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ABSTRACT 

A Numerical Analyzer for Scientific and Industrial Requirements (NASIR) software which utilizes novel matrix 
free Finite Volume is applied for solving plane strain solid state problems on linear triangular element meshes. 
The developed shape function free Galerkin Finite Volume structural solver explicitly computes stresses and 
displacements in Cartezian coordinate directions for the two dimensional solid mechanic problems under either 
static or dynamic loads. The accuracy of the introduced algorithm is assessed by comparison of computed results 
of cantilever structural elements under static concentrated load with analytical solutions. Then, the performance 
of the introduced method to solve structural plane strain problem under forced and vibrating loads is 
demonstrated. The performance of the solver is presented in terms of stress and strain contours as well as 
convergence behavior of the method. 

KEYWORDS: Galerkin finite volume method, Linear triangular element, Stress-strain, Static and 
vibrating structures. 

 
INTRODUCTION 

 
Over the past decades, a wide variety of numerical 

methods has been proposed for the numerical solution of 
partial differential equations. Among them, the Finite 
Element Method (FEM) has firmly established itself as 
the standard approach for problems in Computational 
Solid Mechanics (CSM), especially with regard to 
deformation problems involving non-linear material 
analysis (Zienkiewicz and Taylor, 1989). 

It is well known that numerical analysis of solids in 

incompressible limit could lead to difficulties. For 
example, fully integrated displacement based lower-order 
finite elements suffer from volumetric locking, which 
usually accompanies pressure oscillation in 
incompressible limit (Bijelonja et al., 2006). Also, there 
are some difficulties for producing stiffness matrix and 
shape function in order to increase the convergence rate.  

Although certain restrictions on mesh configuration 
had to be imposed to avoid locking, these restrictions 
were less severe than those of the equivalent FEM 
meshes.  

The Galerkin Finite Volume Method has similarly 
established itself within the field of computational fluid 
dynamics (CFD) (Sabbagh-Yazdi et al., 2008). However, 
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similar to the FEM, the FVM integrates governing 
equation(s) over pre-defined control volumes 
(Zienkiewicz and Taylor, 1989; Sabbagh-Yazdi et al., 
2008), which are associated with the elements making up 
the domain of interest and therefore preserve the 
conservation properties of the equations. Although, the 
Finite Volume Method (FVM) was originally developed 
for fluid flow and heat and mass transfer calculations 
(Demirdzic and Martinovic, 1999), recently, it is 
generalized for stress analysis in isotropic linear and non-
linear solid bodies. Therefore, the interest for FVM 
application to the structural analysis problems involving 
incompressible materials has grown during the recent 
years. From the results of several benchmark solutions, 
the FVM appeared to offer a number of advantages over 
equivalent finite element models. For instant, it can be 
stated that, unlike the FDM solution, FVM solution is 
conservative and incompressibility is satisfied exactly for 
each discretized sub-domain (control volume) of the 
computational domain (Bijelonja et al., 2006). In 
principle, because of the local conservation properties, 
the FVMs should be in a good position to solve such 
problems effectively. Furthermore, numerical calculation 
with meshes consisting of triangular cells showed 
excellent agreement with analytical results. Meshes 
consisting of quadrilateral FVM cells displayed too stiff 
behavior, indicating a locking phenomenon (Bijelonja et 
al., 2006). Therefore, a number of researchers have 
applied FVMs to problems in CSM over the past decade 
(Slone et al., 2003) and it is now possible to classify these 
methods into two approaches, cell-centered and vertex-
based ones.  

In this paper, a Numerical Analyzer for Scientific and 
Industrial Requirements (NASIR) software which uses 
the matrix free explicit Galerkin Finite Volume Method 
on meshes of linear triangular elements (Sabbagh-Yazdi 
et al., 2008; Sabbagh-Yazdi et al., 2008) is utilized for 

structural analysis of plane strain problems under static 
and vibrating loads. The accuracy of the introduced 
method is assessed by comparison of computed stresses 
and displacements for two classical cantilever structural 
elements  under static concentrated load with analytical 
solutions and the performance of the solver is 
demonstrated in terms of stress and strain contours as 
well as convergence behavior of the method to the steady 
state condition. Then, the analysis of a cantilever 
structural element under forced and free vibrations is 
performed by the application of the introduced matrix 
free FVM and the computed results are compared with 
the analytical solutions.  
 

