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ABSTRACT 

Two models of three-layered sandwich plate are proposed in this paper to study the dynamic response of 
these types of plates when subjected to impact loading. Transverse shear and normal deformations are 
accounted for in the core, while the face layers are treated as thin plates. In the first model, the core is 
modeled as translational and rotational elastic springs connecting the face layers together and in plane  
displacements at the middle surface of the face layers are neglected, while in the second model the in plane 
displacements and shear stresses at the junctions of the face layers with the core are considered. The 
governing equations of motion are analytically solved to obtain a closed form solution for simply supported 
plates using the modal superposition method. The effects of various geometric and material parameters on the 
dynamic properties and response of sandwich plates are investigated. The present study results are compared 
with those obtained from the literature and are found to be in good agreement in most cases. It was shown in 
this study that the in plane displacements of the middle surface of face layers could be neglected for sandwich 
plates with thick or flexible core. 
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INTRODUCTION 

 
The term “sandwich plate” here refers to a structure 

in the form of lightweight core with thin laminates 
bonded to each side of it. Today, interest of sandwich 
plates is growing steadily, since it offers the possibility 
of achieving high bending stiffness with small weight 
penalty. High quality composite laminates and filler 
materials could be easily manufactured for many 
applications. In the ship building industry in particular, 
the use of sandwich plates is well established. Small and 
very fast passenger vessels have for many years been 
built in sandwich materials. Especially for navy vessels 
and mine sweepers, the sandwich construction provides 

some additional advantages. The use of sandwich plates 
for construction of railroad cars and other means of 
transportation is also widely considered today. More 
recently, sandwich construction was further applied in 
building primary structures of aircraft such as the 
wing’s skin and the vertical fin torque box. 

Many researchers investigated the impact problem 
of sandwich plates. Hoff (1950) presented a solution for 
the differential equations and associated boundary 
conditions for the bending and buckling problem of 
sandwich plates. The effect of shear deformation in the 
core was considered, while the effect of normal 
deformation was neglected. In 1972, Yan and Dowell 
(1972) presented a solution to a simple form of the 
differential equation of equilibrium for non-symmetric 
sandwich plates or beams made of isotropic and Accepted for Publication on 15/7/2010. 
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homogeneous layers. Equal importance was given to 
both shear and bending effects of the sandwich, in the 
equations deduced. In 1982, Grover and Kapur (1982) 
studied the transient response of simply supported three 
layer visco-elastically damped sandwich plates, 
subjected to a half sine shock impulse. Only transverse 
inertia effects were considered. The properties of the 
visco-elastic core material have been represented by 
four-element visco-elastic model. Koller (1986) 
investigated the elastic impact of spheres on sandwich 
plates. In his study, a special sandwich plate theory was 
developed, which included bending of the facing sheets 
and transverse shear of the core, under the assumption 
of Hertizian contact. A Laplace transform was carried 
out on the equations of motion and was solved in 
transform space. In 1986, Sayir and Koller (1986) 
discussed the physical behavior of bending waves in 
sandwich plates in which the facings are thin, stiff and 
heavy as compared with the core, by means of 
asymptotic expansions of the basic equations of linear 
elasticity. Poltorak and Nagaya (1986) extended on the 
case of forced steady state vibration of Yan and Dowell 
(1972) equation of motion of sandwich plates or beams. 
The exact general solution of this equation is founded in 
terms of Bessel’s functions, where the boundary 
conditions along the irregular edges are satisfied 
directly by means of the Fourier Expansion Collection 
Method. In 1988, He and Ma (1988) derived a set of 
simplified governing equations and the corresponding 
boundary condition of visco-elastically damped 
unsymmetrical sandwich plates in flexural vibration. An 
asymptotic solution of the simplified governing 
equations has been introduced, with the loss factor of 
the visco-elastic material of the core used as a 
parameter. Lee et al. (1993) studied the response of a 
sandwich plate impacted by a rigid ball using a 
sandwich theory, which modeled the face sheets as 
separate Mindlin plates with a core that transmits 
transverse shear as well as transverse normal 

deformations. They used the Finite Element Method 
(FEM) to solve the equations of motion for the plate and 
impactor with a contact power law which was 
determined from static indentation tests. Lee and Kim 
(1997) investigated the effect of including normal 
deformation as well as shear deformation of the core 
layer on the modal property estimations of sandwich 
plates. Equations of motion were formulated by 
applying Hamilton’s principle. The equations consist of 
two-coupled sixth order equations in terms of the 
transverse displacements. Lange and Bottega (1998) 
employed the exact solution by Bottega (1988) to 
investigate the transient axi-symmetric dynamic 
response of layered plates to impact loading.   

