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ABSTRACT 

Seismic behavior of a single bay frame with diagonal damper that represents short period structures is 
evaluated in response to the excitation of a set of earthquake records. The frame system is modeled as a 
Generalized Single Degree of Freedom (GSDOF) system, and is subjected to nine earthquake records 
representative of the range of dominant site conditions. The relationship between the force modification 
factor and the global ductility demand for short period structures, in the presence of dampers, tends to 
approach those of long period ones. Dampers with high damping ratios tend to keep the structural response in 
the elastic range even for high values of force reductions. Seismic code provisions should be revised to 
account for short period effect under seismic excitation. 
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INTRODUCTION 

 
Earthquake-resistant structures are generally 

designed with strength much less than their elastic 
strength demand due to earthquake excitation According 
to modern seismic codes, typically well-detailed 
structures may be designed with strength capacity as 
low as 12% of their elastic strength demand (IBC, 
2006). 

This reduction in strength demand is possible due to 
many factors such as ductility, energy dissipation and 
frequency shift. In general, such strength reduction 
imposes special demand on structures in terms of 
detailing to achieve specified levels of ductility and 
energy dissipation which are function of the specified 
levels of strength reduction. Seismic codes, in general, 
utilize parameters such as force modification factor, R, 
and global ductility demand, µd, to implicitly account 
for strength reductions. Force modification factor is 

defined as the ratio of elastic strength demand to actual 
yield force of the structure, whereas, global ductility 
demand is defined as the maximum inelastic 
displacement under seismic excitation to the actual yield 
displacement of the structure. 

However, the codes do not explicitly address the 
damping of structures which is an indication of the 
energy dissipation capacity of the structure. 
Furthermore, codes do not distinguish between short 
period and long period structures in their treatment of 
strength and ductility requirements for the design of 
earthquake-resistant structures. 

Many research results on seismic demand indicate 
that even though ductility demand is feasible for long 
period structures (tall buildings), they impose high 
levels of ductility for short period structures which may 
not be achievable (Nassar and Krawinkler, 1991). 
Furthermore, research results also indicate that ductility 
demand is very sensitive to strength reduction for short 
period structures (Armouti, 2003). 

Consequently, short period structures should rely on 
factors other than ductility to achieve strength reduction 
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such as energy dissipation. Therefore, this study focuses 
on examining the effect of explicit damping on ductility 
demand on one hand, and on the feasibility of dampers 
as an alternative to ductility requirements for short 
period structures on the other. 

Dampers are widely used in structures to alleviate 
the harmful effect of earthquakes on structures. 
Dampers are known to be used in new buildings 
(Nagarajaiah and Narasimhan, 2007), in bridges 
(Madhekar and Jangid, 2009) and in retrofit of existing 
structures (Malhotra et al., 2004; Potty and Nambissan, 
2008). Dampers have proven to be effective systems for 
reducing earthquake forces in structures (Chandra et al., 
2000; Raju et al., 2005). 

In order to examine the effect of dampers on the 
behavior of short period structures under seismic 
excitation, a typical one bay frame with a diagonal 
viscous damper is considered for this study to examine 
the effect of viscous dampers on the R-µd relationship. 
A frame with a damper having a coefficient of damping, 
C, is subjected to a horizontal component of ground 
motion, gu&& , as shown in Fig. 1. In order to get a better 
understanding of the effect of ductility and energy 
dissipation as outlined above, and to be consistent with 
previous studies on this subject, the frame is modeled as 
a generalized Single Degree of Freedom (SDOF) 
system, and subjected to nine earthquake records used 
in previous studies (Armouti, 2003). Consequently, the 
force reduction factor, R, and the global ductility 
demand, µd, are evaluated and compared with previous 
studies to examine the effect of damping on the ductility 
demand as an indicator of the behavior of short period 
structures. 