MATHEMATICAL MODEL 
 

The universal law governing any continuum 
undergoing motion is given by the general form of 
Cauchy’s equilibrium equations: 
 

bSu T += σρ                                                (1) 
 
where σ  is the stress tensor, b is the body force, ρ  is 

the material density and u  is the acceleration. 
For two dimensional problems, T

yx )u,u(u =  is the 
displacement vector and T

xyyyxx ),,( σσσσ =  is the tensor 
vector. The operator TS  for two-dimensional problems is 
defined as: 
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So, the matrix form of Cauchy equations for two-

dimensional problems is: 
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For stress-strain relationship, the common Hook 

equation can be used as: 
εσ D=                                  (3) 

where D for plane strain problems is the constitutive 
property matrix and for plane strain problems is: 
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Here, υ  is the Poisson ratio and E  are the Young 

modules of elasticity. So, the Cauchy’s equilibrium 
equations in two Cartesian coordinate directions can be 
written as: 
 

y
y

1
x

2
yx

32
y

2

x
yx

3
y

2
x

12
x

2

b
y

u
C

x
uC

yx
u

y
uC

xt

u

b
x
u

y
uC

yy

u
C

x
uC

xt
u

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

∂
∂

=
∂

∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂
∂

∂
∂

=
∂
∂

ρ

ρ
                   (4) 

 
 
where for plane strain problems: 
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NUMERICAL FORMULATION 
In order to obtain the discrete form of the Cauchy’s 

equation in i direction, the following form is used: 
 

)2,1j(b
xt

u
i

i

ij
2
i

2
=+

∂

∂
=

∂

∂ σ
ρ                                   (5) 

 
in which the stresses are defined as: 
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By the application of the Variational Method, after 
multiplying the residual of the above equation by the test 
function ω  and integrating over a sub-domainΩ  (Figure 
1), in the absence of body forces we have: 
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where i direction stress vector is defined 

as ĵîF 2i1ii σσ += .  
The terms containing spatial derivatives can be 

integrated by part over the sub-domain Ω  and then 
equation 6 may be written as: 
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Figure (1): Sub-domain with area nΩ . 
  
According to the Galerkin method, the weighting 

function ω  can be chosen equal to the interpolation 
functionφ . In finite element methods, this function is 
systematically computed for desired element type and 
called the shape function. For a triangular type element 
(with three nodes), the linear shape function, kφ , takes the 
value of unity at desired node n, and zero at other 
neighboring nodes k of each triangular element (Figure 
2): 
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Figure (2): A linear triangular element. 
 
Therefore, the summation of the term γω ]F.[ i  over 

the boundary of the sub-domain nΩ  is zero. 
The Right Hand Side (RHS) of equation (7) can be 

discretized as: 
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Where kl∆  is the normal vector of the side k opposite 

to the node n and iF~  is the i direction piece wise constant 
stress vector at the centre of element associated with the 
boundary side k (inside the sub-domain nΩ  with N 
boundary sides). 

For a sub-domain formed by linear triangular 
elements sharing node n, the Left Hand Side (LHS) of 
equation (7) can be written in discrete form as:    
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A finite difference approach is applied for 

discretizaton of the time derivative of i direction 
displacement, iu . Hence, the LHS of equation (7) can be 
written as: 
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The final discrete form of equation (7) is obtained as: 
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Considering direction i=1 as x and i=2 as y, the 
stresses 1i

~σ  and 2i
~σ  are computed as: 
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where kA  is the area of triangular element (with m=3 

sides) associated with boundary side k of the sub-domain 

nΩ (Figure 3): 
 
 
 
 
 
 
 
 
 
 
 

Figure (3): Triangular element with area kA  within 
the sub-domain nΩ . 

 
COMPUTATIONAL STEPPING 

The time step nt∆ for each control volume can be 
computed as: 

 

c
r

t n
n ≤∆                    (13) 
 
where c is the wave velocity. According to the wave 

velocity, gained by equation (14): 
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= ,                                                  (14) 
 
here, nr  is the average radius of the equivalent circle that 
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matches with the desired control volume ( nnn P/r Ω= ). 
For any control volume n, this radius can be computed  
 
using area ( ∑

=
=

edgeN

1k
kn )l(/r ∆Ω ) and perimeter 

 
( ∑
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edgeN

1k
kn )l(P ∆ ) of the 2D control volume. 

