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ABSTRACT 

Buckling of simply supported square orthotropic plates with multi-blade stiffeners is addressed herein. An 
approximate, semi-analytical model for such plates subjected to in-plane loading is derived. The optimal 
buckling load of simply supported laminated composite blade-stiffened panels with circular cutouts is 
predicted using Finite Element Analysis. In this optimization, the design variables were the cutout size, cutout 
location, fiber orientation angles, number and locations of stiffeners. Three types of in-plane loading were 
considered; namely, uniaxial, biaxial and shear loading. Based on the model studies, the total increase in the 
buckling load due to the presence of cutouts and stiffeners can reach up to 5 times in uniaxial loading, 7 times 
in biaxial loading and 2 times in shear loading compared to perfect plates. Several other imperative findings 
are identified based upon the various parameters influencing the buckling behavior. Guidelines for the 
optimal stiffeners' configurations and cutouts' proportioning are developed. 
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INTRODUCTION 

 
Linear plate buckling is an important issue in 

designing many structural systems, particularly when 
minimum weight is a primary design objective. Cutouts 
in composite laminated panels are often found for 
accessibility reasons or to just lighten the structure. In 
aircraft wings, for example, cutouts are needed for fuel 
lines, electric lines or to reduce the overall weight of the 
wing. The presence of these cutouts complicates the 
stress distribution in the composite panels. The effects 
of cutouts in laminated plates subjected to different 
work load conditions on the buckling loads have been 
investigated by many researchers over the past years 

(Ghannadpour et al., 2006; Jain and Kumar, 2004; Anil 
et al., 2007; Kong et al., 2001; Larsson, 1987). They 
concluded that buckling load decreases as the central 
circular/elliptical/square hole dimensions increase. 

Stiffeners have been widely used in the composite 
laminated panels to overcome the reduction in the 
buckling load due to the presence of cutouts in the 
composite laminated panels. A great deal of attention 
has been focused on plates reinforced by stiffeners to 
improve their buckling behavior. Many researchers used 
numerical methods like FEM to clearly understand the 
buckling behavior of composite panels (Kolakowski and 
Kubiak, 2005; Kim, 1996). Kang and Kim (2005), Perry 
et al. (1997) and Bisagni and Lanzi (2002) studied the 
buckling and postbuckling behavior of composite 
stiffened panels subjected to compressively axial loads. 
In their studies, optimization techniques were applied to 
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nonlinear finite element analysis codes. The 
optimization aimed at minimizing the weight of 
stiffened composite structures under load constrains in 
the postbuckling region. 

Analysis of laminated composite stiffened panels is 
complex. Many researchers have tried to develop some 
guidelines and curves, which would be helpful for the 
designers (Nemeth, 1997; Pecce and Cosenza, 2000; 
Iyengar and Chakraborty, 2004). Alinia (2005) studied the 
buckling behavior of stiffened plates subjected to shear 
loads. In his study, over 1200 plates were analyzed to study 
the role stiffened and to come up with some limits for an 
optimization design procedure. Mallela and Upadhyay 
(2006) presented some parametric studies on simply 
supported laminated composite blade-stiffened panels 
subjected to shear loads. They concluded that panels with 
high orthotropy ratio and less pitch length (more number of 
stiffeners with less depth) are preferable for shear buckling 
point of view. 

This study is mainly concerned with the buckling 
behavior of simply supported orthotropic and laminated 
composite blade-stiffened panels with circular cutouts 
subjected to three types of loading; uniaxial, biaxial and 
shear loading. The weights for all composite laminated 
plates were kept constant to achieve the optimal 
buckling load. The effects of the circular cutouts and the 
blade-stiffeners on the buckling behavior of laminated 
composite plates were taken into consideration. Based 
on the analysis, few important parameters influencing 
the buckling behavior are identified and guidelines for 
better stiffeners and cutouts' proportioning are 

developed, which will be helpful for the designers. 
 

