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ABSTRACT 

Drilled shafts have been frequently used as a foundation to support lateral loads. The p-y method of analysis has 
been widely used for predicting the behavior of laterally loaded drilled shafts. The existing p-y criteria for 
cohesive soils are divided into soft or stiff clays, on the basis of a limited number of lateral load test results. 
Currently, there is no p-y criterion developed for cohesive intermediate geomaterial. In this paper, a hyperbolic 
equation for p-y curve is presented for cohesive soils and intermediate geomaterials. Based on 3-D FEM 
simulation results, a new empirical equation is presented for calculating the initial tangent to p-y curve. The 
proposed hyperbolic p-y criterion is verified by using the results of six full-scale lateral load tests on fully 
instrumented drilled shafts with diameters ranging from 0.76 m to 1.83 m in the geo-medium ranging from soft 
clays to intermediate geomaterial. The proposed hyperbolic p-y criterion is shown to be capable of predicting the 
loaddeflection and bending moments of the laterally loaded shafts for the six cases studied in this paper. 

KEYWORDS:  p-y criterion, Cohesive soils; Intermediate geomaterial, Lateral loads, Drilled shaft. 

 
1. INTRODUCTION 

 
Drilled shaft foundations are commonly used to resist 

axial and lateral loads applied to structures, or to stabilize 
slopes. There is a number of different approaches for 
analyzing the behavior of laterally loaded drilled shafts, 
and the most widely employed is the p-y approach 
developed by Reese and his coworkers. The p-y method 
is based on the numerical solution of beam-on-elastic 
foundation, where the structural behavior of a drilled 
shaft is modeled as a beam and the soil-shaft interaction 
is represented by discrete, non-linear springs 
characterized by p-y curves.  

A number of p-y curves for clays have been 
developed by Matlock (1970), Reese and Welch (1975), 
Evans and Duncan (1982), Gazioglu and O’Neill (1984), 
Dunnavant and O’Neill (1989), Hsiung and Chen (1997) 

and Yang and Liang (2005). These existing p-y curves 
were developed based on a limited number of model or 
field lateral load tests on piles or drilled shafts. 
Furthermore, Yang and Liang (2005) have shown that the 
existing Reese and Welch (1975) and Gazioglu and 
O’Neill (1984) p-y criteria do not work well for the 
lateral load tests that they studied. The accuracy and 
applicability of the existing p-y curves for clays can be 
further validated or improved by using additional lateral 
load test results that have become available since their 
original developments. 

The advancement of computer technology has made it 
possible to study lateral soil-drilled shaft interaction 
problems with the rigorous finite element method. Brown 
and Shie (1990) have conducted a series of three-
dimensional finite element analyses on the behavior of 
single pile and pile group by using an elastic soil model. 
Brown and Shie derived p-y curves from finite element 
analysis results and provided some comparison with the Received on 7/10/2006 and Accepted for Publication on 

18/12/2006. 
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empirical design procedures in use. Bransby and 
Springman (1999) utilized the two-dimensional finite 
element method to find load-transfer relationships for 
translation of an infinitely long pile through undrained 
soil for a variety of soil-constitutive models. Yang and 
Jeremić (2002) performed a finite element study on pile 
behavior in layered elastic-plastic soils under lateral loads 
and generated p-y curves from the finite element results. 
It was found that the finite element results generally agree 
well with centrifuge data. 

The objective of this paper is to present a unified p-y 
criterion for cohesive soils and intermediate geomaterials 
by using hyperbolic mathematical formulation. The 3-D 
finite element parametric study results of laterally loaded 
drilled shafts in clay are used to develop empirical 
equations for calculating two important parameters in the 
hyperbolic p-y formulation: initial tangent to p-y curve, 
ki, and ultimate resistance, Pult,. A total of six full-scale 
fully instrumented lateral load test results are used to 
validate the proposed p-y criterion in predicting the load-
deflection and bending moment of the drilled shafts under 
lateral loads. 