 
Due to the variations in sizes of control volume 

calculations, the allowable time step for computation of 
dynamic problems for the entire mesh is limited to the 
minimum associated with the smallest control volume of 
the domain. However, the large variation in grid size for 
the triangular mesh will slow down the computations. 

In the present work, the local time step of each control 
volume is used for computation of static problems. In this 
technique, to accelerate the convergence to steady state 
conditions, the computation of each control volume can 
advance using a pseudo time step which is calculated for 
its own control volume. The use of local time stepping 
greatly enhances the convergence rate. 

 
LOAD IMPOSING TECHNIQUE 

For static problems, an external load is considered as a 
global source term of Cauchy equations and is added to the 
LHS of the described FVM formulation. Considering the 
linear shape function in each triangular cell, the value of the 
external load at the central node of the control volume is 
integrated over the control volume and considered at its 
central node. Fig.4 illustrates the area of the control volume 
which associates with the imposed load by considering the 
linear shape function in each triangular cell. 

But sudden imposing of the external load would cause 
some problems for the computational procedure. In order 
to overcome the problem, gradual load imposing is 
implemented in the present model using a relaxation 
coefficient which varies from 0.0 to 1.0 during some 
computational iterations. 

 
 
 
 
 
 
 

 
Figure (4): Imposing force area. 
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where Istep is the iteration number at the desired stage of 

the computation, L is a length scale that can be assumed as 
the distance between maximum displacement and the 
centre of external load or constraint (support location). 

For dynamic problems, the still initial condition is 
considered for the structure. However, for the storage 
tank case, firstly the hydrostatic condition is satisfied 
similar to the steady state problems. Then, the time 
dependent analysis would start. 

 
STATIC LOAD CASE 

A standard problem in structural mechanics is that of 
a fixed-free cantilever supporting an applied load at the 
free end (Timoshenko, S.P., Goodier, J.N., 1982). The 
fixed-free cantilever is shown in Fig.4. Here b=2.0 is the 
breadth, L=20.0 the length of the cantilever and F the 
applied load. It is assumed that the depth d=1.0. The 
static solution to this problem is available (Timoshenko 
and Goodier, 1982) as: 
 

3

3

y
Edb

FL4d −=                          (16) 
 
where E is Young’s modulus and d is the height of the 

cantilever structural element.  
Note that the gravity effect is not considered in this 
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study. The static solution given by the above equation is 
independent of Poisson’s ratio. Therefore, it is applicable 
to a cantilever undergoing pure flexure, i.e. no axial loads 
are supported and the out of plane load on the cantilever 
is zero. Thus for comparison with the analytic solution a 
zero Poisson’s ratio is assumed.  

The fixed-free cantilever is considered under a load of 
200N at its free end, as depicted by Fig.5. 

 
 
 
 
 

 
Figure (5): Schematic of flexural deformation test of fixed-

free cantilever structural element under static load. 

 
Table (1): Case 1 cantilever structural element 

specification. 

2D Fixed-free specification                   value 

Load, F                                                   200 N 
Length, L                                               20.0 m 
Breadth, b                                               2.0 m 
Density, ρ                                  2600.0 kg/m3 
Young’s modulus, E                          10 MPa 
Poisson’s ratio, υ                                   0.0 

With the parameters as given in Table 1, equation 16 
gives the static displacement in y direction at the tip of 
the cantilever as 0.08 m. 

In order to provide a better understanding about the 
effects of gradual load imposing technique, the convergence 
behavior of the computed displacements is shown in Fig.6 
and the root mean square of the computed displacements is 
shown in Fig.7. As can be seen, the logarithm of root mean 
square errors of displacements increase by gradual activation 
of the load in the initial stages of the computation. Then, the 
logarithms of root mean square errors computed 

displacements present a decrease up to 7 orders of 
magnitude when the load is fully imposed.  

