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Abstract 

Recent advances in intrusions and attacks reflect vulnerabilities in computer networks. Innovative methods and 

tools can help attack defenses, prevent attack propagations, detect and respond to such attacks in a timely manner. 

Intrusion detection and prevention systems search for unauthorized use, recognize anomalous behavior, and 

prevent attempts to deny services.  These systems gather and analyze information from the network, identify 

possible breaches of the security profile, as well as misuses. We have been experimenting with methods for 

introducing important concepts related to intrusion detection and improving undergraduate research experiences 

and education. To achieve this goal, probabilistic models are introduced to students in computer, information 

system and network security courses. This article presents a set of probabilistic methods and statistical models 

for network traffic anomaly detection. It also describes some prospects and how models have ripened from 

theories to big data analysis applications.   
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1. Introduction 

Providing an extensive use of computers and network systems for legitimate activities, searching for 

unauthorized use, recognizing anomalous behavior, and preventing any attempts to deny users, machines, or 

portions of the network access to services are the tasks of intrusion detection systems (IDSs). The purpose of an 

Intrusion Detection System (IDS) is to gather and analyze information from various components within a 

computer or network, identifying possible breaches of the security profile, including unauthorized access as well 

as any other misuses. There are two types of IDSs: Network Intrusion Detection Systems (NIDS) and Host-

Based Intrusion Detection Systems (HIDS). The monitoring approach is a primary factor in classifying the 

different types of IDSs. HIDS find suspicious activity or known attack patterns on the specific host where they 

occurred. NIDS gather data from the network traffic stream as it travels through the network components. 

Network traffic anomaly detection is to search and identify unauthorized activities of the network system. 

Potential users of these systems need to be aware including how well a given system is able to find intruders. 

This also includes determining the amount of work required to maintain a similar system in a fully-functioning 

network capacity allowing a significant volume of daily network traffic to occur. Researchers wanted to identify 

which prototypical attacks can be possible by the systems. Without accessing the nature of normal traffic 

generated by day-to-day work, they are unable to describe how well their systems could detect potential attacks 

while using background traffic information and avoiding false alarms. This information is critical as every 

intrusion requires time to review, regardless of whether it is a correct detection for which a real intrusion has 

occurred, or whether it is merely a false alarm as such the analyses of possible probabilistic and statistical 

models of variables employed. 

This article begins with an example of network worm epidemics modeling. Section 3 describes the use of Bayes’ 

theorem to outline scenarios under the systems accuracies that occur followed by a mean and standard deviation 

model. Point and interval estimations take the center stage describing possible techniques to estimate parameters 

of the models. The multivariate model will be broken down to include multiple regression, the regression model 

for scoring function, and data warehouse & model generator. The Markov process model and time series model 

will be given additional consideration thereafter. Lastly, conclusions and future work will provide a summary of 

the article together with possible undertakings as envisaged. 

 

2. Network Modeling - Worm Epidemics 

A simple example relates to a recent Federal criminal case in which documents provided by the prosecution 

counted the number of e-mail messages generated by a worm transmission. The payload of this worm was a 4kb 

packet. The network of the institution where the defendant worked could process packets at the rate of 1 Gb per 

second. To saturate the network, the worm would have to produce a minimum of 250,000 emails per second. 

According to the prosecution’s data, only 261 e-mails were released into the network during the 3 hours the 
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worm was active. This number was not sufficient to degrade the performance of the network and the defendant 

was cleared. The spreading rate of this worm was hindered due to the strange file name given to the attachment, 

which was not attractive enough for many users to open. This knowledge can be expanded by examining 

epidemiological models. 

 

Epidemics can be represented using a linear equation with a constant propagation rate, a non-linear equation with 

exponential growth rate, a differential equation or a difference equation.  To obtain a useful prediction model, 

one should record the observations of all variables that may significantly affect the response to the epidemic. By 

virtue of its wide applicability, the linear model plays a prominent role in this process.  Mathematical models 

express the laws that govern described actions and assumptions together with hypotheses relevant to the 

equations established within a study. For example, the uninfected computer components in a network under virus 

attack can be represented using (a linear equation or) a differential equation and the initial condition:   
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The general solution of this differential equation is ,)( 0
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−= where the initial uninfected computer 

population is 0y with a constant negative growth rate r− . The geometric representation of this general solution 

is an infinite family of integral curves, one similar to Figure 2-1.  

 

 

Figure 2-1. Decay of Un-Infected Computers                Figure 2-2. Growth of Infected Computers 

Due to a Virus Epidemic                Due to Virus Propagations 

 

A computer worm that randomly scans new hosts to attack and infect may follow the simple epidemiological 

model [1 & 2]. There are other applications that have been used in the past, stemming from pre-existing 

epidemiological, biological, and physical models. Figure 2-2 shows the number of infected computers over time 

due to two different types of attacks. At the initial detection stages, for smaller values of time T , the linear virus 

growth model, ,TR =  shows more infections than the exponential growth .8 )1( −⋅= TTR  This false 

appearance leads us to make the wrong decision to allocate resources and assign a higher priority to suppressing 

the linear attack over the eventually more severe exponential attacks.   

