection techniques have an explicit notion of the normal and outlier behavior and hence 

accurate classifiers can be built (Chandola et al., 2007).  

(Zhang, 2013) proclaimed outlier detection is an important research problem in data mining that attempts to 

discover useful abnormal and irregular patterns hidden in large datasets. Author argues that outlier detection has 

become the enabling underlying technology for a wide range of practical applications in industry, business, security 

and engineering. Different models or algorithm may detect and output outliers differently (Rana, Pahuja, & 

Gautam, 2014) and hence the need to develop an effective outlier detection method. 

Accuracy performance of classification is improved when redundant and irrelevant features have been 

removed. Dimensional reduction of attributes is desirable because it reduces the complexity of the model resulting 

in a clear and understandable model (J. Wang, Zhou, Yi, & Kong, 2014). 

According to (Nikulin & Mclachlan, 2009), significant progress in classifier metric performance is achieved 

through the advanced preprocessing and feature selection techniques. Authors concluded that use of several 

different models results in an improved classifier. The models could be improved through ensemble technique. An 

ensemble method is considered as meta-algorithm that results from combination of several machine learning 

algorithms and techniques that aims at reducing data variance, algorithm bias and improves prediction. The 

Ensemble techniques utilize the explicit power of multiple models to realize better prediction accuracy than the 

case when individual models are used. The ensemble learning algorithms used in the design should be competent 

enough and complementary to one another (Oza, 2000). 

It has been noted most of the ensemble methods use a single base learning algorithm to produce homogeneous 

base learners although some methods that use learners of different types leading to heterogeneous ensembles. 

Author (Breiman, 2001) reaffirmed that in order for ensemble methods to be more accurate than any of its 

individual members, the base learners have to be as accurate as possible and as diverse as possible. Recent studies 

have shown that combining feature selection methods through ensemble technique improves performance of 

classifiers by identifying features that are weak as an individual but strong as a group (Osanaiye et al., 2016). 

Data sampling is a useful procedure when the data to be analyzed is of imbalanced class distribution where 

the samples from majority class outnumber samples from minority class (Feng, Huang, & Ren, 2018). Due to the 

inherent complex characteristics of imbalanced datasets, learning from such data requires new understandings, 

principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge 

representation. 

Multiclass problem issues can be addressed through data resampling, decomposition and improving on the 

learning algorithms. Resampling techniques such as under- sampling, over-sampling, and synthetic minority 

oversampling technique (SMOTE.) are widely used to rebalance datasets. However more research is needed for 

the ever challenging emerging multiclass problem in real life applications(Krawczyk, 2016).   

 

3.0 CONCEPTUAL FRAMEWORKS 

The conceptual framework in this study was based on input-process-output model. Figure 4 shows the framework. 

The input is made up of multiclass datasets. The process include preprocessing, multiclass transformation, building 

of classifiers, and combing classifiers. Output include predicted classification and outlier (minority classes) 

performance.  

The dataset is filtered to remove redundant or irrelevant features. An ensemble filter selection method is 

developed using combination of several filter selection algorithms.  The dataset is split into training and testing 

samples. The split can be 70% for training and 30% for testing. Alternatively Stratified 10 fold cross validation is 

used. The initial dataset is partitioned into 10 subsets with an approximately equal number of samples in each 

subset. Each subset is used as the test partition, while the remaining subsets is considered for training dataset. 

The filtered dataset is preprocessed through feature reduction and global outlier removal. Some of the 

resampling technique that can be applied include, under-sampling, over-sampling, generating artificial samples 

using SMOTE, etc. Removal of the outliers can be done through use of model-based outlier detection using 

statistical IQR method.  

The preprocessed dataset is transformed to binary using any one of the several decomposition techniques such 
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as OVA, OVO, and ECOC. Ensemble classifiers are built using the selected data set features and learning 

classification algorithms. Single or several learning algorithms are modeled with the same or different base 

(weaker) learners. The resulting classifiers are combined using voting methodology. Some of the voting 

methodology used include majority voting, minimum probability, maximum probability, median, average of 

probabilities and product of probabilities. 