The use of a hyperbolic function, given by Equation 
(1), as a p-y curve for sand, has been demonstrated by 
Kim et al. (2004) in their study of model tests in the Nak-
dong River sand.  
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where 

p=force per unit shaft length (F/L), 
y=lateral displacement of shaft (L), 
Ki =initial subgrade reaction modulus of soil (F/L2) 

and Pult=the ultimate reaction force per unit length of 
shaft (F/L). 

  In this paper, the hyperbolic function is suggested 
for constructing p-y curves for both soft and stiff clays as 
well as for intermediate geomaterial under short-term 
static loading. The methods to compute Ki and Pult are 
based on FEM simulation results and are discussed in the 
sections below. 

2. BACKGROUND 
Given below is a brief review of existing equations 

for calculating the two key parameters in the hyperbolic 
p-y function. 

 
Initial Tangent to P-y Curve 

By fitting the subgrade reaction solution with the 
continuum elastic solution for the beam on an elastic 
foundation, Vesic (1961) provided an elastic solution for 
the modulus of subgrade reaction, Ki as follows: 
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where E = modulus of elastic materials, ν = Poisson’s 

ratio, D = beam width, and EpIp = flexural rigidity of 
beam.  

Bowles (1988) suggested to double the value of Ki in 
Equation (2) for piles under lateral loading, since the pile 
would have contact with soils on both sides. However, in 
reality, soils do not fully contact with the piles when  
lateral loads are applied. Based on field test data, Carter 
(1984) modified Vesic’s equation as follows to account 
for the effect of pile diameter: 
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where the reference pile diameter, Dref = 1.0 m, EpIp = 

flexural rigidity of the piles or drilled shafts. As noted in 
FEM Modeling Section in this paper, the effect of 
Poisson's ratio on Ki by Carter (1984) seems to contradict 
to the FEM parametric study results. 
 
Ultimate Resistance, Pult 

Based on a wedge failure mechanism, Reese (1958) 
provided an equation for estimating Pult, near the ground 
surface as follows:  

 2.83(2 )u
ult u

S zp S z D
D

γ ′= + +                      (4) 
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Table 1. Maximum Bending Moment at Different Loading Level for the Six Cases. 

Max. Bending Moment (kN.m) Prediction Error 
Site 

Lateral 
Load 
(kN) Proposed Reese/Matlock Measured Proposed Reese/Matlock 
1601 3101 3470 1750 0.77 0.98 
1868 3812 4243 2691 0.42 0.58 
2313 5014 5487 4586 0.09 0.20 

LOR-6 

2580 5676 6171 5918 0.04 0.04 
53 48 55 50 0.04 0.10 Slat Lake 
98 93 114 90 0.03 0.26 

1335 4678 5624 2427 0.93 1.32 
1780 6881 8194 4312 0.60 0.90 
2225 9165 10992 9619 0.05 0.14 
2670 11488 13952 12105 0.05 0.15 
2759 11973 14537 13000 0.08 0.12 

CUY-90 

3560 16699 20339 29063 0.43 0.30 
22 37 38 28 0.33 0.37 
45 77 78 58 0.33 0.34 
67 118 119 91 0.29 0.30 
90 159 162 124 0.28 0.31 

134 236 253 190 0.24 0.33 
180 320 352 351 0.09 0.00 
224 406 448 431 0.06 0.04 
269 494 544 521 0.05 0.04 
343 651 705 694 0.06 0.02 

CDOT 

394 756 812 776 0.03 0.05 
89 736 750 790 0.07 0.05 

165 1349 1501 1452 0.07 0.03 
267 2206 2284 2407 0.08 0.05 
334 2759 2901 2917 0.05 0.01 
400 3310 3527 3598 0.08 0.02 
476 3951 4173 4236 0.07 0.01 
538 4467 4884 4970 0.10 0.02 
614 5103 5552 5411 0.06 0.03 
689 5736 6223 6045 0.05 0.03 

JEF-152 

761 6327 6944 6468 0.02 0.07 
178 200 203 163 0.23 0.25 
445 560 568 407 0.38 0.40 
667 900 907 667 0.35 0.36 
890 1220 1268 1190 0.03 0.07 
1112 1539 1647 1684 0.09 0.02 
1334 1860 2041 2051 0.09 0.01 
1512 2100 2421 2264 0.07 0.07 

WAR-48 

1690 2340 2784 2416 0.03 0.15 
 



Hyperbolic P-Y Criterion…                                                                                      Robert Y. Liang, et al. 