 

In many instances, there is a limit to the possible growth of epidemics. The logistic function models the 

restricted growth phenomenon as an exponential growth. As shown in Figure 2-3 below, the infection growth 

rate slows due to the limited capacity of the network, resulting in a logistic curve.  The red curve to the left with 

the faster infection rate saturates the network sooner than the blue curve to the right. Figure 2-4 depicts the 

infection during an epidemic attack and the recovery due to the response. The growth of the number of infected 

computers begins in an exponential manner, levels out and eventually decays with the proper injection of 

response.  
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Figure 2-3. Infection and Saturation           Figure 2-4. Infection and Recovery 

 

Non-linear differential equations are used to model attack dynamics. The Epidemiological model derived from 

non-linear differential equations [1] can be represented by the equation:   
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where )(tn  is the fraction of infected nodes, d  is the infection or “death” rate, β  is the recovery or “re-birth” 

rate, 0n is the total number of vulnerable machines.    

 

The Analytical Active Worm Propagation, AAWP, [6], gives a better estimate than Epidemiological modeling 

and can be mathematically represented as a difference equation: 

[ ] ( )[ ],/1111
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where tn  is the fraction of infected nodes at time st,  is the scan rate, N  is the total number of vulnerable 

machines and T  is the address space the worm scans. The infection rate of the worm is proportional to the 

scanning rate. Random scanning has the searching ability to identify IP addresses to attack in a random order, 

localized scanning has the ability to attack targets that reside on the same subnet, hit list scanning has a list of 

targets to attack, permutation scanning uses a fixed pseudorandom permutation of IP addresses to attack and 

topological scanning uses the information stored in the victim’s machine to attack the next target [1 & 2]. Worms 

that use localized scanning, like the Code Red II worm, spread at a slower rate than a worm that employs random 

scanning but has the capacity to penetrate firewalls.  

 

3. Systems Accuracies 

An IDS can generate four possible scenarios in an anomaly detection process. There are two types of incorrect 

detections an IDS can arrive at—falsely detecting actual intrusion and truly detecting false intrusion. Figure 3-1 

below summarizes all possible scenarios when IDS is at work. A good IDS must reduce these false scenarios at 

any cost.   

 

      Intrusion is: 

  Actual False 

Detection is:   Actual IDS works False alarm 

 False IDS did not work IDS works 

Figure 3-1. An Extent of IDS is at Work 

 

From the theorem of total probability, and granted that K,, 21 AA  form a partition of the sample space, ,S  we 

have, for an event ,B  ).()|()(
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 for any event iA  in the partition .,, 21 KAA  This result is known as 

Bayes’ theorem [3]. This presents the relationship between the conditional probabilities of various events 

involved in calculation of probabilities for common intrusion detection scenarios. Let us assume Table 3-1 of 

information for calculation of these probabilities.  

 

Table 3-1. An IDS is at Work with Numbers 

      Intrusion is: 

 

Given that an IDS finds that there is an intrusion, what is the probability that it is in fact an intrusion? Note that 

there are only two events, 1A  and 2A  which correspond to the intrusion being an actual intrusion and a false 

alarm, respectively. The event B  denotes that the intrusion is not being detected. Also, .12 AA =  We want to 

evaluate ),|( 1 BAP  the probability that an intrusion has taken place, given that the IDS finds it is a false alarm. 

.419.0
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Many statistical models for intrusion detection stemmed from the operational, mean and standard deviation, 

multivariate (regression), Markov processes, and time series models [4]. Randomness is the basis for these 

models to exist; it perhaps represents one of the strangest challenges whose presence is successfully explored 

only by statistics tied to observable variables. The attempt of this section is to elaborate on these models more in-

depth for an average reader. For a random variable X  and n  observations nXXX ,,, 21 K  the statistical 

model determines whether the subsequent observation 1+nX  is a potential intrusion with respect to the previous 

n  observations. The IDS provides tools to detect intrusion for the information assurance community based on 

the model under consideration. Knowledge-based intrusion systems collect knowledge about network attacks, 

examine network traffic and attempt to identify any patterns that indicate a suspicious activity has occurred. This 

merely applies against patterns of known attack and uses them to update the knowledge base frequently [5].    