Classification and outlier performance is achieved through predictive analysis using ROC measure, detection 

rate (true positive), precision, recall and F-measure. 

 
Figure 1: Conceptual Framework of the Study 

 

4.0. PROPOSED METHOD 

From the conceptual framework described in section 3, we proposed development of an ensemble multiclass 

classification and outlier detection method for data mining. The method used several strategies and ensemble 

techniques. The method had six phases namely, development of an ensemble filter selection method phase, data 

preprocessing phase, dataset resampling and point-outlier filtering phase, multiclass transformation phase, 

ensemble model building, testing and validation phase. To demonstrate the significant of our method, we used 

multiclass datasets. Initial exploration of the datasets involved plotting histogram to ascertain presence of point 

outliers. The phases are described as shown in the next subsections: 

 

4.1 Developing an Ensemble Filter Feature Selection Method 

Phase 1 involved development of an ensemble filter feature selection method that was to be used as part of 

preprocessing. The process used Correlation, Information-gain, ReliefF, and Gain-ratio algorithms. The algorithms 

were considered due to the fact that Correlation algorithm aims at establishing a feature list that has lesser feature-

feature correlation with each other and higher feature-class correlation.  Information gain algorithm is known to 

evaluate the worth of an attribute by measuring the information gain with respect to the class. Gain ratio on the 

other hand evaluates the worth of an attribute by measuring the gain ratio with respect to the class. ReliefF 

algorithm can easily deal with multiclass problems and is also more robust and capable of dealing with incomplete 

and noisy data.  

Figure 2 provides the pseudo-code for developing the ensemble filter selection method.  Each of the four 

algorithms were selected and used to individually rank the features of the datasets. This resulted in generation of 

four ranked feature lists. The four lists were then sorted and merged using aggregation or majority voting 

techniques. Random forest classifiers and Root Mean Square Error (RMSE) were used to determine the relevant 

optimal features in the merged list. The process started by building classifier using the top-ranked feature in the 

merged list and the resulting RMSE value observed and recorded. The process was repeated iteratively by 

incorporating the next top-most feature. As long as a feature had significant contribution to the performance of 
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classifiers, the RMSE predictive value was expected to continue decreasing as more bottom ranked features were 

incorporated. When a feature with less contribution to the performance of classifier was incorporated, the resulting 

classifier was expected to have a higher RMSE value compared with the previous immediate RMSE value. Thus 

the threshold was set to this level where the classifiers started to deteriorate in terms of performance. The final 

expected feature sub-list included the features starting from the top-ranked feature up to and including the feature 

that resulted in the generation of the least RMSE value. 

 
Figure 2: Pseudo-code for Creating Ensemble Filter Selection Method 

 

4.2 Preprocessing Datasets 

Phase 2 involved further data preprocessing using the developed ensemble filter selection method and filtering 

point outliers using interquartile range (IQR) algorithm. The outliers were identified from statistical tail ends as 

follows: 

X≤Q3 + 3*IQR or  X≥Q1-3*IQR         (1) 

Where: Q1 = 25% quartile, Q3 = 75% quartile and IQR = difference between Q1 and Q3 

 

4.3 Resampling Datasets 

Phase 3 involved resampling the datasets. SMOTE was used to generate artificial samples of the rare classes. The 

numbers of artificial samples were generated to the level that they measured at least 50% compared with the 

majority classes.  

 

4.4 Decomposing Multiclass 

Phase 4 involved transforming multiclass problem to binary problem. The proposed method used One-verses-One 

technique utilizing pairwise coupling to speed up the decomposition process. 