In this study, the dynamic response of sandwich 
plates, with different geometric and material parameters 
and impact loading, is investigated. Equations of motion 
are derived using two simple mechanical models. The 
core is modeled as translational and rotational springs. 
Effects of normal and shear deformations are included 
using the mentioned types of springs. In the first model, 
the membrane displacements at the middle surface of 
the face layers are neglected, while in the second model 
those displacements are included. The effect of various 
geometric, material and impact loading type are 
investigated.  

 
EQUATIONS OF MOTION 

The coordinates and geometry of a rectangular 
sandwich plate, which has a visco-elastic core between 
two elastic plates, are shown in Figure (1). The 
following assumptions are made to derive the governing 
equations of motion: (1) Top and bottom layers are 
isotropic and homogeneous. (2) A normal straight line 
to the middle plane of the face layers before bending, 
remains straight and normal to the middle plane after 
bending; i.e. transverse shear deformation of the face 
layers is neglected. (3) Neglecting damping properties 
of the visco-elastic core. (4) There is a perfect 
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continuity at the interfaces and no slippage occurs while 
the plate is bending; i.e. displacements keep continuity 
at the inter-faces between the elastic plates and the 
visco-elastic core. (5) Inertia effects are considered in 
the transverse direction only; i.e. in-plane rotational 
accelerations are neglected. (6) The normal stresses σx, 
σy and in plane shear stresses τxy in the core are 
neglected, since the modulus of elasticity and shear 
modulus of the core are very small as compared with 
those of the face layers. (7) The thickness of the face 
layers is small in comparison with the plate dimensions 
(L/h>10). (8) Small deformations are assumed and 

nonlinear terms of strain-displacement relationships are 
neglected. 

Consider infinitesimal elements of area (dx dy) in 
the upper and lower layers as shown in Figures (2), (3a) 
and (3b). The moments and forces acting on the two 
differential elements are shown in these figures where 
the upper infinitesimal element is subjected to a general 
transverse forcing function P(x,y,t). Equilibrium of 
forces in the z-direction and moments about x and y-
axes lead to the following moment equilibrium 
equations of the lower and upper layers, respectively: 
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where )()( , i

y
i

x MM : moments per unit area applied by 
the core on the i-th layer middle surface in the x and y-
direction, respectively, Ks : translational stiffness of the 
core per unit area, wi : transverse displacement of the i-
th layer, (i= 1,2) and 
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where, : iρ density of the i-th layer, (i=1,2), hi: 
thickness of the i-th layer, : cρ  density of the core and 
hc: thickness of the core. 

Substituting for )()()(   and   , i
xy

i
y

i
x mmm as known from 

the classical plate theory in equations (1) and (2) leads 
to the following governing equations of motion of the 
face layers:  
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where D1, D2 are flexural rigidities of the lower and 
upper layers, respectively. 
First Model 

It will be shown in a later section, (STIFFNESS 

PARAMETERS) that the moments applied by the core 
on the face layers could be written as in equations (30) 
and (31), and after substitution into equations (3) and 
(4), the governing equations of motion become: 
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Second Model 

Considering the infinitesimal elements in the upper 
and lower layers shown in Fig. (3a) and (3b) and taking 
the summation of forces in the x and y-directions yield 
the following equations: 
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where )()( , i

y
i

x QQ  are the forces per unit area applied by 
the core on the i-th layer in the x and y-direction, 
respectively. These forces are given in terms of in plane 
and transverse displacements, as derived in the stiffness 
parameters section. 
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equations (7), (8), (9), (10), (4) and (5) yields the 
following equations (11) through (16), respectively: 
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where o
i

o
i vu , : are the membrane displacements of 

the middle surface at the i-th layer in the x and y-
directions, respectively, iυ  Possions ratio of the i-th 
 
layer and 

21 i

ii hE
A
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=  . Differentiate equation (11) with 

 
respect to (x) and equation (12) with respect to (y) and 
add, then differentiate equation (14) with respect to (x) 
and equation (15) with respect to (y) and add, to get: 
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Divide equation (17) by (A1hc) and equation (18) by (A2hc), then subtract equation (18) from (17) to get: 
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Substituting equation (19) into equations (13) and 

(16) leads to the following governing equations of 
motion of the face layers according to the second 
model: 
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STIFFNESS PARAMETERS 
The extensional stiffness per unit area of the core 

with thickness hc for both models is simply: 
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The stiffness parameters of equivalent rotational 

springs for the two different models are derived in the 
following sections. 
 
