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ABSTRACT 

A nonlinear model simulating the relationship between the mass of solute sorbed on clay mineral surfaces and in 
equilibrium with the concentration of solute in the pore fluid has been discussed in this work. The model and the 
procedure for obtaining the parameter (β) associated with the model were presented. The predicted cadmium 
isotherms for two types of clayey soils using the exponential model were in excellent agreement with 
experimental results (Shackelford and Daniel, 1991). Sorption isotherm predicted by the exponential model was 
compared with other existing models such as Freundlich model and Langmuir model. Seven statistical goodness-
of-fit measures were used to evaluate prediction accuracy of the exponential model as well as the Langmuir 
model and the Freundlich model. All seven statistical goodness-of-fit measures indicated that the exponential 
model has the best prediction accuracy among the sorption isotherm prediction models. For instance, the error 
norm for the exponential model was Ne = 0.15 (best value of Ne is zero) for the kaolinite clay, while Ne = 2.95 
and Ne = 6.1 for Langmuir model and Freundlich model, respectively. Furthermore, for Lufkin clay, the error 
norm for the exponential model was Ne = 1.6, while Ne = 264.4 and Ne = 15.1 for Langmuir model and 
Freundlich model, respectively. The modeling efficiency (EF), Nash-Sutcliffe coefficient-of-efficiency (E) and 
the index-of-agreement (d) values (best value for EF, E and d is one for the three measures) are best for the 
exponential model and for the two considered soils. For example, EF = 0.992, E = 0.999, and d = 0.999 for the 
exponential model (Lufkin clay). However, EF = -0.71, E = -20.5 and d = 0.07 for Langmuir model, and EF = 
0.79, E = 0.93 and d = 0.95 for Freundlich model for the same clay. 

KEYWORDS: Geo-environment, Diffusion, Sorption isotherm, Modeling, Freundlich model, 
Langmuir model, Statistical appraisal, Goodness-of-fit. 

 
INTRODUCTION 

 
The relationship between the mass of a specific solute 

(chemical species) sorbed onto the solid phase (clay 
mineral surfaces measured as dry mass of solid mg/kg) in 
equilibrium with the concentration of that specific solute 
present in the pore fluid (mg/L) is called adsorption 
isotherm, or sorption isotherm (Sorption or adsorption 

will be used interchangeably). Adsorption isotherms are 
determined experimentally according to ASTM ES-10-85 
and D4319 - 93. 

Generally, adsorption isotherms assume a nonlinear 
relationship between the mass of a solute “q (mg/kg)” 
sorbed on soil particles and the equilibrium concentration 
of that specific solution “c (mg/L)” in the pore fluid (Fig. 
1). The slope of the adsorption isotherm is called the 
distribution ratio “Kp”, where: 
 

cd
qdK p = .                                (1) 
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Fig. (1): Typical Adsorption Isotherm for Active Clay. 

 
 
For nonreactive solutes and/or nonreactive soils 

(Cation Exchange Capacity (CEC) = 0), the distribution 
ratio Kp is zero. The distribution ratio is used to determine 
the “retardation factor Rd” (Shackelford and Daniel, 
1991), and is given as: 

 

p
d

d KR
θ
ρ

+=1 ,     (2) 
 
where ρd is the dry density of the soil and θ is the 

volumetric moisture content (m3 m-3) which is defined as 
the volume of water divided by the total volume of soil 
(Vw/V), also θ = n S. The retardation factor is utilized in 
Fick’s second law for reactive solute diffusive transport 
subject to reversible sorption reaction during diffusive 
transport. The Fick’s second law of solute diffusive 
transport is given as: 
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* DD = ,      (4) 

 
where D* is the effective diffusion coefficient of 

chemical species, D0 is the limiting free-solution 
diffusion coefficient and τ is tortuosity factor 

(Shackelford and Daniel, 1991). 
Since the sorption isotherm assumes a nonlinear 

relationship, and given that the distribution factor is the 
slope of this relation, thus the distribution factor Kp has 
an infinite number of values (Eq.1). Consequently, the 
retardation factor, which is dependent on the distribution 
factor, has an infinite number of values (Eq.2). Therefore, 
virtually it is not possible to implement a nonlinear 
sorption isotherm relationship in a mathematical analysis 
of solute transport. However, numerical analysis such as 
the finite element analysis can easily handle nonlinear 
relationships such as the sorption isotherm relation. 
Therefore, sorption isotherm models are very useful in 
finite element analysis with the objective of achieving 
results having high accuracy. 
 