  

4. Mean and Standard Deviation Model 

This operational model is primarily based on the assumption that intrusions can be decided by comparing a new 

observation of X against the previous n  number of observations. This model can be applicable to metrics where 

experience shows that certain characteristics are frequently linked with attempted intrusions. An example is that 

an event counter is setup for the number of password failures during a brief period to suggest that a break-in has 

been successful. Another example is that personalities of the user such as the user first reads his e-mails, reply 

them before visit the file folders regardless of other network activities. Recovery of history sheds light on these 

types of anomaly detection for operational model. On the other hand, models based on statistical measures such 

as means and standard deviations provide a wide range of information for intrusion detection. It is often 

desirable to obtain an interval of values likely to contain the actual value of the unknown parameter. We then 

insist that the proposed interval contains the value with predetermined high probability called the level of 

confidence. This model is based on the assumption that all what we know about nXXX ,,, 21 K  are mean and 

standard deviation as given by 
n
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 A new observation 1+nX  is 

  Actual False Total 

Detection is:   Actual 30 25 55 

 False 23 32 55 

 Total 53 57 110 
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defined to be an intrusion if it falls outside a confidence interval 
n

s
tX

n

s
tX ×+≤≤×− 2/2/ αα µ  with 

a )%1( α−  degree of confidence. The symbol 2/αt  denotes the −t value having an area of 2/α  to its right 

under the −t curve with degrees of freedom (df) equals .1−n  When data are grouped in a frequency 

distribution, we use the computing formulas, 
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where iX  denotes class midpoint, if  denotes class frequency, and )( ∑= ifn  denotes the sample size, to 

determine the mean and standard deviation for this confidence interval procedure. The basic assumptions for this 

procedure require that observations come from a normal population or a large sample and observations are 

gathered at random. Table 4-1 sums up the results of relevant parameter estimations.  

 

Table 4-1. A Summary of Parameter Estimations  

Assumption Parameter to be Estimated Confidence Interval at 

)%1001( α−  level 

2σ  known 
µ  

n
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µ  
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We now provide an example to show how these calculations are carried out using a relatively small data set. 

Other cases of parameter estimations cited follow similarly. 

 

Suppose a signal is transmitted from a piece of network equipment to a receiver is normally distributed with 

mean µ  and variance, .42 =σ  in order to avoid possible error, the same signal is sent 9 times repeatedly. 

These independent values are measured as 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5. We now construct a 95% 

confidence interval for .µ  Clearly, .99/81 ==X  From Table 2, a 95% confidence interval for µ  is 

( ).31.10,69.7   If the variance is unknown, then the sample variance, ,2s  can be calculated from the sample 

data and estimations are calculated using the −t distribution. There can be instances in which the data points 

themselves contributed to outliers. They can be eliminated using the interval, 

( ),)IQR(5.1),IQR(5.1 31 +− QQ  where 1Q  and 3Q  be the quartiles and .IQR 13 QQ −=  Other aspects 

of these calculations are found in any standard statistics text [6]. 

 

5. Point and Interval Estimations 

Generally, estimations can be two-fold in this regard. In point estimation, we look for a single value for the 

unknown parameters. However, for the confidence interval estimations, a range of values are proposed giving 

lower and upper limits of the interval. The interval estimations can be based on the three-standard deviation rule, 

a given confidence level, or Γ�. �,  the gamma function. The interval estimation based on Γ�. �,  the gamma 

function is found in [7]. 

It is essential for forecasting future intrusions of the network, primarily from past data available from statistical 

forecasting techniques. The fact that the attacks occurred during a sequence of time periods are random variables. 

Let ��,  �	, ⋯ be a sequence of random variables having the expected values, �����,  ���	�,  ⋯ which may or 

may not be independently and identically distributed, according to a given probability distribution. There are 

several potential forecasting procedures that can be used in the case of intrusions, which are listed below [8].   

a) Last values: Let ����
� be the forecast for subsequent periods. For this estimation, the last value may be used 

as the possible evaluation in this method so that this estimator is ����
� = �
 .  Obviously, this estimating 

technique is disadvantageous because it yields a large variance as a result of selecting a sample of size 1. 
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b) Average: This average may be chosen to be ∑ =
=

t

i

i

t
t
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1
)(ˆ  and can be a better estimator if the process 

is entirely stable. The use of a large amount of data can cause occasional shifts, when a reasonable 

estimation is desired.  

c) Moving average: This estimation only uses the relevant recent data for the last periods, but is updated 

periodically placing more weight on �
����  compared to �
 .   Accordingly, the estimator is 

∑ +−=
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t
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t
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d) Exponential smoothing: This is, in fact, the weighted sum of the last observation and the one before using 

the smoothing constant, �,  0 <  � < 1. As such, the recursive relationship ����
� = ��
 + �1 − ������
���  
can be expressed alternatively as ����
� = ��
 + ��1 − ���
�� + ��1 − ��	�
�	 + ⋯. Thus, the variance 

calculated to be, Var �����
�� = ��
� !

