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Abstract 
This study is based on the application of modal analysis on the 48 bus 330KV Nigerian Network using PSAT 

MATLAB Toolbox. The Modal/Eigenvalue analysis technique was used to investigate the stability of the 48-bus 

Nigerian power network system. The modal method calculates the smallest eigenvalue and all the associated 

eigenvectors of the Jacobian matrix using the steady state mode. The magnitude of the smallest eigenvalue 

estimates the proximity of the system to the voltage instability. The participation factor can be employed to identify 

the bus that provides the highest contribution to the instability of the system. The 48-bus Nigerian network was 

simulated under static loads and changing loads and Modal/Eigenvalue analysis was performed on the system 

under each of these conditions. It was found that increase in loads at the three selected weakest buses reduced the 

stability of the system. Results obtained in this study proved that reactive power compensators were able to 

drastically improve the stability profile of the 48 bus Nigerian network and even rescue the system at the event of 

voltage instability especially the ones caused by change in loads. 
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1. INTRODUCTION 
Electric power supply plays a key role in the development and technological advancement of a nation. The need 

for steady and adequate supply of electrical power in Nigeria has risen tremendously, partly due to increase in 

population, industrial activities and increase in the use of electrical powered gadgets. In order to meet this challenge, 

systematic power system networks have been developed and are being modified on a continuous basis.  

The grid system is usually the platform that provides interconnection of network of transmission lines that 

connects electrical power generating systems to load in a pattern of expanded integrated system that covers an 

entire country. Due to proximity of fuel for and other requirement for generation, generating stations are usually 

situated thousands of kilometers from one another and function in pairs. The power obtained from generating 

stations uses the grid system to transmit energy to load centers so that electrical energy can be accessible to 

consumers/customers. 

Usually, there are always difficulties in the planning, operation, formation and co-ordination of a dense 

interconnection of national electric power system networks. Adequate knowledge and engineering skills and 

experience are required to properly handle these challenges adequately. 

The stability of power system is a principal factor in power system network. Variation in load can generate a 

small but significant disturbance in a power network. Faults can also generate bigger proportion of disturbance to 

a power network causing variation in the power flow swing of the system. A stable power swing means the 

swiftness of the system to restore synchronous operation after a disturbance incidence on the system. Alternatively, 

a system that has unstable power swing may result in the alteration of synchronization with sets of machines 

functioning at a different synchronous speed [7]. One of the several problems facing the efficient performance of 

an interconnected system is voltage stability [3]. For the Nigerian power systems, evaluation of voltage stability 

and forecast of voltage instability assessment is executed as an aspect of system scheduling, operational planning 

and real-time control. The Nigerian national grid suffers from serious cases of voltage instability or voltage 

collapse in a frequent manner which greatly affects the socio-economic activities of the Nation [2]. 

Considering this situation, there is a need to explore an analytical approach, which can envisage the voltage 

collapse problem in a power system. Consequently, significant consideration has been given to this challenge by 

several power system scholars. The dynamic analysis is chiefly vital in the last stages of the voltage collapse. 

Dynamic voltage stability is evaluated by observing the eigen-value of the linearized system as a power system is 

increasingly loaded. Instability occurs when a pair of complex eigen-value crosses to the right half plane. This 

system represents the dynamic voltage instability [3]. 

This paper uses the MATLAB software environment to model an interconnected power system networks 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online)  

Vol.9, No.7, 2019 

 

32 

using power system analysis toolsbox (PSAT) and simulated for voltage stability evaluation using Modal Analysis 

Technique, and also simulation of the solution to the instability due to load by using Static Var Systems was done. 

The method of improvement of voltage stability used by this thesis is the enhancement of a method to recalculate 

the out-of-step protection settings to suit the prevalent operating condition of some of the generators of the Nigeria 

48 bus power system network. 

 

1.1 REVIEW OF PREVIOUS STUDIES 
In the past three decades, intense efforts have been geared towards analyzing and solving the problem of voltage 

stability in power system network. Different methods have been used to analyze, predict, identify and find solution 

to voltage instability and collapse. Newton based algorithms have a problem in handling a large number of 

inequality constraints. Linear programming methods are fast and reliable, but the main disadvantage is associated 

with the piecewise linear cost approximation. Nonlinear programming methods have a difficulty of convergence 

and algorithm complexity. 
[5] Proposed analysis and the use of modal based method in the estimation of voltage stability of bulk power 

system and utilize the power system Jacobian matrix to calculate the eigenvalues required for the analysis of the 

voltage stability of the power system network. This method employs the negative or positive eigenvalues state to 

rate the stability of the system. This method was used to determine the components of the system that contribute 

to instability through the use of the participating factors. The method was implemented on IEEE 14 bus system 

and the various eigenvalues were calculated and the one with the lowest magnitude value used to estimate the 

participation factors that indicate buses that will contribute highest to voltage instability of the system.  

Theoretically and in practice there are several mathematical methods to optimize the distribution of the 

generated power dispatching. The application of the artificial intelligence has proved its efficacy when applied to 

the optimization of objective functions [4]. 

[5] Carried out a research on voltage stability evaluation for system collapse improvement in Nigeria Electric 

Power System (NEPS) reduced to 33 bus systems using modal analysis. The Q-V curves were computed for the 

weakest buses of this identified critical mode in the NEPS reduce to 33 Bus systems as supported and compared 

with the results obtained by modal analyses technique. 