SCOPE OF WORK 
 

The purposes of this work were to: 
1. Present an exponential model to simulate the 

adsorption isotherms. The exponential model 
consists, primarily, of one parameter. The parameter 
(β) of the model is easy to determine using a simple 
procedure. 

2. Compare the adsorption isotherm predicted by the 
exponential model with that predicted by Freundlich 

Q



Exponential Model for…                                                                                                                  Waddah Salman Abdullah 

 

- 346 - 

model and by Langmuir model with cadmium 
sorption isotherm for two types of soil obtained from 
(Shackelford and Daniel, 1991). 

3. Present statistical evaluation of the sorption 

isotherms predicted by the exponential model as well 
as the other two existing models using seven well-
known goodness-of-fit measures. 

 
Table (1): Values of the Fitting Parameters Associated with the Three Models. 

 
Freundlich Model Langmuir Model Proposed Model 

Soil Type 
K N a b Q β 

Kaolinite Clay 31.18 0.298 0.42 0.0042 198 0.009177 

Lufkin Clay 84.454 0.466 0.0446 
0.0446 

0.0007* 
0.000954** 1048 0.0202987 

* b is determined using the 
c
1  vs 

q
1  construction. 

** b is determined as b = 
qc ∞→lim

1  
 

EXISTING ADSORPTION ISOTHERM MODELS 
 
Presently, there is a number of isotherm models, and 

the most used models are: the linear model, the 
Freundlich sorption isotherm (power model) and the 
Langmuir sorption isotherm (hyperbolic model). 

The linear sorption isotherm model assumes a linear 
relationship between the sorbed mass of the solute by the 
clay particles with the equilibrium concentration of the 
solute in the pore fluid. The linear model is represented 
by the simple equation: 

cKq p= .      (5) 
The Freundlich sorption isotherm assumes a nonlinear 

relationship (power function) between the sorbed mass of 
the solute by the clay particles with the equilibrium 
concentration of the solute in the pore fluid. The 
Freundlich model is represented by the equation: 
 

NcKq = ,      (6) 
 
where K and N are parameters associated with the 

model. These two parameters are determined by plotting 
the experimental results on a log – log scale. The 
experimental results represent a straight line on the log q 
– log c domain (Fig. 2), since 
 

cNKq logloglog +=     (7) 
 

N represents the slope of the best straight line fit of 
the experimental resulted plotted on log q – log c domain 
(Fig. 2). 

The Langmuir sorption isotherm, also, assumes a 
nonlinear relationship (hyperbolic function) between the 
sorbed mass of the solute by the clay particles with the 
equilibrium concentration of the solute in the pore fluid. 
The Langmuir model is represented by the equation: 
 

cba
cq
+

=      (8) 
 

where a and b are parameters associated with the 
model. These two parameters are determined by plotting 
 
the experimental results on 

c
1

q
1
− domain, where the 

 
experimental results represent a straight line (Fig. 3), 
since 

 

c
ab

q
11

+= .     (9) 
 
Therefore, the intercept of the best straight line fit 

represents parameter b and the slope of the straight line 
represents parameter a. 
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Fig. (2): The log q vs. log c Domain for Calculating Parameters K and N Associated with 

the Power Model. Data Are for Lufkin Clay after (Shackelford and Daniel, 1991). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. (3): The 1/q vs. 1/c Domain for Calculating Parameters “a” and “b” Associated with 

the Langmuir Model. Data Are for Lufkin Clay after (Shackelford and Daniel, 1991). 
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Table (2): Goodness-of-Fit of the Predicting Models (Kaolinite Clay). 