 

- 41 - 

 
Fig. 1: 3-D FEM Model. 

 
Based on the flow-around failure theory for clay at a 

great depth, Pult for in-depth clay is given as: 
 

DSp uult 11=                                                                (5) 
 
Later, Matlock (1970) suggested computing Pult, by 

using the smaller one of the values given by the equations 
below:  
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DSp uult 9=                                                                  (7) 
 
where γ′ = average effective unit weight from ground 

surface to the depth z under consideration, z = depth of 
the p-y curve, Su = undrained shear strength at depth z, D 
= diameter of the drilled shaft, J = 0.5 for a soft clay and 
J=0.25 for a medium clay. A value of 0.5 is frequently 
used for J. 
 
3. FEM MODELING 
 
Initial Tangent Ki 

The commercial ABAQUS finite element program is 
used for modeling the soil-drilled shaft interaction, as 
shown in Fig. 1. The drilled shaft is modeled as a 

cylinder with elastic material properties. The solid 
elements C3D15 and C3D8 available in ABAQUS were 
used to develop mesh representation for shaft and clay, 
respectively. Surface interface technique is employed to 
simulate the soil-shaft interface. Since the determination 
of initial tangent to p-y curve constitutes the primary 
objective of this part of FEM study, only the elastic 
response of clay is the main concern of this part of the 
parametric study.  
 
Effect of Elastic Modulus of Soils, Es 

The effect of elastic modulus of soils, Es, is studied by 
varying it from 5,000 kPa to 35,000 kPa. Other pertinent 
parameters are kept as constant as follows: D=1m, 
Ep=2.0×107 kPa,ν s=0.3. The FEM computed results are 
plotted in Fig. 2 (a), from which one can see that a power 
function fits the relationship between Ki and elastic 
modulus of the soil. 
 
Effect of Shaft Diameter, D 

The effect of shaft diameter is investigated by varying 
the diameter from 1 m to 4 m. Other pertinent parameters 
are kept as constant as follows: Ep=2.0×107 kPa, 
Es=2.0×104 kPa,ν s=0.3. The Ki generated at a depth of 2 
m is shown in Fig. 2 (b). It can be seen that Ki increases 
linearly with the increase of the shaft diameter. 
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Fig. 2: Effects of Shaft and Soils Parameters on Ki. 
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Fig. 3: Ultimate Resistances vs. Depth.  
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Fig. 4: Soil Profile and Shaft Dimension at Ohio LOR-6 Test Site. 
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Effect of Poisson’s Ratio of Soils, νs 
The Poisson’s ratio for cohesive soil is varied from 

0.1 to 0.35, while other pertinent parameters are kept as 
constant as follows: D=1.0 m, Ep=2.0×107 kPa, 
Es=1.0×105 kPa. The Ki generated at a depth of 1 m is 
shown in Fig. 2 (c), where a power function can fit the 
data well. It is noted that in Carter’s empirical equation 
(Carter, 1984), an increase in Poisson's ratio leads to an 
increase in Ki. The present FEM results show that Ki 
decreases with an increase in Poisson's ratio. 
 
Effect of Elastic Modulus of Shafts, Ep  

The effect of elastic modulus of shafts, Ep, is studied 
by varying it from 2.0×107 kPa to 4.0×108 kPa, while 
other parameters are kept as constant as follows: D=1m, 
Es=1.0×105 kPa and 5.0×104 kPa, ν s=0.3. Fig. 2 (d) 
shows the relationship between Ki and Ep . It can be seen 
that a power function fits very well the relationship 
between Ki and Ep.  
 