First Model 

The transverse displacement of the soft visco-elastic 
core is defined by the transverse displacements of the 
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lower and upper layers and varies linearly. Also, 
according to the assumption that there is a perfect bond 
between the layers and the core at the interfaces, the in-
plane displacements in the core are determined using the 
in-plane displacements of the lower and upper layers at 
the interfaces and assuming linear variations. The in-
plane displacements in the lower and upper layers are 
defined according to the classical plate theory (for 
i=1,2) as follows: 
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The transverse and in-plane displacements in the 

core are as follows: 
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Considering the element shown in Figure (4) in the 

xz-plane with unit length in the x-direction, the shear 
strain is defined as follows: 
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Substituting equations (25) and (26) into equation (28) 
yields the following shear strain in terms of upper and 
lower layers transverse displacements: 
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Consider the element shown in Fig. (4), define )1(
xM  

and )2(
xM  to be the total applied moment from the core 

on the lower and upper layers middle surface, 
respectively as follows: 
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Similarly: 
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Second Model 
In the second model, the membrane displacements at 

the middle surfaces of face layers were included. The 
displacements of the sandwich plate are as shown in 
Fig. (5), where the transverse displacement in the core, 
which varies linearly, is completely determined by the 
transverse displacements of the face layers as defined in 
equation (25). 

The shear strain can be defined as follows: 
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Substituting equations (23) and (25) into equation (32) 
leads to: 
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resultant shear stress can be defined as follows: 
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Consider the element shown in Fig. (6), define )1(

xM  
and )2(

xM  to be the total applied moment from the core 
on the lower and upper layers middle surface, 
respectively as follows: 
 

(36)                                                  
2
1)1()1( h

QMM xxx +=
 

(37)                                                   
2
2)2()2( h

QMM xxx +=
 
where: 

22
xx

x
QdM

M == . 
 
Substituting equations (34), (35) and the value of Mx 

into equations (36) and (37) leads to: 
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METHOD OF SOLUTION 

The modal superposition method is used to solve the 
governing equations of motion. For free vibration of 
undamped sandwich plates, we seek solutions of the 
governing equations in the form: 
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where: (Amn)1 and (Amn)2 are the amplitudes of response 
of the lower and upper plates, respectively, and mnφ  
represents the different modes of vibrations. 
Substituting equations (42) and (43) in the governing 
equations for the case P(x,y,t)=0.0 and solving the 
eigen-value problem lead to the determination of the 
natural frequencies of the sandwich plate. For simply 
supported boundary conditions, the modal shape 
functions could be written in the following form: 
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First Model Solution 

The solution of equations (5) and (6) is assumed to 
be in the form: 
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Substituting equations (42), (43) and (44) into 
equations (5) and (6), introducing the first natural 
frequency 1)( mnω , also introducing another sub-index 
in (Amn)1 and (Amn)2 to account for the first natural 
frequency, introducing the second natural frequency 

2)( mnω , and also introducing another sub-index in 
(Amn)1 and (Amn)2 to account for the second natural 
frequency. Using these four equations to simplify 
equations (47) and (48) leads to: 
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The orthogonality condition between the normal amplitudes could be written in the following form: 
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where i=1,2 and j=1,2. 
Multiplying equation (49) by (Amn)11 and equation 

(50) by (Amn)21, then adding the two equations, then 

multiplying equation (62) by (Amn)12 and equation (50) 
by (Amn)22, then adding the two equations, and using 
equation (51) lead to: 
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The orthogonality condition between the normal 
modes could be written in the following form: 

 