 
Type of 
Measure 

Freundlich 
Model 

Langmuir 
Model 

Proposed 
Model 

MAE 7.738 3.292 0.153 

RMSE 9.2425 4.49 0.226 

CRM 0.002108 0.00175 -0.000699 

E 0.98403 0.99623 0.99999 

EF 0.981014 0.98632 0.99706 

d 0.995998 0.999061 0.999998 

Ne (%) 6.0753 2.9516 0.1485 
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Fig. (4): Cadmium Sorption Isotherms for the Kaolinite Clay as Predicted by 
the Three Models and the Experimental Results. 
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THE EXPONENTIAL SORPTION 
ISOTHERM MODEL 

 
The exponential model assumes a nonlinear 

relationship between the sorbed mass of the solute by the 
clay particles with the equilibrium concentration of the 
solute in the pore fluid. The exponential model is 
expressed as: 

 
[ ]ceQq β−−= 1                  (10) 

 
where q = mass of the solute sorbed on the clay 

particle surfaces per dry mass of soil (mg/kg), c = 
equilibrium concentration of the solute in the pore fluid 
(mg/L), Q = limiting value of q (from Eq. 10; 

Qqc =∞→lim ) and as shown in Fig. (1) and β = 
parameter associated with the exponential model. β 
represents the initial tangential slope of the sorption 
isotherm relationship. 

By differentiating Eq. 10 with respect to c we get the 
slope of the exponential model’s function: 
 

ceQ
cd
qd ββ −= .                  (11) 

 
The initial tangential slope of the exponential model‘s 

function is then 
 

βQ
cd
qd

i

=⎥
⎦

⎤
                            (12) 

 
 

icd
qd

Q ⎥
⎦

⎤
=

1β                (13) 
 

 
EXPERIMENTAL RESULTS AND THE 

ISOTHERMS AS PREDICTED BY 
THE THREE MODELS 

 
Shackelford and Daniel (1991) presented 

experimental results for cadmium adsorption isotherms 
using two types of clay, kaolinite clay having CEC = 5 
meq/100g, and Lufkin clay, a naturally occurring 
smectitic clay having CEC = 25 meq/100g. The 

adsorption isotherms were obtained from batch 
equilibrium tests using 1:4 soil:solution by mass, and 
mixing time was 48 hours at a temperature of 23°C ± 2°C 
(Shackelford and Daniel, 1991). 

The exponential model, the Freundlich model and the 
Langmuir model were utilized to simulate the 
experimental results given by Shackelford and Daniel 
(1991). Initially, the parameters associated with each 
model were determined using the procedure mentioned 
above and are given in Table (1). 

The adsorption isotherms for cadmium predicted by 
the exponential model as well as Freundlich model, 
Langmuir model and the experimental results 
(Shackelford and Daniel, 1991) for the kaolinite clay and 
Lufkin clay are shown in Fig. (4) and Fig. (5), 
respectively. 

The results depicted in Fig. (4) and Fig. (5) indicated 
that the Freundlich model represents reasonably good 
agreement with the experimental results of the sorption 
isotherm for the two types of clay soils. Sorption 
isotherm prediction using the Langmuir model, on the 
other hand, has shown contradicting precisions. The 
Langmuir model has shown very good representation of 
the sorption isotherm for the kaolinite clay soil. The 
Langmuir model well predicted the sorption isotherm for 
most of the equilibrium solute concentration in the pore 
fluid c range, except at large values of c, where the model 
yielded some inaccuracy. Conversely, for the Lufkin clay 
soil, the Langmuir model has inadequately represented 
the experimental results (Fig. 5). The exponential model, 
however, has shown very good agreement with the 
experimental results for the entire range of the 
equilibrium solute concentration in the pore fluid c and 
sorbed mass of solute by the clay minerals q for the 
kaolinite clay as well as the Lufkin clay. 