To achieve these objectives, a parametric study 
using inelastic dynamic analysis is performed by 
varying the period and the intensity of earthquake 
excitation. The parameter variation includes five 
periods, five levels of relative yielding of the hysteresis 
model and four damping ratios for each of the nine 
earthquake records. This parameter variation results in 
900 pairs of R and µd values as a result of 225 runs of 
elastic dynamic analysis and 900 runs of inelastic 

dynamic analysis which are grouped and evaluated. 
For completeness of presentation, a description of 

the structure, the earthquake records used and the 
inelastic dynamic analysis procedures, including the 
hysteretic model of the frame, are presented. 

 
STRUCTURAL MODEL 

 
As previously mentioned, the structural model is 

selected as a frame having four nodes 1 through 4 as 
shown in Fig. 1. The frame consists of one bay frame 
fixed at both supports. The frame is provided with 
explicit diagonal viscous damper with coefficient of 
damping, C, between nodes 2 and 4. The frame may be 
modeled as a Generalized Single Degree of Freedom 
(GSDOF) system by assuming the total mass to be 
lumped at one node, node 2, as shown in Fig. 2. The 
generalized degree of freedom in this case is the mass 
displacement in the direction of u at node 2. The 
generalized resistance of the frame without the damper 
is obtained due to an induced displacement of the mass 
in direction, u, as a generalized spring force, FS

*, 

whereas the component of the reactive force of the 
damper in the direction of displacement, u, is obtained 
due to induced velocity in the direction of, u& , as the 
generalized damping force, FD

*. 
In case of elastic analysis, the generalized stiffness, 

k*, is simply evaluated by subjecting the frame to a unit 
displacement in direction of, u, which can be easily 
obtained by any structural analysis software. The 
generalized coefficient of damping, C*, can be obtained 
as function of the damper coefficient of damping, C, 
with reference to Fig. 3 as follows: 
Since damper velocity is  Du&  = u&  cos θ 
The force in the damper is given as  

FD = C. Du& = C. cos θu&  
The generalized force of the damper in the direction 

of, u, becomes: 
FD

* = FD cos θ = u& = C* u&  
 
Therefore, the generalized damping becomes: 

C* = C. cos2 θ  
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Figure 5: Distribution of power spectral density of 
earthquakes according to their site conditions 
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Figure 1: Frame layout 
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Figure 8: Relationship between force modification factor and  
global ductility demand at a damping ratio of 20% 
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Figure 9: Relationship between force modification factor and 
global ductility demand at a damping ratio of 40% 
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The frame system, therefore, can be represented by a 
system with a generalized single dynamic degree of 
freedom consisting of a lumped mass subjected to 
generalized forces and displacements as shown in Fig. 
4. The equation of motion in this case takes the form: 

FI
*+ FD

*+ FS
* = -m*

gu&&  

In case of elastic analysis 
m* u&& + C* u&  + k* u = -m*

gu&&  
u&& + 2ζ ωu&  + ω2 u = - gu&&  
where 
u = generalized displacement. 
u&  = generalized velocity. 
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Figure 11: Sample nonlinear regression curve for C value 
at a period of 0.1 sec and a damping ratio of 20% 
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u&&  = generalized acceleration. 
gu&&  = ground acceleration (earthquake). 

m* = generalized mass. 
FI

* = generalized inertial force. 
C* = generalized coefficient of damping. 
FD

* = generalized damping force. 
k* = generalized stiffness. 
FS

* = generalized spring force. 
ω = frequency of the generalized system. 
ζ  = damping of the generalized system. 
Since the parametric study uses predefined values of 

period and damping ratios, the exact values of these 
parameters, in this study, become immaterial. Therefore, 
the values of mass, stiffness, damping and level of 
ground motion are adjusted to produce the intended 
parameter values of the study. 

Consequently, the force reduction factor, R, is 
defined as the ratio of the elastic strength demand of the 
structure, Fe, to the actual yield strength, Fy, whereas 
global ductility demand, µd, is defined as the ratio of the 
maximum displacement that is reached during the 
excitation history, umax, to the actual yield displacement 
of the structure, uy. These ratios are given in 
mathematical form as follows: 

 
R =

y

e

F
F  , µd = 

y

max

u
u

. 
 

