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Abstract 

Ratings and product reviews could be considered as one of the main features determining the quality of a product 

in online store systems, especially in deciding whether to place a product as part of an online store's inventory. 

online vendors are often attracted by product reviews and ratings. However, when the average product rating 

observed based on a small number of user ratings, the decision maker may not be certain about choosing that 

product, even if it has a fairly high rate. Long-term rating predictions would help online vendors to identify 
products and advertise their websites by choosing potential ones. In this paper machine learning approach utilizing 

linear regression model is used to predict long-term product rate. The model evaluated using the Datasheet of the 

Amazon Online Store website,1996 to 2014. 
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1- Introduction  

None of previous methods of rating predictions had worked on a comprehensive approach and only were enough 

to make certain algorithms better than the rest on a prediction dataset, they couldn’t analyze the answers or either 

provide general solution for the same initial data. Hence, this paper proposes a comprehensive framework which 
can consider diverse data and different products as an input dataset. Moreover, this framework would provide 

appropriate method selection for the test dataset and then utilizing machine learning model for long- term 

prediction process. 

Our proposed model uses various methods of extracting properties and machine learning algorithms in order 

to analyze multiple rating inputs for each type of product. Not to forget to mention that every machine learning 

algorithm has its own strength and weakness which depends on initial data. As stated above, predicting long-term 
product ratings will meet different goals on both sides of the users and online store owners. On the side of the 

users, the main goal is to eliminate doubt of potential customers and raise the purchasing decision, while on the 

side of the owners there are other purposes, such as increased sales and commercial profits, increased online store 

rate in search engines, improved situation in SEO, increased welfare and continuous return of users, compatible 

user services, user based marketing, targeted internal social network for engaging and encouraging users to put 

more ratings into consideration. 
 

2- Literature Review 

Toghillin et al. (2005) tried to use voting systems to improve prediction. They also described the limitations of the 

current advisory methods, and discussed the possible generalizations that can improve the recommendation 

capabilities and use the recommender systems for a wide range of applications. These formats include improved 
users and items understanding, the integration of textual information in the advocacy process, support for 

multimodal ratings, and the provision of flexible recommendations. 

Nietin Cheindal et al. (2006) improved the user rating system using the concept of data mining. They examine 

a text extraction problem and presented an equation for extracting comparative sentences. An adaptive sentence 

denotes the relationship between two categories of entities with respect to some common features. For example, 

the comparative sentence "Canon is better than Sony and Nikon", which describes the comparative ratio: (better, 
optics, Canon, Sony, Nikon).  According to a set of web-based evaluation texts, for example, surveys, forum posts, 

and news articles, the task of extracting comparative sentences is (1) determining the comparative sentences of the 

texts and (2) extracting comparative relations from the sentences. Accordingly, many applications were created.  

For example, a product vendor wants to know customer opinions about their products compared to their 

competitors. 

Torsov (2013), improved the users' voting system by considering the importance of social networks. Although 
the role of social networks and consumer interactions in the release of new products is widely accepted, such 

networks and interactions are not often explorable for researchers. Instead, something that may be visible was the 
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general release patterns for earlier products that have been taken on a specific social network. He presented an 
approach to identify the systematic conditions that are persistent throughout the releases and transitions of a new 

product within the network. He also suggested that the integration of these systematic conditions improves 

predictions. 

Chen et al. (2015) reviewed recommender systems based on user voting systems. In recent years, a variety of 

review-based reviewing systems have been developed, aiming at incorporating valuable information from user-

generated texts into user-model designs and recommendations. They provided an overview of how to use the 
review elements to improve the standard content-based recommendations, collaborative filtering, and priority-

based product rating techniques. The survey looked at two main modes on two main levels: creating user profiles 

based on reviews and creating product-based review profiles. In the sub-section of user profiles, surveys are used 

not only to create time-based profiles, but also to infer or enhance evaluation. More multifaceted comments can 

be exploited to gain the weight / value priority that users place on specific features. In another branch, the product 

profile can be enriched with commentary comments or comparative views to evaluate its quality. 
Yu Zhang et al. (2017) offered theoretical recommendations as a new work in conjunction with the prediction 

of a specific survey, along with a ranking score that a particular user gives to a specific product or service. They 

used a single neural network for modeling users and products, defining their correlation, and customizing products. 

The results indicated that their prediction method offers ratings that are very close to real user ratings, and better 

results than other algorithms.  

Samizadeh and Mahmoudi (2018) assigned the opinions and texts published by users in cyberspace to classes 
with positive or negative feelings. The purposed article is to use and to compare the methods of machine learning 

in categorizing Persian texts based on the emotions of active users in cyberspace. Prior to using algorithms, the 

process of preprocessing is based on character conversion, expression deletion and multi-layered analysis. In 

another study, Kipour, Barry and Shirazi (2014) presented an article called a new method for predicting the link 

between vertices in social networks and concluded that the local approach could be a good proposition for the 
edges due to localities. 