∫ ∫ ≠=
a b

gjmni dxdym
0 0

(54)             jg,nm,for ,              0φφ
 
Consider equation (52) and (53), multiply both of them 
by gjφ  and integrate over the area of the sandwich plate, 
then simplify the resulting equations by equation (54) to 
obtain: 
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where for i=1,2; j=1,2: 
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Second Model Solution 
Following the same previous procedure to solve the 

governing equations of motion of the second model; i.e 
equations (20) and (21) will lead to the same previous 
equations with new definitions as follows: 
where for i=1,2 ; j=1,2: 
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IMPACT LOADS 

For the forced vibration of sandwich plates, the 
following impact loads are considered: 
 
Half Sine Impulse 

The excitation applied to the sandwich plate is taken 
in the form of a half sine impulse as shown in Figure 
(7a). According to (Grover and Kapur, 1982), this 
loading could be represented as: 
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where according to the same reference the loading 

function ),( yxf  could be expressed as: 
                         y)g(x, ),( ϖvmyxf =  

where: 21 mmm += , v: Projectile velocity, ϖ : 
Frequency of the impact loading,τ : Impact duration. 
 
Step Impulse 

For this type of impact loading, as shown in Figure 
(7b), it is assumed that the energy and duration of 
impact of the step loading are the same as for the half 
sine impulse, so it is easily proved that: 
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where the loading function is written in the form: 
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Triangular Impulse 

Also, it is assumed that for this type of loading, as 
shown in Figure (8c), the energy and the impact 
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duration of the triangular pulse are the same as the half 
sine pulse, that is 
 

π
ϖvmf 4

2 =  
 
where the loading function is written in the form: 
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Table 1: Geometry and material properties of 
sandwich plates 

Property Plate # 1 Plate # 2 Plate # 3 

a & b      (mm) 450 20 450 

h1 & h2    (mm) 5 1 2.5 

hc            (mm) 50 2 2.5 

E1 & E2  (Gpa) 16.7 210 68.65 

υ1 & υ2 0.3 0.3 0.34 

ρ1 & ρ2  (kg/m3) 1760 7800 2746 

Gc          (Gpa) 0.018 0.0021 0.01373 

υc 0.32 0.45 0.45 

ρc          (kg/m3) 48 780 1373 
 
 

Table 2: Natural frequencies (Hz) for sandwich 
plate #1 

Present Study Mode 
Number 

(m,n)  
Model 

(1)  
Model 

(2) 

Reference 
[5] 

Reference
[9] 

(1,1) 356.1 354.5 340.2 358.79 

(1,2) 578.2 574.76 553.7 593.55 

(2,2) 750.0 731.82 719.76 771.51 

(1,3) 852.14 819.71 818.89 876.21 

(2,3) 994.4 935.63 957.4 1020.9 

(3,3) 1213.54 1100.78 1171.62 1241.53 

 

NUMERICAL RESULTS AND DISCUSSION 
 

In this study, sandwich plates with various 
geometric configurations and material properties were 
considered. The geometry and material properties of the 
sandwich plates used are shown in Table (1). Table (2) 
shows natural frequencies of symmetrical sandwich 
plate # 1, where the first and second models were 
considered and compared with (Sayir and Koller, 1986; 
Lee and Kim, 1997). The results of the two models and 
those of (Sayir and Koller, 1986; Lee and Kim, 1997) 
are in good agreement for low modes, while for higher 
modes there is a little difference. The slight difference 
in the results of the two models and those of (Lee and 
Kim, 1997), in comparison to those of (Sayir and 
Koller, 1986), is attributed to that only the first term is 
considered in the asymptotic solution for the elasticity 
equations in (Lee and Kim, 1997). Figure 8 shows the 
variations of the non-dimensional natural frequency 
( )()( 2121