BASIC EQUATIONS AND PROBLEM 
FORMULATION 

The elastic buckling load of a perfect square 
orthotropic stiffened panel is computed using Rayleigh-
Ritz method. The assumed displacement field, which 
satisfies the boundary condition of a simply supported 
plate, is given by the form of Fourier series: 
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where the unknown coefficients mnq  represent 
generalized displacement amplitudes, the constants a  
and b  are the plate length and width, respectively. The 
first eigenvalue (the lowest critical load) for square 
stiffened orthotropic plates would occur for 1== nm ; 
therefore the assumed displacement field will reduces 
to: 
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According to the principle of conservation of 
energy, the potential energy of the orthotropic plate is 
defined as 11 WU +=Π , where 1U  is the strain energy 
and 1W  is the potential energy of the external loads and 
can be written in the forms below. 

 
 

( ) ( ) ( ) ( )( )∫ ∫ ∂+∂+∂∂+∂=
b a

yxsyyyyxxxx dxdywDwDwwDwDU
0 0

2
,

2
,22,,12

2
,111 42

2
1           (3) 

 
 

( ) ( ) ( )( )∫ ∫ ∂∂+∂+∂−=
b a

yxxyyyxx dxdywwNwNwNW
0 0

22
1 2

1                                             (4) 
 
 
where, the subscripts preceded by a comma denote 

 
partial derivatives (e.g., 2

2
, y

wwxx ∂
∂=∂ ), xN , yN  

and xyN  are the internal forces acting in the middle 
surface of the plate due to the applied in-plane loading, 

11D , 22D , 12D  and sD  are the flexural and torsional 
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rigidities of an orthotropic plate, respectively, and are 
given as: 
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Herein, 1E , 2E , 1ν , 2ν  and G  are assumed to be 
elastic constants of an orthotropic material, i.e., 1E , 

2E ; and 1ν , 2ν  are the moduli of elasticity and 
Poisson’s ratios in the x and y directions, respectively. 
G  is the shear modulus and h is the plate thickness.  

For biaxial case, the load in the y direction yN can 
be simplified as a function of the load in the x direction 

xy NN µ= , where µ  is a constant ( )10 ≤≤ µ . The 
first variation of the potential energy Π  yields the 
equilibrium state, and by setting the variation in the total 
potential energy equal to zero 0

11
=Π∂ q , the critical 

buckling load for orthotropic plate subjected to uniaxial 
or biaxial loads can be expressed as follows. 
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For the case of orthotropic panels with blade 
isotropic stiffeners, two modes of buckling are usually 
considered; the local buckling of the plate between the 
stiffeners and the overall buckling (primary buckling) of 
the plate-stiffener combination. Herein, the derivation of 
buckling load is concerned with the primary buckling. 
The assumed displacement field for the stiffeners is 
given by the form of Fourier series: 
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where j  and k  represent the number of stiffeners 
parallel to the x and y direction, respectively, and id  
and ic  are the location of the stiffeners in the x and y 
direction, respectively. The potential energy for the 
orthotropic panels with blade isotropic stiffeners can be 
expressed as follows: 

321321 WWWUUU +++++=Π                 (7) 
where 1U , 2U  and 3U  represent the strain energy of 

the orthotropic plate, stiffeners in the x direction and 
stiffeners in the y direction, respectively, while 1W , 2W  
and 3W  represent the potential energy of the external 
loads for the orthotropic plate, stiffeners in the x 
direction and stiffeners in the y direction, respectively. 
Herein, 1U  and 1W  are shown in equations 3 and 4, 
respectively, while 2U , 2W , 3U  and 3W  can be 
expressed as follows: 
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Substituting equations 3, 4, 8, 9, 10 and 11 into 
equation 7 and differentiating with respect to the 
coefficient 11q  and by setting the variation in the total 
potential energy equal to zero 0

11
=Π∂ q , the critical 

buckling load for orthotropic plate with multi-blade 
isotropic stiffeners subjected to uniaxial or biaxial loads 
can be expressed as follows: 

 
 
 

                                                                         

( ) ( )( )
( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

+
−

+++
−

=

∑∑∑∑

∑∑∑∑

====

====

k

i
i

k

i

i
j

i
i

j

i

i

k

i
i

k

i

i
j

i
i

j

i

i

x

b
D

b
cb

b
D

b
cDGh

EEh

N

1

2

11

2

1

2

1

2

11

2

1

3

21

2112
3

2

sin2sin2112

sinsin64

1
11

χπµδπµ

λπγπ

νν
νν

π

        (12) 
 
 