   

4.5 Building Ensemble Model 

Phase 5 involved building a heterogeneous ensemble model. Two ensemble classifiers AD_RF and RS_RF were 

built using Adaboost algorithm and Random Subspace algorithm respectively each utilizing random forest 

algorithm as their base classifier. The two ensemble classifiers were combined using voting technique utilizing 

average of probabilities combination rule.  Each individual classifier (AD_RF, RS_RF) generated their hypothesis 

h1, and h2 respectively. For each output class, a posteriori probabilities was generated by individual classifier 

AD_RF and RS_RF. Thereafter, the class represented by the maximum average value of a posteriori probabilities 

was designated to be the voting hypothesis (h*) for the final decision outcome. Figure 3 provide the proposed 

ensemble model. 
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Figure 3: The Proposed Ensemble Model 

 

4.6 Testing and Validating the Model 

Phase 6 involved testing the metric performance of the proposed method. Stratified 10 fold cross validation was 

used to valid the performance of the model. The initial dataset was first partitioned into 10 subsets with an 

approximately equal number of records in each subset. Each subset was used as the test partition, while the 

remaining subsets were combined to perform the role of the training partition. A paired T-test was employed for 

testing the difference in performances of the proposed model and the commonly used classification algorithms. 

The paired T – test applied 95% statistical confidence interval. Several tests were performed including testing the 

merit for each module in the method and the comparison metric performance of the method with the other well-

known classification algorithms. Receiver Operating Characteristic (ROC) values was used to measure the 

performance of the classifiers. Other metrics performance measures such as True Positive, Precision, Recall and 

F-measure were used to evaluate the performance of model.  

 

5.0 EXPERIMENTS AND ANALYSIS 

5.1 Dataset Description 

UCI (Dua, D. and Karra Taniskidou, 2017) database is of high-quality, real-world, and well understood machine 

learning datasets. Since the study focused on multiclass and outlier detection, all the datasets drawn from UCI 

were multiclass. The datasets were a mixture of low and high dimensional data with varying number of instances, 

and classes. Majority of the datasets did not have missing values. All the datasets had imbalance classes. Table 4.1 

shows summary description of the datasets after applying the proposed ensemble filter feature selection method.  

Table 4.1: Summary Description of Datasets and Selected Features 

 Datasets  #attributes #instances 

without 

missing 

values 

#classes  Selected Features  Dropped 

Features 

1 Cleverland 13  297  5  3,8,9,10,11,12,13  1,4,5,6,7 

2 Contraceptive  9  1473  3  1,2,3,4,5,6,8,9  7 

3 Dermatory 34  358  6  2.3.4.5.9.14.15.17.2

0,21,22,26,27,28,31

,33  

1,6,7,8,10, 11, 12, 

13,16, 18, 19,23, 

24, 25, 29, 30, 32 

4 Ecoli 7  336  8  1,2,3,5,6,7  4 

5 Glass  9  214  6  1,2,3,4,6,7,8,9  5 

6 Newthyroid 5  215  3  1,2,3,4,5  None 

7 Redwine 11  1599  6  1,2,3,5,7,8,10, 11 4,6,9 

8 Zoo  16  101  7  1,2,3,4,5,6,8,9,10,1

2,13,14,16  

7, 11,15 

9 Vehicle  18  946  4  1,2,3,4,5,6,7,8,9,10,

11,12,13,14,17,18  

15,16 

10 Yeast  8  1484  10  1,2,3,4,5,6,8  7 
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4.2 Effect of Removing Point-Outliers on Classification 
We sought to determine the effect of presence of point outliers on classification performance using the proposed 

method. Experiment was done using preprocessed Redwine dataset. Table 4.2 shows results of experiment before 

and  after removing point-outliers. Results indicate the overall weighted ROC classification performance of  

proposed method improved from 86.6% to 86.8%, SVM improved from 73.6% to 74.2%, SVM improved from 

70% to 70.5%, KNN improved from 73% to 75.9%, OneR declined from 68.7% to 65.3%, C4.5 improved from 

62.2% to 76.7% and randomforest improved from 72.9% to 86.1%. The proposed method had a better performance 

than other well known classification algorithms. Generally removing point outliers improved on classification 

performance of the proposed method and other existing algorithms. 