 

3- Research Flowchart 
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4- Research Goal 

Long-term product rating prediction based on users' short-term ratings:  

The prediction tasks are important to achieve objectives of early strategic approaches dealing with different 

products. Therefore, finding long-term product rating with only initial short-term ratings (assuming 50 initial votes) 

will result in better organizational performance. 

 

5- Research Methodology 

Long-term product rating prediction is based on the following assumptions: 

1) The score that user gives to a product is influenced by former average of product rating. 

2) The score that user gives to a product is influenced by number of voters. 

3) The score that user gives to a product is influenced by user's profile type. 

4) The score that user gives to a product is influenced by the actual product quality. 

5) The score that user gives to a product is influenced by the standard deviation of the product ratings during 
his evaluation. 

5-1- Effective- parameters selection in long-term product rating 

The main idea of this paper is to design a predictive tool for effective long-term product rating. Linear regression 

is a common prediction method in many scientific domains which could be a suitable alternative to many 

computational and complex models, such as Bayesian network. Linear regression model utilizes training dataset 

and continues parameters instead of taxonomic values. 
1) Former average of product rating (x1): x1 is a continuous variable. 

2) Number of voters (x2): x2 can accept the positive integer value. This is not categorized. 

3) Relative benchmark of user profile (x3): x3 considers the quantitative score for each category of users: 

very easy going (-2), easy going (-1), accurate (0), strict (1), very strict (2). This value is an average value 

of the user category for all users who voted for that particular product at the time a new vote was taken 
by a user. Consider a situation where the product is rated by three users. Suppose that the categories of 

these users are accurate, strict and very easy going. When The first user rates the product, x3 would be 0 

then the second user rates the product, x3 would be 0.5 (average 0 and 1). Similarly, when a third user 

rates a product, the ratio of a category or x3 value is 0.33-on average (0, 1, and -2). This negative 

benchmark indicates that the product is considered to be easily rated. The effect of this score on the 

average long-term rating (parameter) is expressed by the corresponding regression model estimated from 
the trained dataset. 

4) Standard deviation of evaluation standards (x4): x4 is a continuous variable. 

In addition to linear terms, second-order terms are also considered in the linear regression model: 

((��
�, ��

�, ��
�, ��

�))  

In addition to linear terms and second-order terms, interaction effects are also considered in the linear regression 

model: 

(x� × x�, x� × x�, x� × x�, x� × x�, x� × x�, x� × x�) 

  

It should be noted that the quality parameter of products which definitely affecting user ratings is not considered 

as a parameter due to not being measurable in this section. 

The parameters of the regression model are estimated from similar training dataset. For selected data test, this 
model is used for the predictions of ratings based on the long-term average. Hence, in this model, the long-term 

average is a dependent variable. 

In this way, the input to linear regression model contains 14 parameters. As a multi-dimensional linear regression 

problem, the output would present the effect of these 14 main parameters on the final rate of the products. 

 

5-2- User Profile  

Relative benchmark and user profile categories are obtained from formula Par Which is proportional average rate. 
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Table 5-1, User profile categories 

  

5-3- Coefficient Specification for Each Defined Parameter 

Initially, with the progress of time before each voting operation, we compute 14 main parameters, which are 
described above. According to these parameters and the creation of a test and train dataset, we calculate the effect 

of these parameters in the final product rating individually. Therefore, machine learning objective is to obtain 

effective coefficients using the training dataset. In other words, coefficients of 14 parameters are their degree of 

effectiveness.  

In result the effect of these 14 main parameters on the final product rating is definite and the prediction process 

would be time independent. 
Coefficients are calculated using the training dataset and the following formula: 

 

 

 

 

 
It should be noted that coefficients are presented as integers and could get aggregated like A. 
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5-4- Coefficient Application and Long-term Product Rating Prediction 

Considering test dataset of the same product, long term product rating prediction uses A which is aggregated 

coefficient for the long-term rating obtained from formula 3. 

 
The tasks of long-term prediction process mainly highlighted below:  

1) Compute coefficients of main parameters using training dataset (formula 2) then place A (formula 3) or 

individual coefficients in formula 4. 

2) Calculate main parameters of the test dataset, and place them in formula 4. 

3) Repeat this process until MSE reaches the minimum in regression model formula 5. 

 

6- The Numerical Results Obtained from the Long-term Product Rating Prediction 

6-1- User Profile Calculation 

Consider a user who has voted 50 times: 3 in 1 star, 12 in 2 stars, 20 in 3 stars, 10 in 4 stars and 5 in 5 stars.  