 
PROBLEMS ASSOCIATED WITH 

LANGMUIR MODEL 
 
Langmuir model, as mentioned above, simulated the 

sorption isotherms with contrasting accuracies (Fig. 5). It 
simulated the sorption isotherm of the kaolinite clay with 
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high precision; however, it had poorly simulated the 
sorption isotherm of the Lufkin clay. This problem is not 
inherited in the model itself rather than the procedure of 
obtaining the parameters of the model (a and b). 
Mathematically, the Langmuir model is a square 
hyperbolic function. The hyperbolic function is nonlinear 
and, towards both ends of the function, becomes 
asymptotic to two perpendicular straight lines. The 
 
linearization process; i.e. 

q
1  – 

c
1  construction used to 

 
determine the parameters of the straight line “a” and “b” 
is very sensitive to deviation of the experimental points 
from an ideal hyperbolic function, especially at small 
values of the abscissa; i.e. concentration of solute in the 
pore fluid “q”. Therefore, the less the scatter of the 
experimental data points the better the Langmuir model 
simulates the sorption isotherms. There is an alternative 
simple procedure for getting the parameters of the model 
“a” and “b” other than the one mentioned earlier. 
Parameter “b” is the limiting value of q, and parameter 
“a” is the initial tangent (slope at c = 0) of the q vs. c 
relationship (Eqs. 14a and 14b). 
 

q
b

c ∞→
=

lim
1                (14a) 

 
 

0=
⎥
⎦

⎤
=

ccd
qda .             (14b) 

 
Determining the initial tangent for an explicitly 

defined function (function containing either polynomial 
or transcendental functions or both) is a simple matter. 
However, finding the initial tangent for an implicitly 
defined function; i.e. set of experimental data points 
where the function is defined, only, at a discrete number 
of data points, is highly dependent on the first data point 
since the only available option of finding the tangent is 
the forward technique. Alternatively, one may manually 
fit a curve through the data points, merely, to get a better 
estimate for the initial tangent instead of using the 
numerical forward technique. 

To demonstrate the sensitivity of the Langmuir model 

to the procedure of obtaining its parameters, the “b” 
parameter only was obtained according to Eq. 14a, while 
“a” was obtained as defined previously. The Langmuir 
model, again, for the Lufkin clay did not achieve 
satisfactory results (Fig. 5). 

 
STATISTICAL APPRAISAL OF THE 

PREDICTION MODELS 
 
The sorption isotherms predicted by the exponential 

model, the Freundlich model and the Langmuir model 
were evaluated using six well-known goodness-of-fit 
measures. One additional measure, to reduce sensitivity 
to extreme values, was proposed in the present work and 
used for the statistical appraisal. 

In order to quantify evaluation of the predicted 
sorption isotherms, an appropriate criterion that reflects 
the quality-of-fit of the model is needed. The coefficient 
of correlation “r” and the coefficient of determination 
“R2” are extensively used to appraise regressed data. At 
present, however, it has become a well established fact 
that the correlation-based criterion can be greatly 
influenced by the relationship between the two variables 
at one extreme outlier. Legates and Davis (1997) and 
Moore (1991) demonstrated that correlation-based 
measures are more sensitive to outliers than to 
observations near the mean. Consequently, this 
oversensitivity to outliers leads to a bias toward extreme 
events if correlation-based measures are employed in 
model evaluation. Thus, a high value of correlation-based 
measures does not, necessarily, indicate high-quality fit 
(Willmott, 1981; Willmott et al., 1985; Kessler and Neas, 
1994; Legates and Davis, 1997). Therefore, correlation-
based measures were not used in this work and six 
accredited statistical criteria, plus one more proposed 
criterion, were used to evaluate the goodness-of-fit of the 
exponential model, the Langmuir model and the 
Freundlich model. These measures were briefly explained 
below, and for more details the reader is referred to other 
publications (Willmott, 1981; Willmott et al., 1985; 
Kessler and Neas, 1994; Legates and Davis, 1997). 
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Langmuir Model 1  b is determined using the 

q
1   – 

c
1 construction. 

Langmuir Model 2  b is determined as  
q

b
c ∞→

=
lim

1 . 

 
Fig. (5): Cadmium Sorption Isotherms for the Lufkin Clay as Predicted by the Three Models and 

the Experimental Results. 
 