Effect of Depth, Z 

The relationship between initial tangent of p-y curve 
and depth is also investigated by varying the depth from 
1.0 m to 4.0 m. Other pertinent parameters are kept as 
constant as follows: D=1m, Ep=2.0×107 kPa,ν s=0.3. The 
FEM results are computed for two values of Es (10,000 
kPa and 20,000 kPa) as shown in Fig. 2 (e), from which 
one can see that a power function can also fit the 
relationship between Ki and the depth. 
 
Suggested Empirical Equation for Ki 

Based on the parametric study presented in the 
previous section, the following conclusions may be 
drawn: 
a) Ki and the following variables exhibit a power 

relationship: the modulus of soils, the modulus of a 
shaft, depth and Poisson’s ratio of a soil. 

b) Ki increases linearly with an increase in shaft diameter. 
A regression analysis on data from the FEM 

parametric study is carried out. An equation for 
predicting initial modulus of subgrade reaction is fitted to 
match Ki values obtained from the FEM parametric 

study. As shown in Fig. 2 (f), the empirical equation can 
be derived as follows. 

 
031.0036.1078.0

016.0 )/()/(943.0
−−

= pssrefref EEDDZZiK ν  (8) 
 
where  
 
Zref = 1.0 m  and  Dref =1.0 m. 

 
Ultimate Resistance, Pult 

The strength of saturated clay is usually characterized 
by undrained shear strength, Su; therefore, clay is 
modeled as a simple Von Mises material in the FEM 
simulation. 

The finite element model used to obtain the ultimate 
resistance is the same as the one used to obtain Ki. The 
drilled shaft with a diameter of 2 m is modeled as an 
elastic material, while the undrained shear strength of 
cohesive soils is varied from 10 kPa to 200 kPa. The 
ultimate resistances computed from finite element 
analyses are shown in Fig. 3 (a) to (c) for three 
representative values of Su. It can be seen that the results 
of finite element analyses agree generally well with those 
deduced from the Matlock’s method. The ultimate 
resistance of in-depth clay from FEM is generally larger 
than 9SuD, but smaller than 11SuD. Therefore, 10SuD is 
adopted in this paper.  The ultimate resistance of clays 
can be calculated by using the smaller one of the values 
given by the following equations: 
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DSp uult 10=                                                            (10) 
 

4. CASE STUDIES 
 
Six lateral load tests are employed to validate the 

proposed p-y criterion for cohesive soils by comparing 
the measured and predicted load-deflection curves, and 
the deflection vs. depth curves.  
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Fig. 5: Comparison of Predicted and Measured Load-Deflections of Ohio LOR-6 Test. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Comparison of Predicted and Measured Deflections vs. Depth of Ohio. LOR-6 Test. 
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Fig. 7: Soil Profile and Pile Detail at Salt Lake International Airport Test (After Rollins et al., 1998). 
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Fig. 8: Comparison of Predicted and Measured Load-Deflection Curves of Salt Lake International Airport. 

 
In addition to deflection prediction, the maximum 

moments of drilled shafts under different loading levels 
predicted by using LPILE based on the proposed p-y 
criterion and other existing p-y criteria are compared with 
the corresponding maximum moments based on strain 
gage readings. The moment prediction errors, defined as 
the absolute value of moment difference divided by the 
measured moments, are summarized in Table1. 
 
Ohio LOR-6 Test (Liang, 1997) 

The soils at the test site are composed primarily of silt 
clay, underlain by gray clay shale. The soil profile at the 
LOR-6 test site is presented in Fig. 4. 

The undrained shear strength of clay is correlated to 
undrained elastic modulus as follows (U.S. Army Corps 
of Engineers, 1990):  

ucS SKE =                                                                  (11) 
where Kc is a correlation factor. The value of Kc as a 

function of the overconsolidation ratio and plasticity 
index, PI, is estimated to be 500.  

The geometry and dimension of test shaft as well as 
the instrumentation layout are shown in Fig. 4. The 
diameter of the shaft in clay is 1.22 m, while the diameter 
of the shaft socket in the shale is 0.92m.  Inclinometer 
casing and strain gages were installed inside the shaft.  