Firstly, Par obtained from formula 1 which is a number between 1 and 5, Secondly user profile category and 

relative benchmark calculated from rounded Par and table 5-1. 

 
 

 

Y= f ( x� , x�, x�, x�, x�
�, x�

�, x�
�, x�

�, x� × x�, x� × x�, x� × x�, x� × x�, x� × x�, x�, × x�  ,  t ) 

� =  �(X, t)Short term 

Y = �(X, t) = 

+ � 

Formula (2) 

Formula (3) 

(3 × 1) + (12 × 2) + (20 × 3) + (10 × 4) + (5 × 5)

50
= 3.04 = 

Par �
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In the table below, you will see a sample of user profile calculation based on the numerical value and number 
of ratings. As discussed before user's profile categories are very easy going, easy going, accurate, restrict and very 

restrict. 

User  Number of ratings  One Star Two Stars  Three Stars Four Stars Five Stars  Profile  

1 50  3  12  20  10  5  accurate  

2 120  70  30 10  5  ۵  Very strict  

3 36  28  2  4  1  1 Very easy going  

4  19  1  1  4  10  3 Easy Going  

5  47  5  2  3  10  27  Very easy going  

6 59  9  5  30  6  9  accurate  

7  66  12  40  8  4  2  strict  

8 87  78  1  6  1  1  Very strict  

9  39  9  4  20  2  4  accurate  

10 20  1  1  2  6  10  Very easy going  

Table 6-1, User profile calculation example 

 

6-2- Effective - Parameters Selection and Calculation 

An example of parameters x1 to x4 calculation mentioned in the table below. Also, this table presents the general 

trend of the proposed method. 

User  Product  time  rate  x1  x2 x3  x4  

1  1  22:00  3  0  0 0 0 

2 1  22:10  5  3  1 0 0 

3 1  22:12  2  4  2  1  1.41 

4  1  22:26  4 3.33  3 1.33 1.52 

5  1  22:37  1  3.50  4  0.75 1.29 

6  1  22:41  3  3  5  0.2 1.58 

7 1  22:50  5  3  6 0.16  1.41 

8 1  23:00  4  3.28  7 0.28 1.49 

9 1  23:15  5  3.37  8 0.5 1.40 

10 1  23:58  5  3.55  9  0.44 1.42 

       3.7  10 0.22 1.41 

Table 6-2 Effective - parameter calculation example 

  

6-3- Coefficient Calculation 

For the long-term prediction, the example given in Table 6-3 represents the linear regression model for our limited 

test data to determine the coefficient or influence rate of these parameters in the long-term product rating. 

Parameter  Effective coefficient  

x1 0.227  

x2  0.001- 

x3  -0.038 

x4  -0.039  

x1^2  0.029 

x2^2  -1.302 

x3^2  -0.072 

x4^2 0.023 

x1*x2 0.001 

x1*x3 0.050 

x1*x4 0.398 

x2*x3 -6.205  

x2*x4 -0.002  

x3*x4 0.118  

Table 6-3, Coefficient calculation of long-term product rating using linear regression 
As it is obvious from the table 6-3, in addition to coefficient of x2 * x3 (the number of voters and the former 

average rating), the remaining coefficients also have a relatively large effect on long-term product rating. Finally, 

in the figure below you can see a prediction view sample which belongs to www.amazon.com.   
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Figure 1,  Prediction sample 

 

7- Conclusion and Future Work 

The results of this paper involve long-term product rating prediction based on linear regression model measuring 

coefficients of effective parameters by utilizing test and train datasets. As stated, long-term rating prediction is 
affected by several factors such as former average rating, number of voters, user profiles, user perception of the 

actual quality and standard deviation. Since we have used linear regression model as the prediction method, we 

must consider inbound information sufficiency. In other words, the more input we give to this model, the more 

precise we expect to be. Generally, different machine learning algorithms have their own strengths and weaknesses. 

Therefore, linear regression model has limitations mainly mentioned below: 

1) In linear regression analysis for prediction objectives prediction errors are not merely random, they may 
occur due to model inadequacy and inappropriateness. 

2) In linear regression analysis for prediction objectives predictions outside the range of independent 

variables are not allowed. 

3) In linear regression analysis for prediction objectives duplicate data measurements are not allowed. 

4) In linear regression analysis for prediction objectives existence of a regression relationship does not 

guarantee a causal reasoning. 
5) In linear regression analysis for prediction objectives coefficient related restrictions could occur. 

Considering machine learning approaches to resolve noted restrictions would be known as new field of 

research, as well as utilizing other regression models in predicting long-term product rating such as Ordinal 

Regression, Polynomial Regression, and even hybrid methods such as combining Bias networks and linear 

regression. 
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