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ABSTRACT 

This paper derives an exact analytical solution for determining elastic critical buckling pressures and mode 
shapes for very long corroded cylindrical steel shells subjected to external pressure considering symmetrical 
and anti-symmetrical mode cases. The corroded  long cylindrical shell has been modelled as a non-uniform 
“stepped-type” ring consisting of two portions- corroded and un-corroded regions. A full range parametric 
study has been made to investigate the effect of corrosion angular extent and corrosion thickness on the 
elastic buckling pressures and their modes. The study shows that buckling loads and modes depend on the 
corrosion angular extent β and the corroded to un-corroded thicknesses ratio. The results are verified by a set 
of investigations with a series of corroded cylindrical shells. They showed a close agreement with those 
obtained from using the finite element package ABAQUS. 
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INTRODUCTION 

 
With the recent developments in marine oil 

exploitation, corrosion in pipelines - which are typically 
made as very long cylindrical steel shells - has lately 
become a serious issue concerning the marine 
environment. In the offshore industry, the pipelines are 
even laid down over the seabed, where they are exposed 
to a more corrosive environment. Corrosion will affect 
the service life of the pipelines and may greatly 
decrease the structural integrity and lead to a 
catastrophic failure (Fatt, 1999; Xue and Fatt, 2002). 

Solutions of buckling problems for the structural 
failure of uniform shells and pipelines have been well 

established (Timoshenko and Gere, 1961; Pinna and 
Ronalds, 2000; Vodenitcharova and Ansourian, 1996). 
Due to corrosion in thin shells as pipelines, the thin-
walled cross-section of the cylindrical shell will no 
longer be uniform. Despite much research undertaken 
into the analysis of uniform cylindrical shells, results of 
studies into  failures of non-uniform cylindrical shells 
and corroded pipelines are very limited. Earlier attempts 
to account for corrosion were based on assuming the 
corrosion to spread around the entire circumference of 
the cylindrical shell (Bai and Hauch, 1998; Bai et al., 
1999). This type of solutions can not explain the 
influence of the angular extension of the corrosion 
region on the critical load or predict the anti-
symmetrical mode shapes. The importance of capturing 
the anti-symmetrical mode shapes comes from the fact Accepted for Publication on 15/4/2010. 
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that all pipelines are manufactured with imperfections. 
Such imperfections and corrosions can induce anti-
symmetric buckling modes of the non-uniform 
cylindrical shells (Xue, 2002). 

Fatt (1999) and Xue and Fatt (2002) presented an 
effective model describing the corroded region in terms 
of the depth and angular extent of corrosion. Their 
model can capture anti-symmetrical mode shapes with 
only one stepped region. However, the corroded region 
in their model was assumed to be symmetric along the 
circumferential center line which does not represent the 
true shape of the corroded region in the pipelines. 
However, it can be used as a benchmark in more 
advanced studies for unsymmetric corroded regions 
along the circumferential center line. They further 
developed (Xue and Fatt, 2005) a rigid plastic model, 
with again only single stepped region, to obtain an 
estimate of the ultimate collapse pressure. Both their 
buckling and collapse models were verified using the 
computer program ABAQUS (ABAQUS/Standard 
User's Manual, 2003). 

In this paper, an exact analytical solution for 
determining elastic critical buckling pressures and mode 
shapes for a very long corroded cylindrical steel shell 
subjected to external hydrostatic pressure will be carried 
out. The solution will take into consideration the effect 
of geometric non-uniformity of thickness and angular 
extent in both symmetrical and anti-symmetrical mode 
cases. In this study, the multi stepped type solution has 
been carried out to enable capturing any corroded curve 
which may occur. It can follow up many polynomial 
curves as parabolic, cubic and other polynomials. The 
solution will be verified by using the finite element 
package ABAQUS (ABAQUS/Standard User's Manual, 
2003) and will be investigated for a series of corroded 
cylindrical shells. This study shows that buckling loads 
and modes depends on the corrosion angular extent β 
and the corroded to un-corroded thicknesses ratio. This 
study can be used as a benchmark in monitoring 
buckling propagation in corroded pipelines in many 
engineering applications such as offshore and oil 
industries. Moreover, the results of this research can be 

used as a guide to the analysis of the stability of 
corroded pipelines against buckling. This paper also 
presents the results of the bucckling analysis of an 
unsymmetrical corroded region.  