Fig. 5 shows the comparison of the predicted and 
measured load-deflection curves. It can be seen that the 
predicted load-deflection using the proposed hyperbolic 
p-y criterion agrees very well with the measured values. 
The Reese and Welch (1975) p-y criterion overpredicts 
the deflections. A comparison of the predicted and 
measured deflections vs. depth is shown in Fig. 6.  

The average maximum bending moment prediction errors 
using the proposed p-y criterion is 0.33 as it can be calculated 
from Table 1. It is less than 0.45, the average prediction error 
by using Reese and Welch p-y criterion (1975). 
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Fig. 9: Soil Profile and Shaft Dimension at CUY-90 Test Site. 
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Fig. 10: Comparison of Predicted and Measured Load-Deflection Curve of Ohio CUY-90 Test. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Comparison of Predicted and Measured Deflections vs. Depth of Ohio CUY-90 Test. 
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Fig. 12: Soil Profile and Shaft Dimension at Colorado I-225 Clay Site. 

 
Salt Lake International Airport Test (Rollins et al., 
1998) 

The test pile was 0.305m I.D. closed-end steel pipe 
with a 9.5-mm wall thickness driven to a depth of 
approximately 9.1 m. The elastic modulus of the steel 
was 200 GPa, and the minimum yield stress was 331 
MPa. Prior to conducting the lateral pile load testing, 
inclinometer casing and strain gauges were placed inside 
the pile. The pile was then filled with concrete. The 
compressive strength and the elastic modulus of the 
concrete at the time of testing were 20.7 MPa and 17.5 
GPa, respectively.  

The soil profile at the test site as well as the pile 
instrumentation detail are presented in Fig. 7. The soils 

near the ground surface are clays and silts with undrained 
shear strength typically between 25 kPa and 50 kPa. 
Some layers showed undrained shear strength of 100 kPa. 
The underlying cohesionless soil layer consists of poorly 
graded medium-grained sands and silty sands. Based on 
EM 1110-1-1904, for PI=25, Es of cohesive soils can be 
estimated to be 1000Su.  

The proposed hyperbolic criterion and the Matlock 
(1970) criterion are used to generate two sets of p-y 
curves for the clay layers. Reese et al. (1975) p-y 
criterion is used to generate the p-y curves for the sand 
layers. The LPILE analysis results by using these p-y 
curves are compared with the measured load-deflection 
curve in Fig. 8.   The proposed p-y curves provides good 
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Fig. 13: Comparison of Predicted and Measured Load-Deflection Curves of CDOT Clay Site. 
 
match with the measured load-deflection curve. Also, its 
bending moment prediction errors are less than that of 
Matlock (1970) p-y criterion prediction. 
 
Ohio CUY-90 Test (Liang, 2000) 

The soils near the ground surface are mainly 
composed of silts, soft to stiff clays. Deposits in great 
depth are shale with trace of gravel. The test shaft is 45.0 
m long with an embedded length of 43 m. The lateral 
load was applied at a point 0.6 m above the ground 
surface. The diameter of the test shaft is 1.83 m, 
reinforced with 24 bars, 57mm in diameter, and a built-up 
beam. Fig. 9 shows the soil profile at the site as well as 
the details of reinforcement inside the shaft.  

Fig. 10 and Fig. 11 show the predicted and measured 
load-deflection curves and the deflection-depth curves, 
respectively. It can be seen that the proposed p-y criterion 
can predict the load-deflection of the drilled shaft much 

better than the Reese and Welch (1975) p-y criterion. 
At five different loading levels out of the six shown in 

Table 1, the maximum bending moment prediction errors 
calculated based on the proposed p-y criterion results are 
less than those calculated based on the Reese and Welch 
(1975) p-y criterion. 
 
Colorado I-225 Test (Nusairat et al., 2004) 

The soil profiles at the test site with the soil parameters 
interpreted from pressuremeter test as well as the 
instrumentation of the test shaft are presented in Fig.12. 