!
. The choice of �  determines the number of observations taken into 

consideration.  

e) Exponential smoothing adjusted for trend: Let us assume that ���
� follows a linear model with the slope " 

(a trend factor). The expected rate of findings can be either increasing or decreasing. The estimator is 

����
� = ��
 + �1 − ��#����
��� + "$. Since " is not generally known, it is estimated once again by using 

exponential smoothing to obtain ���"
� = %#����
� − ����
���$ + �1 − %����"
���,  where 0 < % < 1  and 

% ≠ �   is becoming another smoothing constant.  Accordingly, the new estimator of ���
� is ����
� =
��
 + �1 − ��#����
��� + ���"
���$. 

 

If X  is a random variable with mean µ  and variance ,2σ  then Chebyshev's inequality states, for any value 

,0>×= σdk ),||:( kXXP ≥− µ  the probability of a value falling outside this interval is at most 
2/1 d . 

Note also that null occurrences should be included so as not to make the data biased. If X  is the standard 

normal random variable and then, ]||:[ tXXE <− µ  is a strictly decreasing function for the nonnegative 

values of t  [9]. This model is applicable to event counters, interval timers, and resource measures accumulated 

over a fixed time interval or between two related events. This model has several advantages over an operational 

model. The standard normal CDF table [10] facilitates computation of probability in order to decide if 1+nX  has 

been an intrusion. Table 5-1 gives some crude estimates using three probabilistic principles in terms of the 

number of observations within a few standard deviations ( s ) measured from either side of the sample mean 

( ).x   

 

Table 5-1. Estimates for the Number of Observations in a Data Set 

Intervals Proposed Three-Standard-Deviations Rule The Empirical Rule 

 

Chebychev’s Rule 

%100.
1

1
2







 −
k

 

 

),( sxsx +−  

 

--† 

 

68.26% 
 

-- 

 

 

).2,.2( sxsx +−  

 

-- 

 

95.44% 

 

75.00% 

 

 

).3,.3( sxsx +−  

 

Almost all the observations 

 

99.74% 

 

88.89% 

 

† no estimates are available 

 

This model can be slightly modified placing greater weights on more recent values of the observations. For 

example, if nωωω ,,, 21 K  are positive weights such that nωωω <<< K21  and ∑ =
i

i ,1ω  then we 

consider the sequence, nn XXX ωωω ,,, 2211 K  for the determination of mean and standard deviation of the 
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model. 

 

6. Multivariate Model 

Statistical modeling and data mining are two techniques that enable understanding and potentially identifying 

recurring events. This performance analysis examines trends and data considering the timeline of the event to 

determine statistically significant trends, both positive and negative, and the relationships among elements of an 

event using multivariate analysis. By establishing control or trend charts with confidence limits, these tools 

determine if an unusual behavior is present or has been attempted. This model is similar to the mean and 

standard deviation model except that it is based on correlations among two or more variable metrics. 

Experimental data shows that it is useful for better discriminating power obtained from combinations of related 

measures rather than individually and session elapsed time to look for any significant deviation of the trends [4].  

6.1 Multiple Regression 

Briefly, the purpose of multiple regression is to determine the relationship between the independent variable and 

the dependent variables. A more specific purpose of this technique is to investigate the importance of each 

independent variable to the dependent variable [11]. More specifically, this technique allows for the possibility 

to determine which predictor variable is most important, and which one is the least important. In this section, we 

extend the regression model to include more than one predictor variable. Thus, the general form of a linear 

equation with two independent variables is simply an extension of bivariate regression that can be written as 

,ˆ
2211 xbxbay ++= where 

 ŷ = the predicted value for the dependent variable y  

 a = intercept constant 

 b1 and b2 = regression coefficients (weights) for independent variables one and two 

 x1 and x2 = values for the two independent variables 

In theory, the multiple regression equation could be extended to include an infinite number of predictors, but in 

practice (because of computational difficulties) it is perhaps prudent to limit one’s analysis to a few variables. 

The multiple regression equation stipulates that the predicted value of y is a linear combination of an intercept 

constant, plus independent variables that are weighted by regression coefficients. Regression analysis yields the 

best-fitting values of coefficients using the least squares criterion that the sum of squared error terms (the 

differences between y and predicted value of ŷ ) are kept at minimum. This technique is often referred to as the 

least squares-method subjected for much of the analysis.  

6.2 Regression Model for Scoring Function 

NETADs (Network Traffic Anomaly Detectors), such as PHADs (Packet Header Anomaly Detectors), detect 

anomalies in network packets [12]. A possible statistical model for quantities involved in the evaluation of 

NETAD anomaly scores for a packet; this can be expressed by 

),256//(/)256/1(NETAD rftrrtn ii ++−∑= α  where r  is the size of values (up to 256 for 

NETAD), t  is the time since the attribute was last anomalous (during either training or testing), αn  is the 

number of training packets from the last anomaly to the end of training period, and if  is the frequency in 

training. The summation is taken over all possible subset/attribute combinations. Table 6-1 shows the number of 

attacks detected from 20 to 5000 false alarms using various anomaly scoring functions as appeared in [13]. 