Index-of-Agreement (d) 

The index-of-agreement measure was developed by 
Willmott (1981) to overcome the insensitivity of the 
correlation-based measures to differences in the observed 
and correlation-based means and variances. The index-of-
agreement (d) is given as: 
 
 ( )

( )∑

∑
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1 ,               (15) 
 
 
where: 

d = index-of-agreement, 
N = number of data points, 
qm,i = ith observed q value, 
qp,i = ith predicted q value and 

mq  = mean of the entire q values. 
The index-of-agreement d, varies from 0.0 for a poor 

model to 1.0 for a perfect model. The index of agreement 
represents an improvement over the coefficient-of-
determination R2, yet it is also sensitive to extreme values 
(due to squared differences). 
 
Root Mean Square Error (RMSE) 

The RMSE quantifies the error in terms of the units of 
the variable. The RMSE is non-negative statistics that 
have no upper bound. The root mean square of the error 
is given as: 
 
 ( )

N

qq
RMSE

Ni

i
ipim∑
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=

−
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2
,,

.               (16) 
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Table (3): Goodness-of-Fit of the Predicting Models (Lufkin Clay). 
 

Type of 
Measure 

Freundlich 
Model 

Langmuir 
Model 

Proposed 
Model 

MAE 77.60486 1139.384 7.018 

RMSE 104.875 1838.881 10.83308 

CRM -0.00699 -1.99466 0.001017 

E 0.930124 -20.4828 0.999254 

EF 0.790425 -0.71195 0.991597 

d 0.949768 0.07169 0.999223 

Ne (%) 15.07951 264.4045 1.557639 

 
 
Mean Absolute Error (MAE) 

The mean absolute error quantifies the error in terms 
of the units of the variable. The MAE is non-negative 
statistics that have no upper bound. 

 
 

N

qq
MAE

Ni

i
ipim∑
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−

= 1
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.                (17) 
 
The RMSE is a dimensioned goodness-of-fit measure; 

i.e. it expresses the average model-prediction error in the 
units of the variable of interest. Though the RMSE is 
widely used, however, its use as a goodness-of-fit 
measure is inappropriate (Willmott and Matsuura, 1999). 
One of the disturbing characteristics of RMSE (according 
to Willmott and Matsuura, 1999) is that it tends to 
become increasingly larger than MAE. Willmott and 
Matsuura (1999) concluded that MAE, as a goodness-of-
fit measure, is an unambiguous measure of average error 
magnitude and it is more appropriate to use than RMSE. 
 
Nash-Sutcliffe Coefficient-of-Efficiency (E) 

Nash and Sutcliffe (1970) developed the coefficient-
of-efficiency (E) to overcome the inaccuracy of the 
correlation-based measures. The coefficient-of-efficiency, 
E is defined as: 
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The coefficient-of-efficiency, E varies from minus 

infinity for a poor model to 1.0 for a perfect model. The 
coefficient-of-efficiency represents an improvement over 
the coefficient-of-determination R2, yet it is, also, 
sensitive to extreme values (due to squared differences). 

 
Modeling Efficiency (EF) 

The modeling efficiency represents an improvement 
over the coefficient-of-determination R2, yet it is also 
sensitive to extreme values (due to squared differences). 
The modeling efficiency measure is defined as: 
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Coefficient of Residual Mass (CRM) 

The coefficient of residual mass represents a 
normalized error criterion and is given as the difference 
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of the sum of the square of the observed data points and 
the square of those predicted by the model. The 
coefficient of residual mass is defined as: 
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Error Norm (Ne) 

The Error Norm Ne as a goodness-of-fit measure is 
proposed in this work. It is intended to remove the 
influence of outlier values by normalizing the error. The 
error norm Ne is non-negative statistics that have no 
upper bound and is given as percentage away from 
perfect prediction. For perfect prediction, the error norm 
Ne = 0 %. The error norm Ne is defined as: 

 
 
 ( )

%1002

0

2
,

0

2
,,

×

−

=

∑

∑
=

=

=

=
Ni

i
im

Ni

i
ipim

e

q

qq

N .               (21) 
 
 
 
The i th error “ei” involved in predicting each observed 

data point (experimental result) is defined as: 
 

ipimi qqe ,, −= .                 (22) 
 
The error norm Ne is then defined as: 
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where qm,i is the i th observed “measured” value of 

sorbed mass of solute in equilibrium with concentration 
“c” of the solute in pore fluid, qp,i is the i th “predicted” 
value of sorbed mass using one the models, i is used to 

denote the i th observed data point (experimental results), 
N is the number of data points and i is the index for N. 