Stability Analysis…           Husam Al-Qablan, Hazim Dwairi, Nasim Shatarat, Taleb Rosan and Tamara Al-Qablan 

 

- 122 - 

where 
 

Db
EI xi

i =γ ; 
Db
EI yi

i =λ ; 
bh
Axi

i =δ ; 
bh
Ayi

i =χ  
 
 

121

3

2
hED

ν−
=  represents the stiffness of the 

 
stiffeners. E  and ν  are the modulus of elasticity and 

Poisson's ration of the stiffeners, respectively. 

xiI  and yiI  represent the moment of inertia of 
stiffeners parallel to the x and y direction, respectively. 

xiA  and yiA  represent the cross-sectional area of 
stiffeners parallel to the x and y direction, respectively. 

For isotropic stiffened plates, equation (12) reduces 
to: 
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Table (1): Material properties of the lamina 
Mechanical Properties  Values 

1E  130.0 GPa 

2E  10.0 GPa 

3E  10.0 GPa 

1312 GG =  5.0 GPa 

1312 νν =  0.35 

3223 νν =  0.35 

 
 
 
 

               

 

Figure (1): Orthotropic blade-stiffened panel (a) before buckling (b) after buckling 

(a) (b) 
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Figure (2): Nondimensional buckling load for orthotropic blade-stiffened panels subjected to 
(a) uniaxial loads (b) biaxial loads 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure (3): Undeformed shape for the laminated composite blade-stiffened panels with 

circular cutouts (a) case 1 (b) case 2 (c) case 3 
 

VALIDATION 
The present model described in the previous section 

was incorporated into a MATHEMATICA software, 
and computed results have been compared with finite 
element analysis using ABAQUS software for a variety 
of plates and stiffener dimensions. Herein, results are 
limited to orthotropic panels with isotropic stiffeners. 

The plate dimension is 1000 mm x 1000 mm. The 
thickness of the plate and the stiffeners is mmt 12= . 
The material properties of the orthotropic plate are 
given in Table 1. The adopted elastic material properties 
for the isotropic stiffeners in each computation are 
Young's modulus GPaE 130=  and Poisson's ratio 

35.0=ν . In this comparison, two equally spaced 

(a) (b) 
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stiffeners in each direction with different heights 

sh were used to compute the critical loads for the 
uniaxial and biaxial cases as shown in Figure 1. The 
finite element model is composed of mainly four noded 
quadrilaterals, stress/displacement shell element with 
reduced integration and large-strain formulation 

(ABAQUS manual). Each node has six degrees of 
freedom. The orthotropic stiffened panels are divided 
into a sufficient number of elements to allow for free 
development of buckling modes and displacements. 
Some trial runs are also carried out to study the 
convergence of the results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4): Loading system (a) uniaxial loading (b) biaxial loading (c) shear loading 
 
The results of uniaxial and biaxial load cases are 

compared to finite element results as shown in Figure 2. 
From these results, it can be observed that the present 
model and finite element results are in good agreement. 
It is worth mentioning that the comparison between 
theoretical and numerical values shown in Figure 2 
reveals some notable discrepancies, mainly with the 
deeper stiffeners. This is mainly due to the effect of the 
torsional stiffness and shear deformation accounted for 
in the finite element model, but not in the present 
model. This explains most of the marginal differences 
between these two curves. 

 
MODELING COMPOSITE LAMINATED 

STIFFENED PANELS WITH STIFFENERS AND 
CIRCULAR CUTOUTS 

Modeling composite laminated stiffened panels 

needs extra attention in defining the properties of the 
plates, stiffeners, number of layers and fibers orientation 
angles of each layer. In the present work, Eigen-
buckling analysis is performed for the laminated 
composite blade-stiffened panels using a finite element 
package ABAQUS. The plate dimension is also 1000 
mm x 1000 mm. The thickness of each layer of this 
eight-layer laminates is 1.5 mm. The properties of the 
material of the lamina are given in Table 1. The model 
is composed of mainly four noded quadrilaterals, 
stress/displacement shell element with reduced 
integration and large-strain formulation. Three noded 
shell elements are only used in irregular zones around 
the holes as shown in Figure 3.  