 
PROBLEM DESCRIPTION 

A very long steel pipeline was modeled as a non-
uniform cross-section (i.e., stepped-type) cylindrical 
shell that was divided into two portions; un-corroded 
and corroded portions. Keeping in mind the symmetry 
of the problem, and to present the stepped-type non-
uniformity of the corroded portion, it was divided to 
five regions with an equal angular extent β but with 
subsequent decreasing in thickness. However, the 
corroded portion of the ring can be divided into any 
number of regions to capture the actual corrosion in the 
ring and its buckling loads and modes. The variation of 
the corroded shell thickness within the corroded region 
of the ring is assumed to be parabolic. One may keep in 
mind that this study considers the shell as ideal ring and 
does not account for the effect of geometrical 
imperfections on the buckling loads.  

Now, let us consider a ring with a nominal radius R 
and non-uniform stepped thickness as shown in Fig. 1. 
The thickness reduction was assumed to be symmetric 
with respect to the centerline of the ring at θ = 0 (i.e., 
geometrical symmetrical condition). The ring was 
divided into two portions, first the un-corroded region 
that is denoted by region 6 having a thickness equal to t6 
and the other portion of the ring has been assumed to be 
the corroded regions that are regions 5 to 1 which have 
thicknesses t5 to t1, respectively. The ring consisted of 
six regions with different thicknesses, but with a 
common neutral axis. The corroded portion was 
represented by consequent uniform stepped reduction in 
thicknesses with an equal angular extent equal to β. On 
the other hand, the un-corroded portion has an angular 
extent equal to π-5β. The material of the ring was 
assumed to be linearly elastic with modulus of elasticity 
E and Poisson’s ratio υ. The ring was subjected to an 
external uniform hydrostatic pressure equal to p.  

To simplify the problem, plane elasticity theory was 
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adopted with a small thickness to mean radius ratio. The 
ring was modeled as six regions of curved beams that 
can buckle under external pressure. Both symmetrical 
and anti-symmetrical buckling modes were individually 
taken into consideration. The actual buckling pressures 
and modes of the non-uniform ring are analytically 
obtained as the smallest value of either the critical 
buckling pressure of symmetric or anti-symmetric 
modes. 

 
DERIVATION AND FORMULATION OF 

THE EIGENVALUE PROBLEM 
 
The differential equations governing the behavior of 

a thin non-uniform ring subjected to external hydrostatic 
pressure with the cross-section shown in Fig. 1 are as 
follows (Timoshenko and Gere, 1961; Xue, 2002): 
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where y is the radial deflection of the non-uniform 

ring, β is the angular extent and k1 to k6 are buckling 
load parameters for regions 1, 2, 3, 4, 5 and 6, 
respectively. 

The buckling load parameters may be defined as: 
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where  i = 1 to 6, representing the stepped region, 
E is the modulus of elasticity, 
υ  is Poisson’s ratio,  
P  is the external hydrostatic pressure and 
ti is the thickness for regions 1, 2, 3, 4, 5 and 6, 

respectively. 
 
The general solutions of Eqs. (1) to (6) in 

trigonometric form are: 
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where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1 and F2 
are constants of integration to be determined by 
applying both boundary and continuity conditions. 

 
BOUNDARY AND CONTINUITY CONDITIONS 

 
The boundary and continuity conditions for both 

symmetric and anti-symmetric buckling modes differ 
from each other. The symmetric and anti-symmetric 
modes require that the deflections and the slopes are all 
continuous at boundaries θ  = β, θ  = 2β,  θ  = 3β, θ  = 
4β,   θ  = 5β and θ  = 2π -5β, respectively. Now, for the 
symmetric buckling mode, the slope (dy/dθ ) is equal to 
zero at θ  = 0 and θ  = π and for the anti-symmetric 
buckling mode the bending moment (d 2y/dθ 2) is equal 
to zero at θ  = 0 and θ  = π. 
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EXACT EIGENVALUE SOLUTION FOR 
SYMMETRIC AND ANTI-SYMMETRIC 

BUCKLING MODES 
The real critical buckling pressure and mode of the 

non-uniform ring can be obtained as the smallest value 
for the buckling pressure from separate solution of 
symmetric and anti-symmetric mode as coming next. 