RECORDS OF EARTHQUAKES 
 
In view of earthquake characteristics, earthquake 

records are selected to be representative of the dominant 
site conditions found in reality; namely, rock sites, sand 
sites and clayey sites. In order to be comparative, the nine 
synthetic records that are used in this analysis were 
adopted from previous studies (Armouti, 2003). The 
records are based on the PSD distribution given in Fig. 5.  

Using this PSD distribution, nine synthetic records 
are generated and grouped into 3 subgroups; rock-based, 
deep cohesionless-based and soft soil based. If the letter 
(R) indicates rock site, the letter (D) indicates deep 
cohesionless site and the letter (S) indicates soft site for 
future reference, these records are designated as R1.nsa, 

R2.nsa, R3.nsa, D1.nsa, D2.nsa, D3.nsa, S1.nsa, S2.nsa 
and S3.nsa. A sample of these records, D1.nsa, with its 
associated Fourier amplitude spectrum are shown in Fig. 
6. 

 
INELASTIC DYNAMIC ANALYSIS 

The purpose of this study is to examine the effect of 
viscous dampers on the relationship between R and µd 
for short period structures. Since the relationship 
between R and µd can be only evaluated in a statistical 
sense due to the extreme randomness and uncertainty of 
earthquake characteristics, inelastic dynamic analysis 
(Clough and Penzien, 1993) is needed to generate a data 
base for this purpose. In addition to the selected nine 
earthquake records, the parameter variation includes 
five periods, five ductility ratios and four damping 
ratios resulting in 9x5x5x4=900 data points. 

The inelastic dynamic analysis can be performed 
using SAP2000 software (CSI, 2008) under Time 
History Function. The GSDOF frame may be modeled 
in SAP2000 as direct elasto-plastic link, whereas the 
damper is modeled as damper link. The parameters of 
the link and the damper are selected in view of the 
intended parameter variation values in conjunction with 
the equation of motion which is given before as: 

 
m* u&& + C* u&  + k* u = -m*

gu&& . 
 
In case of inelastic dynamic analysis, the stiffness 

will not be constant, and hence the frame resistance is 
taken as a reactive generalized restoring force, FS

*, 
hence the equation of motion take its final form as: 

m* u&& + C* u&  + FS
* = -m*

gu&&  
where 

u = generalized displacement of the mass in the 
direction of the single degree of freedom. 

u&  = generalized mass velocity. 
u&&  = generalized mass acceleration. 

gu&&  = horizontal ground acceleration. 
m* = generalized total mass. 
C* = generalized coefficient of viscous damping. 
FS

* = generalized restoring force (hysteresis model). 
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The structural response is represented by a bilinear 
hysteresis model with post yielding stiffness equal to 
10% of its initial stiffness as shown in Fig. 7. The 
properties of the hysteresis model are included in SAP 
2000 through the elasto-plastic link nonlinear 
properties. A yield force of 10 kN and yield 
displacement of 0.01 m are used for this purpose. Since 
the model properties are required arbitrarily to obtain a 
predefined period, the elastic stiffness, ko, of the model 

is selected as 1000 kN/m, whereas the mass is calibrated 
for each case to obtain the desired period since the 
period is given as: 

T = 2π 
*k

*m . 
 
The generalized damping coefficient is calculated in 

view of the desired damping ratio and the selected mass 
and stiffness as follows. 

The critical damping, C*
CR, is calculated as: 
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C*

CR = 2 ** mk  
 
The damping coefficient, C*, is then calculated as 

function of damping ratio, ζ, and critical damping, C*
CR, 

as: 
C* = ζ C*

CR. 
 

The five periods of the model are chosen by 
adjusting the mass to produce the desired period. Since 
the R-�d relationship is targeted in this study for short 
period structures, the five periods used in this study are 
0.1, 0.2, 0.3 and 0.4 seconds. A fifth period of 0.5 
second is also included in the study as it marks the 
border line between short and long period values of 
structures under typical earthquake excitation. 