In this study, three different cases of simply 
supported square plates with circular cutouts and 
stiffeners were studied; case 1: one hole at the center of 
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the laminate with two stiffeners in each direction 
located at 0.25% and 0.75% of edge length, case 2: two 
holes with two stiffeners parallel to the x direction 
located at 25% and 0.75% of edge length and one 
stiffener parallel to the y direction located at 0.5% of the 
plate edge, case 3: four holes with one stiffener in each 
direction located at 0.5% of the plate edges. The 
locations of the holes and stiffeners for the three cases 
are shown in Figure 3. The plate area is located in the 
xy plan. For uniaxial loading, the compressive loads 
were applied in the x direction, while for biaxial and 
shear loadings, the loads were applied in the x and y 
directions as shown in Figure 4. Series of pre-selected 

cases are modeled to verify the accuracy of the method 
of analysis. The results are compared to theoretical and 
numerical values available in the literature. Table (2) 
shows a comparison between the current study and 
theoretical results for isotropic panels without stiffeners 
subjected to uniaxial, biaxial and shear loads, while 
Table (3) shows a comparison between the current study 
and results available in the literature for composite 
laminated plate [0,90]2s with circular cutout subjected 
to uniaxial loads. From these results, it can be observed 
that the present study and the values available in the 
literature are in good agreement.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5): First buckling mode shape for (a) uniaxial loading (b) biaxial loading (c) shear loading 
 
The buckling mode shapes obtained in the present 

study are similar in respect with the buckling mode 
shapes available in the literature as shown in Figure 5. 
In the present study, the weights for all panels were kept 
constant through utilizing the areas removed by circular 
cutouts in constructing the stiffeners. The stacking 
sequences, numbers and thicknesses of layers of the 
stiffeners are identical to that of the laminated panels. 
The length of each stiffener is equal to the edge length 
of the plate (1000 mm). The edges of the stiffeners are 
not penetrating the plates as shown in Figure 3.  The 

depths of each stiffener in the three cases are shown in 
Table 4. 

 
EFFECT OF CUTOUT SIZE, LOCATION AND 

NUMBER OF STIFFENERS ON 
THE BUCKLING LOADS 

In order to achieve the optimal cutout size and 
location, optimal fiber orientation angles and optimal 
number of stiffeners, the laminated panels were 
subjected to uniaxial, biaxial and shear loads. The ratio 
of the cutout diameter (d) to the plate width (b) for 
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plates with one hole (case 1) is varied from 0.0 to 0.8. 
The removed areas for plates with one hole (case 1) 
were divided by 2 and 4 to calculate the new areas for 
cutouts in plates with two holes (case 2) and plates with 

four holes (case 3), respectively. These removed areas 
were used to construct the stiffeners in the three cases as 
shown in Figure 3 and Table (4).  

 
Table (2): Comparison of results between theoretical and numerical methods for isotropic 

panels without stiffeners 

Isotropic 
Material E (Pa) ν  b 

(m) h (m) 

nondimensional 
buckling load 

(Exact) 

3

2

Eh
bNcr  

nondimensional 
buckling load 
(Numerical) 

3

2

Eh
bNcr  

Percentage 
difference 

 

0.0005 3.61524 3.6176 0.065 
0.0010 3.61524 3.6170 0.057 
0.0050 3.61524 3.6096 0.157 
0.0100 3.61524 3.59225 0.636 
0.0200 3.61524 3.55234 1.739 

Uniaxial Case  

2

24
b

DNcr
π

=  
11102×  0.3 1.0 

0.0300 3.61524 3.51024 2.904 
0.0005 1.80762 1.8088 0.065 
0.0010 1.80762 1.80865 0.057 
0.0050 1.80762 1.80476 0.158 
0.0100 1.80762 1.79613 0.636 
0.0200 1.80762 1.77617 1.739 

Biaxial Case  

2

22
b

DNcr
π

=  
11102×  0.3 1.0 

0.0300 1.80762 1.75513 2.903 
0.0005 8.44158 8.4504 0.100 
0.0010 8.44158 8.4500 0.100 
0.0050 8.44158 8.4328 0.104 
0.0100 8.44158 8.3920 0.587 
0.0200 8.44158 8.2835 1.870 

Shear Case  

2

234.9
b

DN cr
π

=  
11102×  0.3 1.0 

0.0300 8.44158 8.1499 3.450 
 

Table (3): Comparison of results between current study and results available in the 
literature for composite plate [0,90]2s with circular cutout subjected to 
uniaxial loads 

d/b 

nondimensional buckling load 
(Ghannadpour et al.) 