 

 Table 6-1. Factors Related to Scoring Function [10] 

Scoring Function rtn /  rtn /α   rrtn /)256/1( −α   )1/( +ii ft   )256//( rft ii +  NETAD 

20 56 56 60 33 78 66 

50 78 89 92 52 115 97 

100 104 118 120 81 127 132 

500 141 148 149 130 142 148 

5000 157 152 152 158 156 152 

 

The relationship between the scoring functions and rtn / is derived for values in Table 6-1.  
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Figure 6-1. Graph of Scoring Function vs. rtn /  

 

This shows that the scoring function satisfies the relation 4429.9)FunctionScoringln(624.18/ +×=rtn  

with a strong correlation coefficient. It is evident that the increase of scoring function beyond a certain value will 

not increase the α/tn  so rapidly. That is, α/tn  slows down as it reaches higher values of the scoring function 

as in Figure 6-1. In many situations, the response variable is not a linear function of the input function. In such 

cases, the determination of a relationship is possible by a change of variables to transform it into a linear form.  

6.3 Data Warehouse and Model Generator 

For misuse of detection problems, the Support Vector Machine (SVM) model classifies the network activity as 

normal, or as belonging to one of the four categories of attack, namely, probe, dos, u2r, and r2l, where the letter 

“a” in parentheses is used to indicate if they are actual, and “p” is used to indicate the predicted values. The 

misuse classification results are summarized in Table 6-2 for detection dataset obtained [14]. 

 

Table 6-2. Confusion Matrix on DARPA Intrusion  

Actual (a)/ 

Predicted (p)   

normal (p) probe (p)  dos (p) u2r (p)           r2l (p) 

normal (a) 59332  1048  45  57  111 

probe (a) 602  3251  212  62  39 

dos (a) 7393  88  222288  75  9 

u2r (a) 178  1  8  33  8 

r2l (a) 14683  41  7  31  1427 

 

Table 6-3. Correlation Matrix (Actual vs. Predicted) 

 Category normal (p) probe (p)  dos (p) u2r (p)           r2l (p) 

normal (a) 1     

probe (a)  -0.05389 1    

dos (a) -0.20494 -0.31953 1   

u2r (a)           0.102886 0.382839 0.686313 1  

r2l (a) 0.023286 -0.32087 -0.27926 -0.59802 1 

 

Table 6-3 is the correlation matrix for actual and predicted misuses of detection for the data summary of 

independent and dependent variables. The most important aspect to notice from this table is that no bivariate 

correlation is greater than 0.686. We are safe to conclude that the analysis is free of any possible 

multicollinearity effects. Those interested to find out more about SPSS features to test for multicollinearity can 

refer to [9]. A negatively correlated pair of items in a detection dataset indicates that if actual values increase, 

then predicted values decrease and vice versa [15]. 

The detection rate and false positive rate have been obtained for some varying thresholds for the determination 

of the system’s accuracy [16]. The detection rate is the percentage of attack records correctly identified. The 

false positive rate is the percentage of normal records misdiagnosed as anomalous. The threshold is the value 

that determines if a record is normal or if it is a possible attack. Table 6-4 below includes a sample of the varying 

threshold and corresponding false positive rate and the detection rate. We establish confidence intervals for 

threshold, false positive rate, or detection rates and other descriptive statistics with a 95% degree of confidence.  

 

  

Scoring Function vs. tn/r

y = 18.624Ln(x) + 9.4429

R2 = 0.9221
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Table 6-4. A Sample of Varying Threshold vs. False Positive and Detection Rates [16] 

Threshold  False Positive Rate (%)  Detection Rate (%)  

-1.08307  0.790142  0.373533  

-1.08233  0.828005  0.480256  

-1.07139  1.54441  0.533618  

-0.968913  1.65734  1.17396  

-0.798767  3.58736  3.89541  

-0.79858  3.63784  5.60299  

-0.798347  3.68999  6.77695  

-0.767411  3.72054  6.83031  

-0.746663  4.35691  7.47065  

-0.746616  4.63025  8.00427  

-0.71255  8.34283  20.9712  

-0.712503  8.75201  22.0918  

 

Regression models have been obtained for these variables [17]. We draw attention to the descriptive statistics 

that are naturally a focus in every preliminary study for these three variables in Table 6-5. A correlation matrix 

provides significant evidence to conclude that there are strong correlations among the variables in the study as 

summarized in Table 6-6. 