[6] Proposed modelling and simulations of steady-state stability problems in MATLAB environment are 

performed using author developed computational tool implementing both conventional and more advanced 

numerical approaches. The performance obtain was compared with the Simulink-based library Power System 

Analysis Toolbox (PSAT) in terms of solution accuracy, CPU time and possible limitations. 

 

2. THE POWER FLOW PROBLEM AND MODAL ANALYSIS 
2.1 Power Flow Problem Formulation 
Power flow analysis is essential in the coordination of power system to guarantee that power systems are run 

properly. One advantage of the Newton-Raphson method (NR) is the speed of convergence especially in very large 

power system networks. Another factor that makes Newton-Raphson method powerful is the adaptability of this 

method in most power system modelling software like MATLAB. The power flow equation is derived in polar 

form because in the power flow problem analysis, real power and voltage magnitude are stated for the voltage-

controlled buses (Samuel et al., 2014). 

The expression for current flow in a power system network in polar form is given as [4] 

�� = ∑ �����|	�|
��� ∠���� + ���                      (1) 

To determine the real power at a given bus i is 

�� = 	∗�� + ���           (2) 

Equation 2 can be rearranged in polar form using equation 1 as 

�� = |	�|∠�−���∑ �����
��� |	�|∠���� + ��� + ���      (3)  

Equation 3 can be separated- the real and the imaginary portion for easy estimation in a network and are obtained 

in Equation 4 and 5 respectively. 

�� = ∑ �����|	�|�	��
��� cos���� + �� − ���       (4) 

�� = −∑ �����|	�|�	��
��� sin���� + �� − ���       (5) 

The real and the reactive component of the power in equations (4) and (5) can be expanded using Taylor series to 

produce a pattern of linear equations involving a Jacobian matrix which exhibits clear link relating small variation 

real power with voltage angle and also the variation of voltage magnitude with variation in reactive power. 

This can be simplified as 

�∆�∆�! = �"� "#"$ "%! �
∆�
|∆	|!         (6) 

∆P and ∆Q represent differences between specified values and calculated values respectively, ∆V and ∆�  

represent voltage magnitude and voltage angle respectively in incremental forms and sub-matrices J1 through J4 
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form the Jacobian matrix [5]. 

 

2.2 Modal Analysis 
The modal (eigenvalue) analysis can be used essentially as a formidable analytical tool to investigate both 

proximity and mechanism of voltage instability [3]. The process of voltage collapse is a dynamic occurrence, but 

static power network solution methods can still be utilized to generate criteria which are good markers of voltage 

stability margin and can ascertain weak buses of the system. 

Modal analysis method is capable of calculating voltage collapse or instability in power system networks. 

The major aspect of this technique involves the estimation of the smallest eigenvalues and related eigenvectors of 

the reduced Jacobian matrix acquired from performing load flow analysis. Eigenvalues have a great deal of 

relationship with the mode of voltage and reactive power variation, and are employed to estimate voltage instability 

in a power network system. After execution of modal analysis, the participation factors are usually utilized to 

easily identify the weakest connections or buses in the system. The participation factor values can adequately be 

used to determine the weakest bus in the system. The participation factor values are usually obtained from the 

eigen-vectors analysis of eigenvalues. 

Modal analysis ΔV/ΔQ is an important method for forecasting voltage collapse and determination of the 

stability margin in power system. By solving linearized power flow equation, the ΔP and ΔQ matrix is obtained in 

equation 6 from the previous power flow solution [4]. 

�∆�∆�! = �"� "#"$ "%! �
∆�
|∆	|!         (7) 

Considering PΔ = 0, the reduced Jacobian matrix as obtained in equation 7 is expressed as: 

∆"& = '"% − "$"�(�"#)        (8) 

∆� = "&∆	         (9) 

∆	 = "&(�∆�         (10) 

Putting    

"& = *Λ+         (11) 

where  

ξ is right eigenvector matrix   

η is left eigenvector matrix 

Λ is diagonal eigenvalue matrix 

Then, inverting equation 11 produces 

"&(� = *Λ(�+         (12) 

And substituting equation 12 in equation 11 gives 

Δ	 = *Λ(�+Δ�         (13) 

Δ	 = ∑ ,-.-
/-� Δ�         (14) 

where ηi is the ith row of the left eigenvector of JR, and ξi is the ith column of the right eigenvector. The ith mode 

of the Q-V response is defined by the ith eigenvalue δi, and the corresponding right and left eigenvectors ξi and ηi. 

Equation (13) can be presented as 

+Δ	 = Λ(�+Δ�         (15) 

By defining v=Λ-q as the vector of modal voltage changes and as the vector of modal reactive power changes, the 

first-order equations can be broken down as 

0 = Λ(�1         (16)  

Therefore, for the ith mode, we have 

0� = �
/- 1�         (17) 

At the instant where δi> 0, the ith modal voltage and the ith modal reactive power changes align in the same 

direction, indicating voltage stability of the system; whereas δi< 0 denotes the instability of the system. The 

magnitude of δi signifies an average level of instability of the ith modal voltage. The smaller the magnitude of a 

positive δi, the nearer the ith modal voltage to experience instability. The system voltage collapse when δi = 0, and 

is as a result of changes in the modal reactive power that causes an infinite change in the modal voltage.  