In order to obtain various levels of R values, the 
yield level of the frame is kept constant while changing 
the intensity of the earthquakes; i.e. the peak ground 
acceleration of the earthquakes. Accordingly, the 
parameter variation is generated by taking a different 
level of peak ground acceleration for each period and 
each earthquake record. The elastic strength demand; 
i.e. the maximum elastic force, Fe, and the maximum 
elastic displacement, ue, are then obtained using elastic 
dynamic analysis; i.e. Time History Analysis with 
infinite yielding. For each value of, Fe, an R-value is 
calculated as follows: 

 
R =

y

e

F
F . 

 
For each value of R obtained above and for each 

level of damping of the damper, inelastic dynamic 
analysis; i.e. Time History Analysis with yielding force, 
at 10 kN, is performed to evaluate the maximum 
displacement demand during the time of excitation, 
umax. Knowing umax and uy, µd is calculated as follows: 

 
µd = 

y

max

u
u

. 
 
A total number of 900 pairs of R and µd from the 

above procedures are obtained. Samples of such results 

are shown in Fig. 8 for 20% damping ratio and in Fig. 9 
for 40% damping ratio. It can be noticed that the data 
points still exhibit the level of randomness associated 
with such analysis. 

 
NASSAR AND KRAWINKLER MODEL 

 
An extensive study resulted in a large data base of 

seismic demand characteristics using fifteen actual 
earthquake records. Nassar and Krawinkler, N&K, 
(Nassar and Krawinkler, 1991) have proposed the 
following expression for a relationship between R and 
µd factors: 

R = [C (µd –1) +1]1/C 
where C is given as 

 
C(T) = 

a

a

T1
T
+

+
T
b . 

 
For a bilinear model with 10% post yielding 

stiffness and typical damping ratio of 5%, N&K have 
used nonlinear regression analysis to produce values of 
(a = 0.8) and (b = 0.29). Using these values, a plot of the 
parameter C versus the period T is shown in Fig. 10. 
This figure will be used in this study as the reference 
relationship between R and µd for a bilinear hysterisis 
model under the excitation of earthquake records. It is 
worthwhile to mention that when the value of the 
parameter C = 1, the R-µd relationship tends to the well 
known equal displacement criterion (R = µd); and when 
the value of the parameter C = 2, the R-µd relationship 
tends   to   the   well   known  equal  energy  criterion  
(R =  1-  2µ ). 

It is worthwhile also to point out that, in the statistical 
sense, the C-T relationship shown in Fig. 10 seems to 
become steady in the long period region (T > 0.5 sec). 
For long period regions, where parameter C is low (C<1), 
ductility demand is usually low and steady, whereas, for 
short period regions where parameter C is high (C>>1), 
the seismic demand becomes sensitive and high. This 
type of behavior is known to be a characteristic behavior 
of structures in response to earthquake excitation. It 
should also be pointed out that when the value of C is 
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greater than one, the ductility demand becomes more than 
the force reduction values, and when the value of C is 
smaller than one, the ductility demand becomes less than 
the force reduction values. 

 
ANALYSIS OF NUMERICAL RESULTS 

 
Evaluation of the numerical results obtained as 

outlined previously is accomplished through 
comparison with N&K model which is established by 
finding the parameter C at the selected periods of the 
system under the excitation of the selected earthquake 
records at a each damping ratio. The resulting values of 
the parameter C will then be compared with C-T plot 
results from N&K model. 

Figure 11 shows one sample of nonlinear regression 
curve used to find the parameter C for a period of 0.1 
sec at a damping ratio of 20%, for which a value of C = 
2.75 is obtained. Similar nonlinear regression analysis is 
conducted to produce the rest of the C-values for the 
selected periods as given in Table 1. 