  

Table 6-5. Descriptive Statistics for Threshold, False Positive, and Detection Rate 

 Threshold False Positive Rate (%) Detection Rate (%) 

Mean  -0.85726   3.79480   7.01708 

Standard Error   0.04306   0.74782   2.12850 

Median  -0.79846   3.66392   6.18997 

Standard Deviation   0.14916   2.59053   7.37333 

Sample Variance   0.02225   6.71086 54.36600 

Kurtosis  -1.26349   0.29767   1.10407 

Skewness  -0.78960   0.89255   1.37868 

Range   0.37057   7.96187 21.71827 

Minimum  -1.08307   0.79014   0.37353 

Maximum  -0.71250   8.75201 22.09180 

Sum -10.28714 45.53763 84.20495 

Count 12 12 12 

Largest(1)  -0.71250   8.75201 22.09180 

Smallest(1)  -1.08307   0.79014   0.37353 

Confidence Level (95.0%)   0.09477   1.64595   4.68479 

 

Table 6-6. Correlation Matrix for Threshold, False Positive, and Detection Rate  

  Threshold  False Positive Rate (%)  Detection Rate (%)  

Threshold  1   

False Positive Rate (%)  0.838230425 1  

Detection Rate (%)  0.750245026 0.983370245 1 

 

False alarm and detection rates over 50 users and the tradeoff between false alarms and detection ability as 

functions of the offset have also been considered [18]. Control charts can be generated under simulated scenarios 

to provide explicit details of a charting procedure for future work and draw any long-term conclusions that 

determine the relationship between the variables. 

 

7. Markov Process Model  

A probabilistic prediction model identifies the last system identification given all the previous system 

identifications in the detection of the traffic anomaly are known. From this, the prediction model is same as 

finding probability, ],,,|[ 211 nn XXXXP K+  [19]. Let }1:{ NiX i ≤≤ denote the traffic measurement in 

time series and let W  denote the number of samples for the averaging process. The given trace }{ iX  is now 
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extended to a series of pairs )},{( ii XX with ∑
−

−=

=
11 i

Wik

ki X
W

X for .,,1 NWi K+=  For a given time series 

with fast decaying autocorrelation function, the average values iX  will be rather good estimators of the sample 

mean and will be almost the same for all values of i  [20]. Hence, this additional category contains no 

information and is of very limited value with respect to a better characterization of the sample correlations. 

However, in the presence of a slowly decaying autocorrelation function, the values iX  are significant and 

represent the cumulated averaged history of .iX  The series of pairs consists of W  samples less than the 

original time series [18]. This model, which applies only to event counters, regards each distinct type of event 

(audit record) as a state variable, and uses a state transition matrix to characterize the transition frequencies 

between states. A new observation is defined to be an intrusion if its probability as determined by the previous 

state and the transition matrix is too low. This model might be useful for looking at transitions between certain 

commands where command sequences were important [21]. Whenever the intrusion attempt is to occur in state 

,i  there is a fixed probability ijp  that will be in state .j  Let E  be a finite or countable set. Let )( ijpP =  be a 

stochastic EE×  matrix, so that, for ,, Eji ∈  we have ∑
∈

=≥
Ek

ikij pp .1,0  Letµ  be a probability measure 

on E  [22]. We know that there exists a triple ),,( µPFΩ  carrying a Markov chain ):(
+∈= ZnZZ n  such 

that 
nn iiiiinn ppiZiZiZiZP

1100
),;;;( 221100 −
===== KK µ  holds. We write ‘a.s., 'µP  to signify 

‘almost surely relative to the −µP measure’. Let ),,,,(: 10 nn ZZZF Kσ=  then (a.s., ),µP  

,)|( 1 jZnn n
pFjZP ==+

µ
 where nF  is the natural filtration [23]. 

 

8. Time Series Model 

The time series model assumes no conditions in the analysis. It compares the parameters collected over an 

extended period of time with the current parameters to monitor unusual features, namely, trends, seasonal effects, 

cycles, and irregularities of the prevailing data.  

This model uses an interval timer together with an event counter or resource measure, that takes into account the 

order and inter-arrival times of the observations nXXX ,,, 21 K , as well as their values. A new observation 

considers an attempted intrusion if its probability of occurring at that time is considerably small. A time series 

model has the advantage of measuring trends of behavior over time and detecting gradual but significant shifts in 

behavior, but the disadvantage is that it is more costly compared to other existing models. Furthermore, when the 

parameters describing the series do not change over time, the time series sometimes can be modeled adequately 

by using what is called the multiplicative decomposition model that exhibits trends, seasonal effects, and other 

features of the series [24]. 