The shaft is relatively short, with embedment length of 
4.59 m. Therefore, the resistance of the shaft tip is a 
significant component of the overall lateral resistance. The 
comparisons between the predicted and measured load-
deflection curves are shown in Fig. 13. A discrepancy is 
observed, which may have been contributed by the shear 
resistance at the base of the shaft . 
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Fig. 14: Soil Profile and Shaft Dimension at Ohio JEF-152 |Test Site. 

 
This is another case proving that the maximum 

bending moment predicted using the proposed p-y 
criterion matches the measured value better than the 
prediction using Reese & Welch (1975) p-y criterion as 
calculated in Table1. 
 
Ohio JEF-152 Test (Nusairat et al., 2006) 

The soil profile and the undrained shear strength and 
modulus of elasticity of the soil interpreted from 
pressuremeter test are summarized in Fig. 14. The depth 
to the intermediate geomaterial is 7.6 m from the ground 
surface as shown in Fig. 14, where the instrumentation of 
the test shaft is also presented. 

The proposed hyperbolic p-y criterion and Reese and 

Welch (1975) p-y curves for stiff clay are used to 
generate the p-y curves as input in the LPILE program to 
predict the load-deflection curve of the test shaft. Fig. 15 
shows the predicted and measured load-deflection curves. 
The predicted and measured deflection vs. depth curves 
are compared in Fig. 16. The comparison of the predicted 
and measured maximum bending moment is given in 
Table 1. It can be seen that the proposed p-y criterion 
allows LPILE program to predict the measured data very 
well. 

Ohio WAR-48 Test (Nusairat et al., 2006) 
The test site is located on SR 48 over Clear Creek in 

Warren County, Ohio. The test shafts were part of 
retaining wall supporting the roadway. The drilled  shafts 
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Fig. 15: Comparison of Predicted and Measured Load Deflection Curves of Ohio JEF-152 Test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16: Comparison of Predicted and Measured Deflection vs. Depth Curves of Ohio JEF-152 Test. 
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Fig. 17: Soil Profile and Shaft Dimension at Ohio War-48 Test Site. 

 
were excavated by using the “dry” method, with 
temporary casings for excavation support. The total 
length of the drilled shaft is about 7.02 m, with 1.52 m 
extension above the ground surface for load application. 
The subsurface stratigraphy encountered during drilling 
of the 1.22 m diameter shafts consisted of shale from the 
ground surface to the bottom of the shafts.  

Field rock dilatometer tests were conducted at this 
site. The limiting pressure, undrained shear strength and 
the modulus of elasticity, interpreted from the dilatometer 
tests, are summarized in Fig. 17 together with 
instrumentation details. The reinforcement of the shaft 
was 12 -35 mm and 6 -44.4 mm bars with a concrete 
cover of 7.6 cm.   

The lateral loads were applied 0.6 m below the top of 
the shaft in increments of 222.5 kN. The maximum lateral 
load reached was 1780 kN.  

For comparison, the proposed hyperbolic criterion, 
Reese and Welch (1975) stiff clay criterion and Reese 
(1997) weak rock criterion were used to generate p-y 
curves. The load-deflection curves predicted by LPILE 
program with these p-y curves are shown in Fig. 18. Fig. 
19 shows the predicted and measured deflection vs. 
depth. It can be seen that the proposed hyperbolic 
criterion provides the best match.  

The maximum bending moment prediction by using 
both p-y criteria are almost the same as it can be seen in 
Table1. 
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Fig. 18: Comparison of Predicted and Measured Load Deflection of Ohio WAR-48 Test. 
 

 
 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19: Comparison of Predicted and Measured Deflection vs. Depth Curves of Ohio WAR-48 Test. 
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5. CONCLUSIONS 
 
A hyperbolic p-y criterion is developed for cohesive 

soils and intermediate geomaterial .The 3-D FEM 
simulation results are used to develop a new empirical 
equation to calculate initial tangent to p-y curve, Ki. The 

proposed p-y criterion is verified based on comparisons 
with six full-scale lateral load test results conducted in 
soft clay to intermediate cohesive geomaterial. The 
proposed p-y criterion is shown to be capable of 
predicting the behavior of these test shafts under lateral 
loading. 
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