The seven statistical criteria, described above, were 
used to evaluate the performance of the exponential 
model as well as Langmuir model and Freundlich model. 
The values of the seven statistical goodness-of-fit 
measures for the cadmium sorption isotherms for the 
kaolinite clay and Lufkin clay are given in Table (2) and 
Table (3), respectively. The results reported in Table (2) 
and Table (3) clearly demonstrate that the exponential 
model yielded best result as appraised by “all seven” 
goodness-of-fit measures and for the two considered 
types of soil. The Langmuir model produced second best 
result for the kaolinite clay, and the Freundlich model 
yielded second best result for the Lufkin clay. For 
instance, the error norm Ne for the exponential model 
(kaolinite clay) yielded the lowest Ne = 0.15 (best Ne = 0). 
The Langmuir model and the Freundlich model both 
produced error norm Ne higher than that yielded the 
exponential model by 20 folds and by 40 folds, 
respectively (Table 2). Similar trend was, also, observed 
for the Lufkin clay; the Langmuir model and the 
Freundlich model produced error norm Ne higher than 
that yielded the exponential model by 165 folds for the 
Langmuir model and by 10 folds for the Freundlich 
model, respectively (Table 3). The same trend can be 
traced for the Mean Absolute Error (MAE) and the Root 
Mean Square Error (RMSE) yielded similar results (as 
that of the error norm Ne) for the two types of clays 
(Table (2) and Table (3). 

For the kaolinite clay and for the three considered 
models, the modeling efficiency (EF), Nash-Sutcliffe 
coefficient-of-efficiency (E) and index-of-agreement (d) 
all are close to the best value (1.0), bearing in mind that 
E, EF and d values are closer to the best value (1.0) for 
the exponential model in comparison with the other 
models. 

For Lufkin clay, the modeling efficiency (EF), Nash-
Sutcliffe coefficient-of-efficiency (E) and index-of-
agreement (d) vary significantly for the three considered 
models. The exponential model yielded best values 
among the three models having values very close to one. 
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Good values for E and d were achieved by Freundlich 
model. Moderate value for the modeling efficiency (EF = 
0.79), however, was obtained for the Freundlich model. 
The Langmuir model yielded poor values for modeling 
efficiency (EF), Nash-Sutcliffe coefficient-of-efficiency 
(E) and index-of-agreement (d). 

 
SUMMARY AND CONCLUSIONS 

 
An exponential model for predicting the sorption 

isotherms was discussed in this paper. The predicted 
isotherm using the exponential model was compared with 
experimental results for cadmium isotherms (Shakelford 
and Daniel, 1991). The exponential sorption isotherm 
model was also compared with other existing well-known 
nonlinear models, namely; Freundlich model and 
Langmuir model. Seven goodness-of-fit measures were 
used to evaluate the prediction performance of the 
exponential model as well as Freundlich model and 
Langmuir model. 

The predicted cadmium isotherms using the 
exponential model for the two clayey soils were in 
excellent agreement with the experimental results 

presented by Shakelford and Daniel (1991). The sorption 
isotherm produced by the exponential model as appraised 
by the seven goodness-of-fit measures yielded values 
very close to the optimum (best) values. 

The exponential model yielded better sorption 
isotherms for the two types of clayey soil as compared 
with the Freundlich model and Langmuir model. The 
Langmuir model produced conflicting prediction 
accuracy; it achieved good prediction results for the 
kaolinite clay, while it yielded poor results for the Lufkin 
clay as can be observed visually (Fig. (4) and Fig. (5)) 
and as evaluated by the seven goodness-of-fit measures 
as well (Table (2) and Table (3)). The procedure 
associated with obtaining the parameters of the Langmuir 
model is attributed to the contrasting prediction accuracy 
of that model. 