The multiplicative decomposition model is ,ttttt IRCLSNTRy ×××=  where ty  is the observed value of 

the time series in time period t  and other components (factors) represent trends, seasonal, cyclic, and irregular 

components in time period ,t  respectively. First, the time series is plotted using any available data for a given 

network. A cyclical component refers to repeating up and down movements around trend levels (for example 

that revolve around the business cycle.)  
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Figure 8-1. Trends, Seasonalties, Cyclicties and Irregularities  

 

These fluctuations can last anywhere from smaller to longer periods as measured from peak to peak or trough to 

trough. The two trend lines drawn in Figure 8-1 differ substantially to indicate that there has been heavy traffic 

volume during that time period. Seasonality has not been a question. Cyclic features remain the same, whereas 

some irregularities are present at the beginning and end of the time period monitored.  

 

 
Figure 8-2. Deviation Plot from Comparison 

 

The deviations have been computed for all values of time variable. This has resulted in the deviation plot appears 

in Figure 8-2. The extremes reflect that potential anomalies may have occurred. 

 

Another tool available in the arsenal is the chi-square goodness-of-fit test. It is a hypothesis test which can be 

used to make inferences about the distribution of a variable from the information collected from a sample data to 

decide whether the distribution in question differs from that of a known population. A sample of user activities 

on a suspected computer network is analyzed to determine whether activity pattern differs from the activities 

previously recorded in the network. The network activity patterns in a computer system are recoded through a 

stream of audit events to make this determination. One advantage of this procedure is that it is a robust test [21]. 

 

9. Conclusions and Future Work 

Citing brief notes from several articles and presenting a set of statistical models followed by some analytical 

discussions, we were able to present a set of probabilistic methods and statistical models for network traffic 

anomaly detection. A more comprehensive procedure and formalism for the determination of the normal profile 

is always necessary. It is important to investigate whether or not other scenarios may have occurred. A decent 

survey in which the scope of current research extensively documented is provided in [25]. Discretization 

methods convert the numeric time series to symbolic time series for the method of additional knowledge 

discovery [26 & 27]. However, at present, analyses on multivariate data rather than univariate data are performed 

to detect anomalies as they do not have a strong signature in any of the time series of individual features [28]. 

Other statistical models of this type are there to address the anomaly detection, for example, models that use 

more than the first two moments (e.g., )(),( 2XEXE ) but less than the full set of values. If the determination 

is done on the basis of function of random variables, the method of statistical differentials can be used to 

evaluate the first two moments as discussed [29]. Parameter estimation is the key in some of the models. Much 

focus has been given to estimation based on confidence interval. The maximum likelihood methods and the 
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Bayesian approach are two other well-known parameter estimation methods that can be used as well. Simulation 

has been used in the literature for determination of parameters for these models. However, one should also note 

that the limitations and difficulties of first generation of attacks could prompt the attacker to search for new 

techniques to devise and execute more harmful attacks to computer network [30].   

 

Acknowledgements 

The authors appreciate the work of Gladys Gonzalez, Sofia C. Maldonado, and Navil Lozano for reading the 

many versions of this article for improvement. 

        

References 

1. Chen, Zesheng, Gao, Lixin, Kwiat, Kevin, Modeling the Spread of Active Worms, IEEE Infocom, 

http://www.ieee-infocom.org/2003/papers/46_03.PDF, 2003 

2. Ellis, Daniel R., Aiken, John G., Attwood, Kira S., Tenaglia, Scott. D., A Behavioral Approach to Worm 

Detection, Proceedings of ACM Workshop on Rapid Malcode, 2004 

3. Harold J. Larson, Introduction to Probability, Addison-Wesley Advanced Series in Statistics, Addison-

Wesley Publishing Company, Reading, MA, 1995 

4. Dorothy E. Denning, An Intrusion-Detection Model, IEEE Transactions on Software Engineering, Vol. SE-

13, No. 2, February 1987, pp. 222—232 

5. H.-Y. Chang, S.F. Wu, and Y.F. Jou, Real-Time Protocol Analysis for Detecting Link-State Routing 

Protocol Attacks, ACM Trans. Inf. Sys. Sec., Vol. 1, 2001, pp. 1-36 

6. Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientist, third edition, 

Elsevier Academic Press, San Diego, CA, 2004 

7. Rohitha Goonatilake, Rafic Bachnak, and Susantha Herath, Statistical Quality Control Approaches to 

Network Intrusion Detection, International Journal of Network Security & Its Applications (IJNSA), Vol.3, 

No.6, November 2011, pp. 115-124 

8. Frederick S. Hillier and Gerald J. Lieberman, Operations Research, Second Edition, Holden-Day, Inc., San 

Francisco, CA, 1967 

9. Stephen J. Herschkorn et al., Decreasing Expectations, Mathematics Magazine, Vol. 79, No. 2, pp. 155   

10. Cumulative Normal Probability Tables (Z-Values), http://www.osat.umich.edu/sixsigma/Reference/norm-

tables.PDF 

11. B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics, Fourth Edition, Allyn & Bacon, Needham, 

Heights, MA, 2001 

12. Matthew V. Mahoney, Network Traffic Anomaly Detection Based on Packet Bytes, The Eighteenth Annual 

ACM Symposium on Applied Computing (SAC 2003), March 9 - 12, 2003, Florida Institute of Technology, 