 
Exact Symmetric Eigenvalue Solution 

The twelve boundary and continuity conditions 
needed to determine the twelve integration constants for 
the symmetric mode can be written as: 
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By applying the boundary and continuity conditions 

of Eqs. (14) to (20) into Eqs. (1) to (13), a system of 
twelve simultaneous equations containing trigonometric 
functions can be obtained and gathered in a banded 
matrix symbolic form which can be summarized as: 

 
[ ]{ } { }0=AKs                                                                (21) 

 
For a non-trivial solution of Eq. (21) we must have 
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After some mathematical and trigonometric 

substitutions using the MATHEMATICA program 
(MATHEMATICA, Version 5.0, 2003), the transcendental 
equation for the symmetric case is obtained to be: 
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Exact Anti-symmetric Eigenvalue Solution 
The twelve boundaries and continuity conditions 

needed to determine the twelve constants of integration 
for the anti-symmetric mode can be written as: 
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By a similar procedure to that in the symmetric mode 
case, the Eigenvalue solution leads to a transcendental 
equation for the anti-symmetric mode case as: 
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where f2 and g2 can be defined in a similar manner 
for these of the symmetric mode case as: 
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COMPUTER PROGRAM 
The bisection method was used to solve Eqs. (23) 

and (33) to determine the critical buckling pressures for 
symmetrical and anti-symmetrical modes, respectively. 
Accordingly, a computer program using QBasic 
language was coded and prepared to solve the problem 
under consideration.   

This non-uniform ring problem was generalized by 
selecting the variables to be the angular extent β and the 
ratio of the thickness in the corroded region t1 with 
respect to the thickness in the un-corroded region t6 (i.e., 

t1/t6). In order to obtain the other thicknesses in the 
corroded regions t2 to t5, one may create relationships 
between these thicknesses with respect to t6. Practically, 
to obtain these relationships in the corroded regions a 
general continuous function may be assumed. This 
function can be any polynomial up to the fifth degree. In 
this study, and for simplicity, a parabolic variation in 
the thickness of the corroded portion was adopted as 
shown in Fig. 2 where the un-corroded portion had a 
thickness equal to t. Herein, the thickness in the 
corroded portion varies by the parabolic function t(θ ) 
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and ranges from a minimum value tm to a maximum 
value t and having an angular extent equal to ω.  The 
parabolic function may be represented as: 

 

mm tttt +−= 2

2
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ω
θθ                                                  (36) 

 
To simulate the practical selected non-uniform thin 

shell with the parabolic variation (Fig. 2) to the stepped 
non-uniform ring (Fig. 1), the angular extent is divided 
into five equal parts each having an angular extent of 
β (i.e. θ  = 5β ). To obtain the equivalent thicknesses in 
the corroded regions t2 to t5 in Fig.1, one may use 
Eq.(36) along with the mean moment of inertia within 
each part. As a representative example and for the 
region where θ varies from zero to β, the thickness t1 in 
corroded region 1 shown in Fig. 1 is obtained as: 
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Then the thickness t1 can be obtained from the mean 

moment of inertia in the region where θ varies from 
zero to β as: 
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It can be noted that the thickness t1 is a function of 

two variables that are the un-corroded thickness t and 
the ratio of minimum thickness with respect to t (i.e. 
tm/t). Similarly, the other thicknesses in the corroded 
regions t2 to t5 can be written as functions of the former 
two variables. 

 
BUCKLING ANALYSIS OF THE NON-UNIFORM 

RING USING ABAQUS 
To check the accuracy and robustness of the present 

analytical solution, a buckling analysis using the finite 
element package ABAQUS (ABAQUS/Standard User's 
Manual, 2003) was performed. The two-noded Euler 

type uniform beam element B21 is used to model the 
non-uniform stepped ring shown in Fig.1. Each 
corroded region was divided into 60 beam elements and 
the un-corroded region into 300 elements. In order to 
get the actual behavior of the ring under external 
hydrostatic pressure (symmetrical or antisymmetrical 
buckling modes), the upper node (i.e., at θ = π) was so 
that horizontal and vertical displacements and rotation 
about the global z-axis (i.e., ux, uy and θz) were equal to 
zero. The reason for selecting one node to be the 
constrained was to allow the ring to choose its real 
buckling mode. It should be noted that selecting further 
nodes to be constrained will result in higher buckling 
modes. 

 
NUMERICAL EXAMPLES AND DISCUSSIONS 

A non-uniform long ring made from steel was 
considered with the following properties: E = 200000 
MPa; ν = 0.3; R = 1000 mm; un-corroded thickness, t = 
t6 = 20 mm. For the purpose of analysis and 
generalization, the critical buckling pressure of a non-
uniform ring was normalized with respect to the elastic 
critical buckling pressure (Pe) for a uniform ring having 
uniform thickness equal to t6 as follows: 

 

e
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c P

P
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Fig. 3 shows the variation of the critical buckling 

pressure parameter cλ versus the angular extent β (in 
degrees) for different (tm/t) ratios. It can be seen from Fig. 
3 that the buckling pressure decreases with increasing the 
angular extent β. A sudden decrease in the buckling 
pressure for small values of (tm/t) ratio and the angular 
extent β (for β ≤10o and (tm/t) ≤ 0.3) can also be seen. The 
analytical results shown in Fig. 3 are in good agreement 
with the finite element results obtained by ABAQUS. 
However, an insignificant discrepancy between 
ABAQUS  and  the  analytical results has been noticed at 
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Figure (1): Cross-section of stepped non-uniform ring 
 