2 DDmma ++ω ) with the non-dimensional 
core thickness (hc/h2) for different values of the second 
layer non-dimensional thickness (h2/a). Sandwich plate 
#2 was considered and the lower four natural 
frequencies ω1,1, ω1,2 ω2,2 ω1,3 were computed. It can be 
seen from this Figure that the results of the present two 
models agree well with those of (Lee and Kim, 1997) 
for a thick core. The difference in the results obtained 
using the first model and those obtained in (Lee and 
Kim, 1997), for low core thickness ratio, and especially 
for higher modes, is due to the non-inclusion of the 
overall bending in the sandwich plate in the first model. 
Also, the in-plane displacements at the middle planes of 
the upper and lower layers were not considered in the 
formulation of the first model. Figure 9 depicts the time 
history of shock response of sandwich plate #3 due to a 
half sine impulse distributed over the whole plate area. 
Different values of the core shear modulus; 13.73, 68.68 
and 343.25 MPa are used. Small difference is observed 
between  model (2) and  (Grover  and  Kapur, 1982)  for 
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Figure 1: Geometry and Coordinates of Three Layered Sandwich Plate 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Infinitesimal Element in the i-th Layer Showing the Layer Moments 
 
the values of amplitudes and periods of oscillation. This 
is due to the inclusion of damping properties of the core 
material in (Grover and Kapur, 1982) on one hand and 
the inclusion of deformability of the core ( zε ) in model 
(2) on the other hand. A large difference in the results 
obtained using model (1) is observed, especially for 
large shear modulus of the core. For a relatively strong 
core, the period of oscillation and the amplitude of 
response are not accurately determined using model (1). 
This can be attributed to the fact that the global bending 
of the plate and the local contribution of the core 
through normal stresses are not accounted for. Model 
(1) could be used for weak cores only. Fig. 9a shows 

that the inclusion of damping properties of the core is 
more pronounced for a smaller value of shear modulus. 
The variation of peak response with Gc/E1 ratio is 
investigated in Fig. (10), in which Gc/E1 is varied over a 
wide range. Sandwich plate #3 was considered with 
(a=b=300 mm) and the other parameters are as given in 
Table (1). It is obvious that, as the core shear modulus 
ratio increases (in the range 0.0001-0.001), the peak 
response decreases rapidly. For values of Gc/E1 greater 
than 0.001, the peak response doesn’t change much. The 
results of the two models seem to have a very good 
agreement with those of (Grover and Kapur, 1982) for a 
semi-rigid core, while for a high shear modulus ratio of 
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Figure 3: Infinitesimal Element in the Face Layers Showing the Face Layer Forces 
(a) Upper Layer (b) Lower Layer 

 
the core, it is found that model (1) yields inaccurate 
results. The difference between the results of the two 
models and those of (Grover and Kapur, 1982) for very 
low core shear modulus is due to that the damping effect 
in the equations of motion of (Grover and Kapur, 1982) 
increases as the core shear modulus decreases. The 
variation of the peak response with hc/h1 ratio for 

different values of (Gc=343.25, 68.65 and 13.73 MPa) is 
shown in Fig. (11). Sandwich plate #3 is used with 
variable hc and Gc and all other parameters are as in 
Table (1). It is observed that, as the core thickness ratio 
increases, the peak response decreases due to that the 
plate stiffness increases through the increment in the 
shear  parameters in the governing  equations of motion. 
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Figure 4: Infinitesimal Elements in the Sandwich Plate According to Model (1) Showing Shear Forces and 
Moments per Unit Length in the Core in (a) x-z Plane, (b) y-z Plane 

Figure 5: Displacements of Three Layered Sandwich Plate According to Model (2) in 
(a) x-z Plane, (b) y-z Plane 

Figure 6: Infinitesimal Elements in the Sandwich Plate According to Model (2) Showing Interface Shear Forces 
and Moments per Unit Length in (a) x-z Plane, (b) y-z Plane 
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Figure 7: Different Types of Dynamic Loading (a) Half Sine Impulse, (b) Rectangular Impulse, 
(c) Triangular Impulse 

 
The Figure shows that for a very low core thickness 
ratio there is a considerable difference in the results of 
model (1), while the results of model (2) and (Grover 
and Kapur, 1982) agree well. This may be due to that 
only the local bending of the face layers around their 
middle surface was considered in model (1). It is also 
obvious that, for a higher thickness ratio of the core the 
results of the two models and those of (Grover and 
Kapur, 1982) are almost the same. This is a good 
indication that the behavior of the sandwich plate at a 
higher core ratio is a local bending of the face plates and 
a transverse shear deformation of the core. Fig. (12) 
shows the transverse deflection pattern along the x-axis 
and at y=b/2 for a half sine impulsive concentric loading 
at the center of sandwich plate #1 at different times. Fig. 
(13) shows the face layers deflection pattern for the 
same previous loading in a three-dimensional plot. It 
can be noticed that there is a considerable difference in 
the deflections of the upper and lower layers at the 
region of concentrated impact load. This may be 
attributed to that the core is very thick compared to the 
face plates and also the core shear modulus is very low 