Melbourne, FL, 2003 http://www.cs.fit.edu/~mmahoney/paper6.pdf  

13. A. Laxmi Kanth, Suresh Yadav, and M.Sridhar, Hybrid Modular Approach for Anomaly Detection, 

International Journal of Computer Applications (0975 – 8887), Vol. 14, No.8, February 2011 

14. Marcos M. Campos and Boriana L. Milenova, Creation and Deployment of Data Mining-Based Intrusion 

Detection Systems in Oracle Database 10g, Oracle Data Mining Technologies, 2005,  

http://www.oracle.com/technology/products/ bi/odm/pdf/odm_based_intrusion_detection_paper_1205.pdf 

15. Results of the KDD’99 Classifier Learning, http://www.cse.ucsd.edu/users/elkan/clresults.html, 1999 

16.  Katherine A. Heller, Krysta M. Svore, Angelos D. Keromytis, and Salvatore J. Stolfo One Class Support 

Vector Machines for Detecting Anomalous Windows Registry Accesses, Columbia University, 

http://www1.cs.columbia.edu/~kmsvore/ocsvm.pdf 

17. Ajantha Herath et al., Mathematical Modeling of Cyber Attacks: A Learning Module to Enhance 

Undergraduate Security Curricula, The Journal of Computing Sciences in Colleges (JCSC), Vol. 22, Is. 4, 

2007, pp. 152-161 

18. William DuMouchel, Computer Intrusion Detection Based on Bayes Factors 

For Comparing Command Transition Probabilities, National Institute of Statistical Sciences (NISS), 

Technical Report, No. 91, February, 1999 

19. Eleazar Eskin, Wenke Lee, and Salvatore J. Stolfo, Modeling System Calls for Intrusion Detection with 

Dynamic Window Sizes, Computer Science Department,  

Columbia University and Computer Science Department, North Carolina State University, 

http://www1.cs.columbia.edu/ids/ publications/smt-syscall-discex01.pdf 

20. O. Rose, A Memory Markov Chain Model for VBR Traffic with Strong Positive Correlations, Institute of 

Computer Science, University of Würzburg, http://www.iai.inf.tu-dresden.de/ms/rose/papers/1999itc.pdf  

21. Rohitha Goonatilake et al., Intrusion Detection Using the Chi-Square Goodness-of-Fit Test for Information 

Assurance, Network, Forensics and Software Security, The Journal of Computing Sciences in Colleges 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online) 

Vol.3, No.9, 2013 

 

40 

(JCSC), Vol. 23, No. 1, 2007, pp. 255-263 

22. Nong Ye, Xiangyang Li, Qiang Chen, Syed Masum Emran, and Mingming Xu, Probabilistic Techniques for 

Intrusion Detection Based on Computer Audit Data, IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, Vol. 31, No. 4, July 2001 

23. David Williams, Probability with Martingales, Cambridge University Press, 1991 

24. Bruce L. Bowerman and Richard T. O’Connell, Forecasting and Time Series: An Applied Approach, Third 

Edition, Duxbury Thomson Learning, 1993 

25. Varun Chandola, Arindam Banerjee, and Vipin Kumar, Anomaly Detection: A Survey, ACM Computing 

Surveys, Vol. 41, No. 3, Article 15, July 2009, pp. 15-58 

26. Fabian Mörchen and Alfred Ultsch, Optimizing Time Series Discretization for Knowledge Discovery, 

KDD’05, August 21-24, 2005, Chicago, IL. 

27. Jerome L. Myers and Arnold D. Well, Research Design and Statistical Analysis, Second Edition, Lawrence 

Erlbaum Associates, Inc. Publishers, 2003 

28. Jeff Terrell, Kevin Jeffay, F. Donelson Smith, et al., Multivariate SVD Analyses For Network Anomaly 

Detection, University of North Carolina at Chapel Hill,2005, 

http://www.cs.unc.edu/~jeffay/papers/SIGCOMM-05.pdf 

29. Rohitha Goonatilake, On Method of Statistical Differentials, African Diaspora Journal of Mathematics 

(ADJM), Vol. 3, No. 2, 2005, pp. 25—52 

30. V. Anil Kumar, Sophisticated in Distributed Denial-of-Service Attacks on the Internet, Current Science, Vol. 

87, No. 7, 2004, pp. 885-888 

 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/journals/   The IISTE 

editorial team promises to the review and publish all the qualified submissions in a 

fast manner. All the journals articles are available online to the readers all over the 

world without financial, legal, or technical barriers other than those inseparable from 

gaining access to the internet itself. Printed version of the journals is also available 

upon request of readers and authors.  

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Recent conferences:  http://www.iiste.org/conference/ 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/