A system voltage is assumed to be stable if the eigenvalues of JR are all positive. However, in the analysis of 

dynamic systems the eigenvalues with negative real parts are stable. The interaction between system voltage 

stability and eigenvalues of the JR matrix is best understood by relating the eigenvalues with the V-Q sensitivities 

of each bus (which must be positive for stability). JR can be taken as a symmetric matrix and therefore the 

eigenvalues of JR are close to being purely real. If all the eigenvalues are positive, JR is positive definite and the 

V-Q sensitivities are also positive, indicating that the system is voltage stable. The system is considered voltage 

unstable if one or more of the eigenvalues is found to be negative. A zero eigenvalue of JR means that the system 

is on the point of voltage instability. In essence, small eigenvalue of JR determines the proximity of the system to 
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being voltage unstable [4]. There is no need to evaluate all the eigenvalues of JR of a large power system because 

it is known that once the minimum eigenvalues become zero the system Jacobian matrix becomes singular and 

voltage instability occurs. Therefore, the eigenvalues that are vital are the critical eigenvalues of the reduced 

Jacobian matrix JR. This implies that the smallest eigenvalues of JR are taken to be the least stable nodes of the 

system. The rest of the eigenvalues are not considered because these nodes are considered to be vital in the 

determination of stability of the system. After the minimum eigenvalues and the corresponding eigenvectors have 

been calculated the participation factor can be utilized to identify the weakest bus in the system. 

The relative contribution of the power at bus k in mode i is given by the bus participation factor [3] 

�2� = *2�+2�         (18) 

Participation factors show the most critical nodes which can lead the system to instability. Generally, the 

higher the magnitude of the participation factor of a bus in a specific mode, the easier the solution that can be 

applied on that bus in stabilizing the node. 

The flowchart developed for outlining the steps followed in the modal/eigenvalue analysis of the power 

system network is shown in Figure 1 below. 

 
Figure 1: Algorithm for the modal analysis method of stability analysis (Courtesy of Modern power system 

Analysis by D.P.Kothari and I.J. Nagrath) 
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2.3 The 330KV 48-Bus Nigerian Power System Network and Data 

The Nigerian 48 bus power system network configuration and one-line diagram is depicted as shown in Figure 2. 

For the study of the system to be actualized 330KV 48 bus system of Nigeria transmission network, the Egbin 

power station was selected as the slack bus. Data gathering from TCN were centred on 2018 operational reports. 

Line data, load data, the generators and other system constituents were also collated and assembled.  

 
Figure 2: Main Model of the Nigerian 48-bus 330KV Power System Network using PSAT. 

The data for the power flow analysis and modal analysis involves the bus data, transmission line data 

(impedance of lines), voltages and transformer/load data obtained from Transmission Company of Nigeria (TCN) 

are as presented in Tables 1 to 2 respectively. 
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Table 1: System Bus data of the 330kV, 48-bus Network (Source: Transmission Company of Nigeria, 2018) 

S/No Bus Name Volts 
Mag. 
(p.u.) 

Angle 
(Deg.) 

Bus 
Type/ 
Code 

Bus Loads Generation 

P 
(MW) 

Q 
(Mvar) 

P 
(MW) 

Q 
(Mvar) 

Qmin Qmax 

1 Shiroro G/S 1.000 0 P-V (2) 150 70 270 220 -200 200 

2 Afam G/S 1.000 0 P-V (2) 315 157.5 650 590 -210 222 

3 Ikot Ekpene 1.020 0 P-Q (3) 321 160.5 0 0 0 0 

4 Ayede 0.932 0 P-Q (3) 275 206 0 0 0 0 

5 Ikeja West 0.986 0 P-Q (3) 635 474 0 0 -150 0 

6 Aja 1.040 0 P-Q (3) 300 205 0 0 0 0 

7 Egbin G/S 1.050 0 Slack (1) 0 0 0 0 -200 210 

8 Ajaokuta 1.026 0 P-Q (3) 230 115 0 0 0 0 

9 Benin 1.000 0 P-Q (3) 383 150 0 0 -150 0 

10 Lokoja 1.020 0 P-Q (3) 300 150 0 0 0 0 

11 Akangba 0.970 0 P-Q (3) 300 250 0 0 0 0 

12 Sapele G/S 0.979 0 P-V (2) 120 50 160 90 -180 200 

13 Aladja 1.046 0 P-Q (3) 100 70 0 0 0 0 

14 Delta G/S 1.050 0 P-V (2) 107 53 460 250 -100 120 

15 Alaoji G/S 1.010 0 P-V (2) 65 33 120 95 -75 80 

16 New Haven 1.050 0 P-Q (3) 180 130 0 0 0 0 

17 Ugwuaji 1.097 0 P-Q (3) 39 25 0 0 0 0 

18 Makurdi 1.060 0 P-Q (3) 84 50 0 0 -75 0 

19 Birnin Kebbi 1.010 0 P-Q (3) 146 85 0 0 0 0 

20 Kainji G/S 1.050 0 P-V (2) 7 5 282 -65 -180 200 

21 Osogbo 0.966 0 P-Q (3) 200 150 0 0 -75 0 

22 Onitsha 1.005 0 P-Q (3) 184 134 0 0 -75 0 

23 Omotosho G/S 1.050 0 P-V (2) 18 15 664 300 -150 150 

24 Odukpani G/S 

(Calabar) 