 
Table 1: Nonlinear regression results for parameter C 
 Damping ratio 

Period 
(second) 

20% 40% 60% 80% 

0.1 2.75 2.35 2.09 1.88 
0.2 1.42 0.89 0.56 0.31 
0.3 1.08 0.63 0.35 0.18 
0.4 0.84 0.31 *** *** 
0.5 1.03 0.67 0.39 0.17 
Fig. 12 and Fig. 13 show a comparison between the 

obtained C-values from this study and the reference 
N&K model. It can be seen that the results from this 
study lie below the reference curve. It can also be 
noticed that the C-values for the period of 0.1 second 
remain above the value of one which means that, for 
this period even with high values of damping, the 
ductility demand remains higher than force reduction. 
However, high damping brings the level of demand 
closer to a value of two which is the equal energy 
criterion. 

Fig. 12 and Fig. 13 also indicate that 20% damping 
has reduced the ductility demand, but not with great 
values. However, except for the period of 0.1 second, 
damping ratios of 40% and higher bring the ductility 
demand of short period structures to comparable values 
of long period structures, and even to lesser values. 

Referring to Fig. 8 and Fig. 9, the scatter of data can 
be observed which is reflected by the extreme 
randomness of earthquakes and their random effect on 
the response of structures. Careful examination of these 
two figures shows that the data points of Fig. 9 (40% 
damping) seem to shift to the left of the data points of 
Fig. 8 (20% damping), indicating less ductility demand 
with increased damping. Furthermore, it should be 
noticed that many responses of the structure remain 
elastic at reduced force values which are marked by the 
values of (R > 1) and the values of (µd < 1). 

Comparison between Fig. 8 and Fig. 9 indicates also 
that the points which remain elastic at reduced force are 
much more for the case of 40% damping than for the 
case of 20% damping. It can be noticed also that the 
structure with 40% damping remains elastic at higher 
values of R (R>3) than the structure with 20% damping 
(R<3). In other words, the reduction of elastic strength 
demand is simply shared between the system ductility 
and the damper.  

 
CONCLUSIONS 

Response of structures to earthquake records is 
known to impose high ductility demand for short period 
structures much higher than those of long period 
structures. Such high demand for short period structures 
may not be even feasible to achieve. Seismic codes, in 
general, overlook this issue and do not distinguish 
between long and short periods in relation to this matter. 

In order to shed light on this issue, this study 
evaluates the effect of explicit dampers as a mean of 
alleviating the high ductility demand for short period 
structures through a parametric study on one bay frame 
with diagonal damper. This paper examines this issue 
through the relationship between the force modification 
factor and the global ductility demand under seismic 
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excitation as defined by most modern seismic codes 
(IBC, 2006). This relationship constitutes the basic 
relationship for defining seismic design forces and the 
associated required ductility capacities. 

In view of the extreme randomness of earthquake 
characteristics and the reflection of this randomness on 
the response of structures, the results presented in this 
paper indicate, in statistical sense, that the response of 
short period structures to earthquakes after yielding is in 
fact sensitive and highly demanding. In addition, they 
indicate that the dampers with damping ratios up to 20% 
of critical damping tend to reduce the ductility demand 
consistently with the period values without any 
significant change. However, dampers with higher 
critical damping more than 20% seem to bring the 
behavior of short period structures to levels of the 
behavior of long period ones. Even more, they show 
that higher damping improves the behavior of short 

period structures to levels that are feasibly achievable in 
practice. It has also been found that the higher the 
damping presence in the structure, the higher will be the 
presence of elastic behavior of the structure at even 
higher values of force reduction.  

It can be concluded that the response of short period 
structures without damping, and of course without 
seismic isolation, is difficult to control and difficult to 
design with reasonable levels of safety. As this issue is 
overlooked in seismic codes, structures with short 
periods should be carefully designed taking into 
consideration additional measures other than ductility to 
include some acceptable levels of safety. Furthermore, 
seismic codes ought to revisit the concept of force 
reduction and distinguish between long period structures 
and short period structures. Short period structures may 
need additional provisions to provide them with enough 
safety measures. 
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