Table 4.2: Effect of Removing Point-Outliers on Classification Performance 

 
 

4.3 Comparison Performance of Proposed Method with Other Algorithms Using Statistical Paired-T test 

Ten preprocessed multiclass datasets were used in the experiment. The performance of proposed method was 

compared with the individual algorithms used to construct the method and also with other commonly used 

classification algorithms. ROC value was used as the metric performance measure. Performance was done using 

statistical Paired T-test with significant level p set at 95% confidence interval. Results were presented using some 

terms. The term “v” represented the winning situation of that particular algorithm as compared with the proposed 

algorithm while “*” indicated that the proposed ensemble algorithm was statistically better than the compared 

algorithm. Plain text signified that there was no difference in performance indicating a draw. Aggregated results 

are represented in terms of x, y, and z where “x” represented number of aggregated losses and “z” represents 

aggregated number of wins and “y” represents aggregated number of draws for the proposed method. 

Table 4.3 shows result of experiment after SMOTE resampling 10 multiclass datasets while Figure 4 shows 

effect of SMOTE on classifiers. The proposed method advocated use of resampling dataset with SMOTE. 

Performance was measured using ROC values. Results indicate performance of the proposed method improved 

attained 95%, RF attained 94%, Naïve bayes registered 86%, SVM had 76%, KNN attained 86%, Bagging 

registered 93%, JRipper had 85%, OneR attained 70%, ZeroR had 50%, and C4.5 attained 88%.  

Generally SMOTE resampling of datasets improved performance of all the algorithms as shown in Figure 

4.2.  Results also indicate the proposed method outperformed Naïve bayes by 50%, SVM by 80%, KNN by 60%, 

JRipper by 70%, OneR by 100%, ZeroR by 100% and C4.5 by 70%. We also observe the proposed ensemble 

method outperformed ensemble bagging (Reptree) and ensemble Random forest algorithms. Further observations 

review proposed method, ensemble random forest, ensemble bagging had better performance than other 

classification algorithms. Thus Ensemble technique produces more robust classifier that outperforms other 

algorithms.  
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Figure 4: Effect of SMOTE on Performance of Classifiers 

 

Table 4.3:  Statistical Paired T-test ROC Performance for Proposed Method, After SMOTE Resampling 

 
 

4.4 Statistical T-test between Proposed Method and Other Ensemble Algorithms 
Table 4.4 presents the results. The results shows the proposed method outperformed individual ensemble 

algorithms used in the construction of the ensemble method. Further observations reveals the proposed method 

outperformed ensemble bagging (Reptree) by 20% and Ad_RF ensemble by 10%. 
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Table 4.4: Comparing Proposed Ensemble Method with other Ensemble Algorithms 

Datasets Proposed Method AD_RF RS_RF RF 

Bagging 

(Reptree) 

Cleverland 0.92 0.92 0.92 0.91 0.90 

Contraceptive 0.80 0.78 0.80 0.80 0.81 

Dermatory 1 1 1 0.99 0.98 

Ecoli 0.99 0.99 0.99 0.99 0.99 

Glass 0.96 0.94 0.94 0.94 0.89* 

Newthyroid 0.99 0.99 0.99 0.99 0.98 

RedWine 0.93 0.92 0.93 0.93 0.90* 

Vehicle 1 1 1 1 0.99 

Yeast 0.9 0.89 0.9 0.9 0.88 

Zoo 1 1 1 1 0.98 

Average 0.95 0.94 0.95 0.94 0.93 

 Aggregation (x/ y/z) (0/9/1) (0/10/0) (0/10/0) (0/8/2) 

 

5. CONCLUSION 

A heterogeneous ensemble model was developed using adaboost and random subspace algorithms both utilizing 

random forest as the base classifiers. The model incorporated effective ways of preprocessing datasets through 

ensemble filter method and resampling datasets using SMOTE algorithms. To further increase the predictability 

of minority outlier classes, multiclass datasets were decomposed to binary classes using OnevsOne technique. 

Since point-outliers degrade performance of classifiers, the model built had a preprocessing mechanism using IQR 

outlier filter algorithm. The performance of the proposed model was compared with other existing well known 

classification algorithms using metric performance measures of Recall, Precision, and ROC values. The model 

built outperformed most of the existing classification and outlier detection algorithms. We conclude that ensemble 

technique through feature selection and combining algorithms produce a more robust classifier. 
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