 
 
 

Figure (2): Cross-section of non-uniform ring with parabolic variation in thickness of corroded region 
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Figure (3): Variation of the critical buckling pressure parameter with β for different tm/t ratios 
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Figure (4): Variation of the critical buckling pressure parameter with tm/t ratio and for β  = 1o, 3o and 6o 
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Figure (5): Variation of the critical buckling pressure parameter with tm/t ratio and for 

β  = 9o, 12o, 15o, 18o and 21o 
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Figure (6): Variation of the critical buckling pressure parameter with tm/t ratio and for β  = 24o, 27o and 30o 
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Figure (7): Regions of symmetric and anti-symmetric buckling modes as 

a function of tm/t ratio and for different β values 
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Figure (8): Variation of the critical buckling pressure parameter with tm/t ratio and for different β values 
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Figure (9): Buckling mode shapes for different tm/t ratio and different β values 

 
very low values of β. This is because of using uniform 
beam elements with constant thickness for each corroded 

region in ABAQUS model to ideally match the analytical 
problem using multi stepped type model. Figs. 4 to 6 
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show the variation of the critical buckling pressure 
parameter with different (tm/t) ratios and different β 
values (β = 1ο, 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30o). 
Figs. 4 to 6 show two separate cases of symmetrical and 
anti-symmetrical buckling modes as discussed earlier. To 
determine the critical buckling pressure, the smallest 
value for each case of symmetric and anti-symmetric 
modes is selected. Thus, one may recognize that the 
occurrence of symmetrical and anti-symmetrical buckling 
modes depends upon the (tm/t) ratio and β values. For 
example, it was observed that the critical buckling 
pressure parameter for an anti-symmetrical mode is less 
than that for the symmetrical mode when β = 6o and 
when 0 ≤ (tm/t) ≤ 0.29. Therefore, the buckling pressure 
in this range causes an  anti-symmetrical buckling mode. 
Also, one may note that as the angular extent β increases 
(i.e. β > 18o), values of the of critical buckling pressures 
for both symmetrical and anti-symmetrical buckling 
modes are close to each other and the buckling pressures 
for symmetrical buckling modes are always dominant.  

Fig. 7 shows regions of symmetric and anti-
symmetric buckling modes as functions of β and (tm/t) 
ratios. These regions were obtained by investigating the 
results shown in Figs. 4 to 6 using the 
MATHEMATICA program. For each region given in 
Fig. 7, the values of the buckling pressures obtained 
from the symmetrical modes were set equal to those 
given in the anti-symmetrical modes. The first curve 
(from the left) shown in Fig. 7 represents the buckling 
modes at the point of change from symmetrical to anti-
symmetrical modes. The second curve represents 
buckling modes at the point of change from anti-
symmetrical to symmetrical modes and vice versa for 
the third and fourth curves. 

Fig. 8 shows the variation of the critical buckling 
pressure parameter with (tm/t) ratio for different β 
values. Again, the analytical results shown in Fig. 8 are 
in good agreement with the finite element results by 
ABAQUS. Fig. 9 shows some of the buckling modes 
which are a consequence of the solution given in Fig. 7. 
Also, Fig. 9 shows a good agreement between present 
analytical buckling modes and these obtained by 
ABAQUS. The sequence of changes in buckling modes 
shown in Fig. 9 coincides very well with these shown in 
Fig. 7. 
 

CONCLUDING REMARKS 
 
Exact analytical solution has been derived for 

determing the elastic critical buckling pressures and 
mode shapes of long cylindrical steel shells considering 
symmetrical and anti-symmetrical mode cases. The long 
cylindrical shell has been modelled as a non-uniform 
multi “stepped-type” ring. The multi stepped type of the 
corroded regions is able to capture many polynomial 
curves of the corroded regions. 

The study shows that buckling loads and modes 
depend on the corrosion angular extent β and the 
corroded to un-corroded thicknesses ratio. The actual 
buckling mode for both symmetrical and anti-
symmetrical cases is obtained and found to depend on 
the angular extent β  and the corroded to un-corroded 
thicknesses ratio(tm/t) ratio. A comparison study has 
been made with the finite element package ABAQUS 
and the results showed close agreement. However, 
future work using tapered beam elements may be 
carried out to see how good the stepped approximation 
is to the true model.  
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