1.058 0 P-V (2) 10 7 240 150 -120 200 

25 Alagbon 1.000 0 P-Q (3) 260 120 0 0 0 0 

26 Damaturu 1.050 0 P-Q (3) 50 20 0 0 0 0 

27 Gombe 1.045 0 P-Q (3) 320 170 0 0 -100 100 

28 Maidugiri 0.996 0 P-Q (3) 10 5 0 0 0 0 

29 Ganmo 1.073 0 P-Q (3) 150 90 0 0 0 0 

30 Jos 0.970 0 P-Q (3) 70 50 0 0 -75 0 

31 Yola 1.087 0 P-Q (3) 100 50 0 0 -75 0 

32 Gwagwalada 1.060 0 P-Q (3) 150 70 0 0 0 0 

33 Sakete 1.003 0 P-Q (3) 50 20 0 0 0 0 

34 Jalingo 1.007 0 P-Q (3) 80 50 0 0 0 0 

35 Mando (Kaduna) 1.040 0 P-Q (3) 170 120 0 0 -75 0 

36 Jebba G/S 1.065 0 P-V (2) 20 0 360 160 -110 150 

37 Katampe (Abuja) 1.000 0 P-Q (3) 290 145 0 0 -75 0 

38 Okpai G/S 1.000 0 P-V (2) 10 5 450 150 -150 190 

39 Jebba 1.040 0 P-Q (3) 15 5 0 0 -150 0 

40 Kumbotso 

(Kano) 

1.000 0 P-Q (3) 240 130 0 0 -75 0 

41 Olorunsogo P/S 1.020 0 P-V (2) 20 10 626 300 -150 150 

42 Ihovbor G/S 1.050 0 P-V (2) 8 3 225 110 -70 90 

43 Okearo 0.999 0 P-Q (3) 220 70 0 0 -75 0 

44 Adiabor  0.905 0 P-Q (3) 140 90 0 0 0 0 

45 Geregu G/S 1.050 0 P-V (2) 20 5 415 200 -200 210 

46 Alaoji 1.010 0 P-Q (3) 400 150 0 0 -75 0 

47 Lekki 1.000 0 P-Q (3)  10 2 0 0 0 0 

48 Asaba 0.998 0 P-Q (3) 2 0 0 0 0 0 

 
 
 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online)  

Vol.9, No.7, 2019 

 

37 

Table 2 System Line Data of 330kV, 48-bus Grid Network (Source: Transmission Company of Nigeria, 2018) 

S/N 
 

CODE 
 

 
FROM (BUS NAME) / 

TO (BUS NAME) 
 

 
LINE       IMPEDANCE 

S
U

S
C

E
P

T
A

N
C

E
 

B
 (

si
em

en
s)

 

 
LINE 

LENGTH 
(KM) 

R (Ω) X (Ω) 