3
2

2

hE
bNcr  

nondimensional buckling load (Numerical) 

3
2

2

hE
bN cr  

0.0 13.79 13.60 
0.1 12.80 13.07 
0.2 10.82 10.53 
0.3 8.97 8.80 
0.4 7.51 7.42 
0.5 6.39 6.40 
0.6 5.63 5.31 
0.8 4.43 4.37 
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Table (4): Circular cutouts' and stiffeners' dimensions 
depth of each stiffener d/b Area removed by 

cutouts/total area of the plate case 1 case 2 case 3 
0.1 0.00785398 0.0019635 0.00261799 0.0039270 
0.2 0.0314159 0.0078540 0.0104720 0.0157080 
0.3 0.0706858 0.0176715 0.0235619 0.0353429 
0.4 0.125664 0.0314159 0.0418879 0.0628319 
0.5 0.196350 0.0490874 0.0654498 0.0981748 
0.6 0.282743 0.0706858 0.0942478 0.141372 
0.7 0.384845 0.0962112 0.1282817 0.192423 
0.8 0.502655 0.1256638 0.1675517 0.251327 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (6): Nondimensional buckling load for laminated composite blade-stiffened panels with 

circular cutouts subjected to uniaxial loads 
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Figure (7): Nondimensional buckling load for laminated composite blade-stiffened panels with 
circular cutouts subjected to biaxial loads 
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Figure (8): Nondimensional buckling load for laminated composite blade-stiffened panels with 
circular cutouts subjected to shear loads 
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increase the buckling loads (Mallela and Upadhyay, 
2006). Herein, the interactions between the cutouts and 
stiffeners in laminated plates were studied to achieve the 
optimal buckling loads for plates having the same 
thicknesses and weights. For uniaxial and biaxial 
loading cases, Figures 6 and 7 show that the interactions 
between cutouts and stiffeners when changing the (d/b) 
ratio from 0.0 to 0.3 do not have any considerable effect 

on the buckling loads compared to the perfect plate. For 
the (d/b) ratio from 0.4 to 0.6, it can be clearly seen 
from the Figures that the effect of stiffeners dominates 
the effect of cutouts and the total buckling load 
increases. The total increase in the buckling load can 
reach up to 5 times in uniaxial case and 7 times in 
biaxial case compared to the perfect plate. For the (d/b) 
ratio from 0.7 to 0.8, the buckling loads decrease and 
the effect of cutouts dominates the effect of stiffeners. 
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spaces left between the cutouts became smaller and the 
stiffeners became larger. For these reasons, two types of 
buckling failure could occur; local buckling in the plate 

reign (anti-symmetric mode) or local buckling in the 
stiffeners. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (9): Nondimensional buckling load for laminated composite blade-stiffened panels with 

circular cutouts subjected to (a) uniaxial loading (b) biaxial loading (c) shear loading 
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CONCLUSION 
In the present work, the buckling behavior of square 

simply supported orthotropic plates with multi-blade 
stiffeners and laminated composite blade-stiffened panels 
with circular cutouts subjected to in-plane loading was 
investigated. The following conclusions can be drawn: 
• An approximate, semi-analytical model for 

buckling of simply supported square orthotropic 
plates with multi-blade stiffeners subjected to in-
plane loading is derived. 

• The optimal buckling load of simply supported 
square laminated composite blade-stiffened panels 
with circular cutouts subjected to three types of 
loading; namely, uniaxial compression, biaxial 

compression and shear loading was found for (d/b) 
ratio from 0.4 to 0.6. 

• The total increase in the buckling load due to 
cutouts and stiffeners in the laminated composite 
panel can reach up to 5 times in uniaxial loading, 7 
times in biaxial loading and 2 times in shear 
loading compared to the perfect plate. 

• For uniaxial and biaxial load conditions, the effect 
of small cutouts and stiffeners (d/b ratio from 0.0 to 
0.3) can be neglected. 

• The buckling load is highly influenced by fiber 
orientation angles. The best performance was 
achieved using [45,-45, 90, 0, 0, 90,-45, 45] fiber 
orientations in the three loading cases. 
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