The error percentages for the numerical solutions of 
the problem on various meshes (with various grid spacing 
sizes) are listed in Table 2. Computed displacements and 
stress contours are illustrated in Fig.8 and Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (6): Convergence behavior of tip displacement 

values (80*8 mesh). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (7): Convergence behavior of the displacements 

in terms of the logarithm of root mean square 
(80*8 meshes). 
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(a) Vertical displacement contours 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Horizontal displacement contours 

Figure (8): Color coded maps of computed displacements. 

 
 
 
 
 
 
 
 
 
 

(a) xxσ  Stress contours 

 
 
 
 
 
 
 
 
 
 
 

(b) yyσ  Stress contours 
 
 
 
 
 
 
 
 
 
 
 
 

(c) xyσ  Stress contours 
Figure (9): Color coded maps of computed stresses. 

 
Table (2): Cantilever structural element error report. 

Elements 
Vertical 

displacement at 
free end 

Error for 
computed 

values 

20*2 triangular -0.05968 25.4% 
40*4 triangular -0.072169 9.78% 
80*8 triangular -0.077522 3.09% 
100*10 triangular -0.0786 1.7% 
200*20 triangular -0.08007 0.08% 

Uy
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VIBRATING LOAD CASES 
In order to present the performance of developed 

structural solver to model dynamic cases, two test cases 
which are cantilever structural elements under forced and 
free vibrations are considered. 

a. Forced Vibration 
In order to verify the introduced method, a harmonic 

concentrated load is used at the tip of cantilever structural 
element with similar specifications to test case2. Fig.10 
shows the schematic form of the cantilever structural 
element loaded by: )t05.0sin(200F −= . 

 
 
 
 

 
Figure (10): Schematic figure of cantilever structural 

element harmonic vibrating load. 
The analytical solution shows 08.0±  by the following 

relation: 

3

3

y
Edb

FL4d −= .                                           (17) 
 
The time history of tip displacement is illustrated in 

Fig.11 for 2045 seconds: 
 
 
 
 
 
 
 
 
 
 

Time (Sec) 
Figure (11): Time history of tip displacement on tip of 
cantilever structural element under forced vibration. 

With a 80*8 triangular mesh, a 2.5% average error is 
gained. Using finer meshes reduces the error percentages, 
but the current mesh is efficient enough to be used for 
dynamic problems.  

b. Free Vibration 
The cantilever structural element that is used for 

forced vibration test is utilized for the free vibration test 
without any damping (Fig.10). The same concentrated 
load as applied to the forced vibration test is applied and 
is suddenly released after 40 sec. loading. As can be seen 
in the following figure, the oscillation of the structural 
element tip continues without any numerical damping and 
the maximum values of displacement are similar to that 
obtained under forced vibration test. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (12): Time history of tip displacement on tip of 

cantilever structural element under free vibration. 
 

CONCLUSION 
In this paper, the Numerical Analyzer for Scientific 

and Industrial Requirements (NASIR) software 
(Sabbagh-Yazdi et al., 2008; Sabbagh-Yazdi et al., 2008) 
which utilizes novel explicit matrix free Galerkin Finite 
Volume Method for the solution of two-dimensional form 
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of Cauchy equations is applied for structural elements 
under static and vibrating loads. This computational 
model solves stress and deformation of plane strain solid 
mechanics under static and dynamic loads. The 
performance of the described computational solid 
mechanic algorithm is examined for various sizes of the 
meshes for a cantilever structural element under a point 
load. Since there is no interpolation function in the 
numerical formulation of the present solver, fine meshes 
provide more accurate results than coarse meshes.  

The present model is examined for some stress-strain 
structural problems. After verification of the model for 
static concentrated and uniformly distributed loads on 
two cantilever structural elements, it is applied for 

solution of stresses and deformations of cantilever 
structural elements under forced and free vibrations. The 
comparison of the computed results of problems under 
static and vibrating loads with analytical solution of the 
test cases presents promising agreement and no unwanted 
numerical damping is introduced in the computed results 
of the present explicit structural solver.    

The Numerical Analyzer for Scientific and Industrial 
Requirements (NASIR) software which consumes light 
computational work load because of explicit matrix and 
shape function free numerical method can easily be 
extended to three dimensions and applied for solving 
large deformations of real world solid mechanics 
problems with complicated geometries. 
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