Lowest values of the error norm (Ne = 0.15 for 
kaolinite soil and 1.6 for Lufkin soil) were obtained for 
the exponential model and compared to (Ne = 2.95 for 
kaolinite soil and 264.4 for Lufkin soil) for the Langmuir 
model, and (Ne = 6.1 for kaolinite soil and 15.1 for Lufkin 
soil) for the Freundlich model. 

 
APPENDIX I 

 
NOMENCLATURES 
a and b = parameters associated with the Langmuir model, 
c = concentration of specific solute in the pore fluid (mg/L), 
CEC = cation exchange capacity, 
CRM = Coefficient of Residual Mass, 
d = index-of-agreement, 
D* = effective diffusion coefficient of chemical species, 
D0 = limiting free-solution diffusion coefficient, 
ei = error involved in data point i, 
E = Nash-Sutcliffe coefficient-of-efficiency, 
EF = modeling efficiency, 
K and N = Parameters associated with the Freundlich model, 
Ne = error norm, 
Kp = distribution ratio, 
MAE = Mean Absolute Error, 
q = mass of a specific solute sorbed onto the clay mineral surfaces measured as dry mass of solid (mg/kg). 
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imq ,  = ith observed q value, 

ipq ,  = ith predicted q value, and 

mq  = mean of the entire q values. 
Rd = retardation factor, 
RMSE = Root Mean Square Error, 
β = parameter associated with the exponential model, 
ρd = dry density of the soil, 
θ = volumetric moisture content and 
τ = tortuosity factor. 

 

 
REFERENCES 

 
Kessler, E. and Neas, B. 1994. On Correlation, with 

Applications to the Radar and Rainage Measurement of 
Rainfall, Atoms. Res., 34: 217-229. 

Legates, D.R. and Davis, R.E. 1997. The Continuing Search 
for an Anthropogenic Climate Change Signal – 
Limitation of Correlation-based Approaches. Geophys. 
Res. Letters, 24: 2319-2322. 

Legates, D.R. and McCabe, G.J. 1999. Evaluating Use of 
Goodness-of-Fit Measures in Hydrologic Hydroclimatic 
Model Validation, Water Resources Research, 35: 233-
241. 

Moore, D.S. 1991. Statistics: Concepts and Controversies. 
3rd Edition. W.H. Freeman and Company, New York, 
439. 

Nash, J.E. and Sutcliffe, J.V. 1970. River Flow Forcasting 
through Conceptual Model: Part I – A Discussion of 
Principles, Journal of Hydrol., 10: 282-290. 

Shackelford, C.D. and Daniel, D.E. 1991. Diffusion in 

Saturated Soil: I: Background, American Society of Civil 
Engineers, Journal of Geotechnical Engineering, 117 
(3): 467-484. 

Shackelford, C.D. and Daniel, D.E. 1991. Diffusion in 
Saturated Soil: II: Results for Compacted Clay, 
American Society of Civil Engineers, Journal of 
Geotechnical Engineering, 117 (3): 485-506. 

Sharma, H.D. and Reddy, K.R. 2000. Geoenvironmental 
Engineering. John Wiley and Sons, Inc. 

Willmott, C.J. 1981. On the Validation of Models, Phys. 
Geog., 2: 184-194. 

Willmott, C.J., Ackleson, R.E., Feddema, J.J., Klink, K.M., 
Legates, D.R., O’Donnell, J. and Rowe, C.M. 1985. 
Statistics for the Evaluation and Comparison of Models, 
Journal of Geophys. Res., 90: 8995-9005. 

Willmott, C.J. and Matsuura, K. 2005. Advantages of the 
Mean Absolute Error (MAE) Over the Root Mean 
Square Error (RMSE) in Assessing Average Model 
Performance, Climate Research, 30: 79-82. 

 