1 K1J Kainji/Jebba Line 1 3.159 26.811 0.0368 81 

2 K2J Kainji/Jebba Line 2 3.159 26.811 0.0368 81 

3 K3R Kainji/Birnin Kebbi 12.090 102.610 0.0096 310 

4 B8J Jebba G.S/Jebba T.S 1 0.315 2.424 0.4057 8 

5 B9J Jebba G.S/Jebba T.S 2 0.315 2.424 0.4057 8 

6 J3R Jebba/Shiroro Line 1 9.516 80.764 0.0122 244 

7 J7R Jebba/Shiroro Line 2 9.516 80.764 0.0122 244 

8 J1H Jebba/Osogbo Line 1 6.123 51.967 0.0189 157 

9 J2H Jebba/Osogbo Line 2 6.123 51.967 0.0189 157 

10 J3G Jebba/Ganmo Line 3.393 28.797 0.0342 87 

11 H3G Osogbo/Ganmo 2.730 23.170 0.0426 70 

12 H2A Osogbo/Ayede 4.485 38.065 0.0259 115 

13 H1W Osogbo/Ikeja West 9.828 83.412 0.0118 252 

14 H7V Osogbo/Ihovbor 8.814 74.806 0.0132 226 

15 V7B Ihovbor/Benin 0.195 1.655 0.5959 5 

16 M2S  Mando/Jos 7.683 65.207 0.0151 197 

17 SIE Jos/Gombe 10.335 87.715 0.0112 265 

18 M6N Mando/Kumbotso 8.970 76.130 0.0129 230 

19 R1M Shiroro/Mando Line 1 3.744 31.766 0.0310 96 

20 R2M Shiroro/Mando Line 2 3.744 31.766 0.0310 96 

21 R4B Shiroro/Katampe Line 1 5.674 43.632 0.0225 144 

22 R5G Shiroro/Gwagwalada 4.680 39.720 0.0248 120 

23 G5B Gwagwalada/Katampe 1.560 13.240 0.0745 40 

24 N6W Egbin/Ikeja West Line 3 2.443 18.786 0.0523 62 

25 N7K Egbin/Okearo Line 1 2.176 18.469 0.0534 55.8 

26 N8K Egbin/Okearo Line 2 2.176 18.469 0.0534 55.8 

27 K7W Okearo /Ikeja West Line 1 1.088 9.235 0.1068 27.9 

28 K8W Okearo/ Ikeja West Line 2 1.088 9.235 0.1068 27.9 

29 W3L Ikeja  West/Akangba 1 0.6762 5.739 0.1719 17.34 

30 W4L Ikeja West/Akangba 2 0.6762 5.739 0.1719 17.34 

31 M5W Omotosho/Ikeja West 6.304 48.480 0.0203 160 

32 R1W Olorunsogo/Ikeja West 3.034 23.331 0.0421 77 

33 NW1BS Ikeja West/Sakete 2.730 23.170 0.0426 70 

34 R2A Olorunsogo/Ayede 2.340 19.860 0.0497 60 

35 B6N Benin/Egbin 8.502 72.158 0.0137 218 

36 B11J Benin/Ajaokuta Line 1 7.995 67.855 0.0145 205 

37 B12J Benin/Ajaokuta Line 2 7.995 67.855 0.0145 205 

38 B1T Benin/Onitsha Line1 5.343 45.347 0.0217 137 

39 B2T Benin/Onitsha Line2 5.343 45.347 0.0217 137 

40 B5M Benin/Omotosho G/S 4.680 39.720 0.0248 120 

41 S3B Sapele/Benin Line 1 2.028 17.212 0.0573 52 

42 S4B Sapele/Benin Line 2 2.028 17.212 0.0573 52 

43 S5B Sapele/Benin Line 3 2.028 17.212 0.0573 52 

44 S4W Sapele/Aladja 2.457 20.853 0.0473 63 

45 R1J Geregu/Ajaokuta line 1 0.195 1.655 0.5959 5 

46 R2J Geregu/Ajaokuta line 2 0.195 1.655 0.5959 5 

47 G3B Delta/Benin 2.053 17.427 0.0566 52.65 

48 T3H Onitsha/New Haven 3.744 31.776 0.0157 96 
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S/N 
 

CODE 
 

 
FROM (BUS NAME) / 

TO (BUS NAME) 
 

 
LINE       IMPEDANCE 

S
U

S
C

E
P

T
A

N
C

E
 

B
 (

si
em

en
s)

 

 
LINE 

LENGTH 
(KM) 

R (Ω) X (Ω) 

49 K1T Okpai/Onitsha Line 1 2.184 18.536 0.0532 56 

50 K2T Okpai/Onitsha Line 2 2.184 18.536 0.0532 56 

51 T4A Onitsha/Alaoji 5.382 45.678 0.0216 138 

52 F1A Afam/Alaoji Line 1 1.123 9.533 0.1035 28.8 

53 F2A Afam/Alaoji Line 2 1.123 9.533 0.1035 28.8 

54 N3J Egbin/Aja Line 1 0.552 4.242 0.2318 14 

55 N4J Egbin/Aja Line 2 0.552 4.242 0.2318 14 

56 J1L Ajaokuta/Lokoja Line 1 1.482 12.578 0.0784 38 

57 J2L Ajaokuta/Lokoja Line 2 1.482 12.578 0.0784 38 

58 L6G Lokoja/Gwagwalada line 1 6.240 52.960 0.0186 160 

59 L7G Lokoja/Gwagwalada line 2 6.240 52.960 0.0186 160 

60 H1U New Haven/Ugwuaji line 1 0.273 2.317 0.4257 7 

61 H2U New Haven/Ugwuaji line 2 0.273 2.317 0.4257 7 

62 D1B Odukpani/Adiabor  line 1 0.690 5.859 0.1683 17.7 

63 D2B Odukpani/Adiabor  line 2 0.690 5.859 0.1683 17.7 

64 F1E  Afam/Ikot Ekpene line 1 2.457 20.853 0.0473 63 

65 F2E Afam/Ikot Ekpene line 2 2.457 20.853 0.0473 63 

66 A1K Alaoji/Ikot Ekpene line 1 2.145 18.205 0.0542 55 

67  A2K Alaoji/Ikot Ekpene line 2 2.145 18.205 0.0542 55 

68 K1U Ikot Ekpene/Ugwuaji line 1 3.861 32.769 0.0301 99 

69 K2U  Ikot Ekpene/Ugwuaji line 2 3.861 32.769 0.0301 99 

70 K3U Ikot Ekpene/Ugwuaji line 3 3.861 32.769 0.0301 99 

71 K4U Ikot Ekpene/Ugwuaji line 4 3.861 32.769 0.0301 99 

72 E1Y Gombe/Yola line 9.360 79.440 0.0124 240 

73 B3D Benin/Asaba line 5.343 45.347 0.0217 137 

74 D3T Asaba/Onitsha line 0.799 6.785 0.1454 20.5 

75 A1S Makurdi/Jos line 1 10.374 88.046 0.0112 266 

76 A2S Makurdi/Jos line 2 10.374 88.046 0.0112 266 

77 U1A Ugwuaji/Makurdi line 1 6.123 51.967 0.0189 157 

78  U2A Ugwuaji/Makurdi line 2 6.123 51.967 0.0189 157 

79 J1E Aja/Lekki 330kV line 0.468 3.972 0.2483 12 

80 J1B Aja/Alagbon 330kV line 1.014 8.606 0.1123 26 

81 L7A Alaoji G/S / Alaoji T/S 330kV line 

1 

0.195 1.655 0.5959 5 

82 L8A Alaoji G/S / Alaoji T/S 330kV line 

2 

0.195 1.655 0.5959 5 

83 D1K  Odukpani/Ikot Ekpene  line 1 1.443 12.247 0.0805 37 

84  D2K Odukpani/Ikot Ekpene  line 2 1.443 12.247 0.0805 37 

85 B5W Benin/Ikeja West 11.032 84.840 0.0116 280 

86 G1W Delta/Aladja 1.248 10.592 0.0931 32 

87 E1D Gombe/Damaturu 6.240 52.960 0.0186 160 

88 D1M Damaturu/Maidugiri 10.140 86.060 0.0115 260 

89 Y1G Yola/Jalingo 5.460 46.340 0.0213 140 

 