which will cause the upper layer to bend locally 
following the deformed core and the core will distribute 
the concentrated load over a wider area on the lower 
layer. It is also observed that, away from the vicinity of 
concentrated load, the lower and upper layers have the 
same deflection. Fig. (14) shows the values of 
displacement of the upper and lower layers at the center 
of sandwich plate #1 due to half sine point loading at 
the center of the plate. The solid and dashed lines 
represent deformations of the upper and lower layers, 
respectively. It can be seen from this Figure that the two 
layers deflect differently during the impact duration (τ). 
After the contact duration, the two layers deflect in the 
same amount and the two curves merge into a single one 
as shown in the Figure. The dash-dot line represents the 
response of the two layers excluding the normal 
deformation in the core ( zε ), so the displacements of 
these two layers are the same, thus only one curve is 
shown. Fig. (15) shows the time-history of shock 
response due to different types of impact loading; half 
sine, step and triangular impulses. The different types of 
loading have the same energy and impact duration. It is 

(a) (b)

(c)
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Figure 8: Variations of the Non-dimensional Natural Frequency(ω) with Core Thickness Ratio for 
Sandwich Plate #2 for h1/h2 =0.5 

   Note: Ref. [9]= Lee and Kim (1997) 
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Figure 9: Time History of Shock Response of Sandwich Plate #3 (a) Gc=13.73 MPa, (b) Gc=68.65 MPa, 
(c) Gc=343.25 MPa 

Note: Ref. [3]= Grover and Kapur (1982) 

 
obvious that the triangular impulse has the largest peak 
compared to the half sine impulse and the step impulse 
during the impact duration. Also, it is obvious that the 
peak responses of the triangular and the step impulses 
occur at the same time and earlier than the half sine 

impulse. It is noticed that after the impact duration, the 
response of the two layers due to the half sine impulse is 
the same, while for the other two types of loading there 
is a little difference. 
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Figure 10: Variations of the Peak Response at the Center of Sandwich Plate #3 with 
Core Shear Modulus Ratio (Gc/E1) Due to Half Sine Shock Pulse with ϖ =500 rad/s 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Peak Response at the Center of Sandwich Plate #3 versus Core Thickness Ratio (hc/h1) 

for Different Core Shear Modulus 343.25, 68.65 and 13.73 MPa 
 

Note: Ref. [3]= Grover and Kapur (1982) 
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Figure 12: Transverse Deflection Pattern along the x-axis and y=b/2 for Sandwich Plate #1 Impacted by a Point 

Loading at the Center at (a)t=0.0005 sec., (b)t=0.0015 sec., (c)t=.003 sec., (d)t=0.0045 sec., (e)t=0.006 sec 
 
 
 

CONCLUSIONS 
The response of simply supported three-layered 

sandwich plates subjected to impact loading has been 
investigated. The governing equations of motion for 
undamped sandwich plates could be solved in a closed 
form, following the modal superposition method. Based 
on the results discussed earlier, the following 
conclusions could be drawn: The first model works very 
well for sandwich plates with a thick and small shear 
modulus core. The in-plane displacements at the middle 

surface of the face layers become more important for 
sandwich plates with a core having a large shear 
modulus or a core with a thickness less than the face 
layers thickness. The normal deformation in the core 
must be included in the sandwich plate model to 
account for the difference in displacements of the face 
layers, especially at the region of impact. After the 
impact duration, the two layers exhibit the same 
response and the core normal deformation has no effect 
on the response. 
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Figure 13: Deformation Configuration of the Face Layers of Sandwich Plate #1 Due to a Half Sine Shock 

Impulse at the Center for (a) t=0.0005 sec., (b) t=0.0015 sec., (c) t=0.003 sec., (d) t=0.0045 sec 
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Figure 14: Time-history of Shock Response of the Face Layers of Sandwich Plate #1 Due to Point Loading at 

the Center, Including and Excluding Normal Deformation in the Core ( zε ) 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 15: Time-history of Shock Response of Sandwich Plate #1 Due to Point Loading at the Center for 
Different Types of Impact Loading 
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