2.4 MATLAB PSAT Toolbox 
The system data is used in MATLAB code or modelled in PSAT in order to model the power system network 

under study. The capacity of these systems to handle the system analysis involved in this study cannot be 

overemphasized. 

Using MATLAB scripts and PSAT software tool in MATLAB, the admittance matrix is estimated and saved. 

The load flow analysis is carried out using the Newton-Raphson method. Load flow data together with machine 
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data is employed to model the dynamic performance of the system as a system of linear equations using small 

signal stability. Small disturbances represented as load changes are implemented sequentially on the system by 

working on the load data and executing a load flow calculation. The process is repeated until the system is 

ascertained to be unstable by modal analysis from the eigenvalue and eigenvector estimation procedure. Eventually, 

participation factors are then estimated which will signify the state’s effects on each of the modes; consequently, 

depicting the most critical mode. 

The power system steady state and dynamic model is reproduced in PSAT tool in a MATLAB software as 

shown in Figure 3 Then by using the transient stability module which is presented in Figure 4, plots of eigenvalues, 

participation factors, and other transient stability analysis are used to display load or bus transient performance. 

Predefined power system compensators models with their corresponding parameter inputs are used to ascertain 

locations by participation factor analysis to stabilize the system. The plots will also be used to show the impact of 

the power system compensators or SVCs on controlling the system and bringing the system out of instability. 

 
Figure 3 PSAT software tool interface 

 

 
Figure 4 PSAT interface for plotting Eigenvalues, participation factors and other dynamic analysis 

 

3. RESULTS AND DISCUSSION 
As soon as the identification of the electrical system put under test is complete and the description of the simulation 

software codes, a system analysis and simulation will successively be carried out. The analysis and simulation 

process of the 48 Bus Nigerian power System Network contains several steps. The first step is to perform our test 
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and analysis on the original 48 bus Nigerian power network without inserting any disturbance, and then identify 

the weak buses that are susceptible to instability. The next step is to simulate small disturbances by introducing 

load changes to the buses which are closer to instability compared to others and performing stability analysis on 

the network to see whether voltage instability or collapse will occur and subsequently introduce compensators at 

the critical buses and generation sources of these buses and monitor the improvement on the network. Then on this 

network load is added on the two weakest buses and analysis performed until the system become unstable then 

introduce compensators on this unstable system in order to ascertain the effectiveness of compensators in bringing 

the system out of instability caused by change in load at the weaker buses.  

 

3.1 Main Case Modal of the 48 bus 330kV Nigerian Network 
The various tests were performed on the model of the 48 bus 330KV Nigerian Network consisting of fifteen power 

generating systems. The power flow analysis of the model was carried out using PSAT in MATLAB Simulink 

environment. Table 3 shows the load flow results showing the voltage, phase angle, real power of the generators, 

reactive power of the generators, real power of load, and reactive power of load at the various buses. 

Table 3: Main Case Model Power Flow Result of the three highest and three lowest voltage profile 

Bus V 
(p.u.) 

Phase 
(rad) 

P gen 
(p.u.) 

Q gen 
(p.u.) 

P load 
(p.u.) 

Q load 
(p.u.) 

Bus12 0.979 0.01882 2.9376 -217.8541 1.56 0.65 

Bus14 1.05 0.01813 24.081 112.6464 1.2776 0.63282 

Bus23 1.05 0.02131 48.379 84.1565 0.04212 0.0351 

Bus31 0.98871 -0.00335 0 0 1.118 0.559 

Bus34 0.98679 -0.10691 0 0 0.7544 0.4715 

Bus36 1.065 0.0022 0.004 107.9533 0 0 

Making reference to Table 3 and Figure 5, the voltages at the PQ buses all falls within the acceptable level of 

±5% with the bus value at bus 34 (Jalingo) having the lowest with PU voltages of 0.98679 which signify that the 

system voltages are relatively stable as required from the system when no disturbance is applied to the system. 

Utilizing the results for the load flow analysis, the eigenvalues were computed with their corresponding largest 

participation factor to identify the most significant state on that bus. A display of the table of the results and the 

required plot of the modes is shown in Table 4 and Figure 6.  

 
Figure 5: Angle profiles of all buses of the main case model of the 48 bus Nigerian power network system 

 
Table 4 Three highest and three lowest Eigenvalues of the standard Jacobian matrix of the Main Case 

Modal of the 48 bus 330KV Nigerian Network 

Most Associated Bus Real part Imaginary Part 

Bus21 35015.2337 0 

Bus9 23434.2254 0 

Bus3 17919.4067 0 

Bus34 6.2181 0 

Bus28 165.0059 0 

Bus25 727.8858 0 
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Figure 6: Three highest and three lowest eigenvalues of the main case model of the 48 bus Nigerian power 

network system 

The observations from Table 4 indicate that all the eigenvalues are stable with the lowest obtained at Jalingo 

bus whose eigenvalue is 6.2181 is the most critical node.   The participating factors computed for this weakest bus 

are shown in Table 5. Table 5 showed that bus 34 has the highest participation factor of 0.999. The implication of 

this outcome indicates that the bus 34 offers the highest contribution to the voltage instability of the network. 

Table 5: Participation factors at the smallest eigenvalue for the main case model 

Bus Participation factor 

Bus1, Bus 10, Bus11, Bus12, Bus13 

Bus15, Bus16 Bus17, Bus19, Bus2, 

Bus20, Bus1, Bus22, Bus23, Bus24, 

Bus25, Bus27, Bus29, Bus3, Bus28, 

Bus32, Bus33, Bus35, Bus36, Bus36, 

Bus37, Bus38, Bus39, Bus4, Bus40, 

Bus41, Bus42, Bus43, Bus44, Bus45, 

Bus46, Bus47, Bus48, Bus5, Bus6,  

Bus7, Bus8, Bus9 

0 

Bus18 1.00E-05 

Bus26 8.00E-05 

Bus27 8.00E-05 

Bus30 1.00E-05 

Bus31 0.00019 

Bus34 0.99954 

 

3.2 Main Case Modal of the 48 bus 330KV Nigerian Network with added load at the two weakest Buses 
The various tests were performed on the model of the 48 bus 330KV Nigerian Network consisting of fifteen power 

generating systems. The power flow analysis of the model was carried out using PSAT in MATLAB Simulink 

environment. Table 6 shows the load flow results showing the voltage, phase angle, real power of the generators, 

reactive power of the generators, real power of load, reactive power of load at the various buses. 

Table 6: Power Flow Result of the Main Case Model with added load for three buses with the highest 
voltage profile and three buses with the lowest voltage profile 

Bus V 
(p.u.) 

Phase 
(rad) 

P gen 
(p.u.) 

Q gen 
(p.u.) 

P load 
(p.u.) 

Q load 
(p.u.) 

Bus28 0.63458 -0.45581 0 0 1.8987 1.1867 

Bus31 0.97051 -0.03111 0 0 1.118 0.559 

Bus34 0.97092 -0.03029 0 0 0.7656 1.4201 

Bus14 1.05 0.01303 24.081 112.6723 1.2776 0.63282 

Bus20 1.05 -0.00282 8.1526 50.6585 0.00602 0.0043 

Bus23 1.05 0.01688 48.379 84.1684 0.04212 0.0351 

Making reference to Table 6 and Figure 7, the voltages at the PQ buses falls within the acceptable level of 
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±5% except at bus 28 (Maidugiri) having the lowest with PU voltages of 0.63458 which signify that the system is 

experiencing voltage instability at bus 34 from the system when a disturbance is applied to the system’s three 

weakest buses. Utilizing the results for the load flow analysis, the eigenvalues were computed with their 

corresponding largest participation factor to identify the most significant state on that bus. A display of the table 

of the results and the required plot of the modes is shown in Table 7 and Figure 8.  

 
Figure 7: Angle profiles of all buses of the main case model of the 48 bus Nigerian power network system with 

added load at two weakest buses 

 
Table 7 Three highest and three lowest Eigenvalues of the standard Jacobian matrix of the Main Case 

Modal of the 48 bus 330kV Nigerian Network with added load disturbances at weakest buses 

Most Associated Bus Real part Imaginary Part 

Bus21 35015.7528 0 

Bus9 23433.9648 0 

Bus3 17889.3353 0 

Bus34 1.4423 0 

Bus28 160.4958 0 

Bus25 727.8858 0 
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Figure 8:  Eigenvalues of all buses for the main case model of the 48 bus Nigerian power network system with 

added load disturbances at weakest buses 

For second case of the model with added load at the three weakest buses identified from the first model from 

Figure 8 all the eigenvalues are positive, this is an indication that the system is stable but has a less stability profile 

than the main case observed from the characteristics of the eigenvalues. 

Referring to Table 7 and Figure 8, observation made shows that the system is stable but tending towards 

instability since all the mode λ is located on the left half of the imaginary plane, but the smallest eigenvalue 

experienced a drop from 6.2181 in Table 4 to 1.4423 in Table 7 when compared to the main model without load 

added at the weakest buses. Hence the system will move to a state of collapse with the addition of more constant 

PQ loads at the weak bus and the instability will continue to increase with addition of loads to this bus. Further 

increase of load at the weak buses can lead to power system collapse. The participating factors computed for this 

identified critical mode are shown in Table 8. 

Table 8: Participation factors at the smallest eigenvalue for the main case model with added loads at weak 
buses 

Bus Participation factor 

Bus1, Bus10, Bus11, Bus12, Bus13, Bus14, 

Bus15, Bus16, Bus17, Bus19, Bus2, Bus20, 

Bus21, Bus22, Bus23, Bus24, Bus25, Bus28, 

Bus29, Bus3, Bus32, Bus33, Bus35, Bus36, 

Bus37, Bus38, Bus39, Bus4, Bus40, Bus41, 

Bus42, Bus43, Bus44, Bus45, Bus46, Bus47, 

Bus48, Bus5, Bus6, Bus7, Bus8, Bus9, 

0 

Bus18 1.00E-05 

Bus26 8.00E-05 

Bus27 8.00E-05 

Bus30 1.00E-05 

Bus31 0.00019 

Bus34 0.99954 

 
3.3 Effect of using Compensators on the Model of the 48 bus 330KV Nigerian Network with added load  
Various tests were performed on the model of the 48 bus 330kV Nigerian Network with added load at critical 

points and the effect of the application of compensators on the network observed. The power flow analysis of the 

model was carried out using PSAT in MATLAB Simulink environment. Table 9 and shows the load flow results 

showing the voltage, phase angle, real power of the generators, reactive power of the generators, real power of 

load, reactive power of load at the various buses. 

  



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online)  

Vol.9, No.7, 2019 

 

44 

Table 9: Power Flow Result of the Main Case Model with added load using compensators for three buses 
with the highest voltage profile and three buses with the lowest voltage profile 

Bus V 
(p.u.) 

Phase 
(rad) 

P gen 
(p.u.) 

Q gen 
(p.u.) 

P load 
(p.u.) 

Q load 
(p.u.) 

Bus12 0.979 0.01344 2.9376 -217.9362 1.56 0.65 

Bus31 0.98696 -0.03523 0 0 1.118 0.559 

Bus27 0.98803 -0.03251 0 0 23.1936 12.3216 

Bus14 1.05 0.01275 24.081 112.6143 1.2776 0.63282 

Bus20 1.05 -0.00326 8.1526 50.6589 0.00602 0.0043 

Bus23 1.05 0.01684 48.379 84.099 0.04212 0.0351 

 

 
Figure 9: Angle profiles of all buses of the main case model of the 48 bus Nigerian power network system with 

added load at two weakest buses 

Making reference to Table 9 and Figure 9, the voltages at the PQ buses falls within the acceptable level of ±5% at 

all the buses with bus 12 now having the lowest per unit voltage profile of 0.979 which signify that the 

compensators have improved the voltage stability compared to the system when a disturbance is applied to the 

system’s three weakest buses. Utilizing the results for the load flow analysis, the eigenvalues were computed with 

their corresponding largest participation factor to identify the most significant state on that bus. A display of the 

table of the results and the required plot of the modes is shown in Table 10 and Figure 10. From Table 10 all the 

eigenvalues are positive this is an indication that the system is stable. 

Table 10 Three highest and three lowest Eigenvalues of the standard Jacobian matrix of the Main Case 
Modal of the 48 bus 330KV Nigerian Network with added load and application of compensators 

Most Associated Bus Real part Imaginary Part 

Bus21 35015.7919 0 

Bus9 23434.7444 0 

Bus3 17915.1652 0 

Bus31 488.7831 0 

Bus40 972.7492 0 

Bus25 727.8858 0 
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Figure 10: Eigenvalues of all buses for the main case model of the 48 bus Nigerian power network system with 

added load disturbances at weakest buses 

Referring to Table 10 and Figure 10, observation made shows that the system is stable but tending toward 

instability since all the mode λ is located on the left half of the imaginary plane, but the smallest eigenvalue 

experienced an improvement from 1.4423 in Table 7 to 488.7831 in Table 10 when compare to the main model 

without added load at weakest buses. Hence the system disturbances caused by change in PQ loads at the weak 

bus cause instability but placing compensators on sources linked with the weak buses can minimize the effect of 

these disturbances. The participating factors computed for this identified critical mode are shown in Table 11. 

Table 11: Participation factors at the smallest eigenvalue for the main case model 

Bus Participation factor 

Bus1, Bus10, Bus11, Bus12, Bus13, Bus14, Bus15, 

Bus19, Bus2, Bus20, Bus21, Bus23, Bus24, Bus25, 

Bus28, Bus29, Bus3, Bus32, Bus33, Bus36, Bus37, 

Bus38, Bus39, Bus4, Bus41, Bus42, Bus43, Bus44, 

Bus45, Bus47, Bus5, Bus6, Bus7, Bus8,Bus34 

0 

Bus3 0.00312 

Bus9 1e-005 

Bus16 0.00571 

Bus17 0.01148 

Bus18 0.04402 

Buss22 0.00027 

Bus26 0.08038 

Bus27 0.22669 

Bus30 0.07755 

Bus31 0.49694 

Bus35 0.01635 

Bus40 0.03686 

Bus46 2e-005 

Bus48 0.00059 

 
4. CONCLUSION 
Application of Modal Analysis on the 48 bus 330KV Nigerian Network has been explored and tested using PSAT 

MATLAB Toolbox. The Modal/Eigenvalue analysis technique was used to investigate the stability of the 48-bus 

Nigerian power network system. The method calculates the smallest eigenvalue and all the associated eigenvectors 

of the reduced Jacobian matrix using the steady state mode. The magnitude of the smallest eigenvalue gives us a 

measure of how close the system is to the voltage instability. Then, the participation factor was used to identify 

the weakest link or point or bus to the system associated to the minimum eigenvalues.  

The 48-bus Nigerian network was simulated under changing loads condition until the system was driven to 

point of instability and Modal/Eigenvalue analysis was performed on the system under each of these conditions. 

Results obtained in this study proved that compensators were able to drastically improve the voltage stability 

profile of the 48 bus Nigerian network and even rescue the system at the event of voltage instability especially 
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ones caused by change in loads. 
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