
Jordan Journal of Civil Engineering, Volume 6, No. 3, 2012 

- 313 - 

 
The Inclusion of Warping in Free Vibration of Structures 

 
H. Saidi 1), R. A. Eldulaimy 2), A. Adda 3)and M. Benguediab 3) 

 
1) Faculty of Engineering, University of Sidi-bel-Abbes, Algeria. E-Mail: hayatsaidi2009@yahoo.fr 

2) Faculty of Engineering, University of Baghdad, Iraq 
3) Faculty of Engineering, University of Sidi-bel-Abbes, Algeria 

 
ABSTRACT 

Thin walled cellular structures are widely used in many civil, mechanical and aerospace engineering 
applications. These applications have increased with the economic necessity of providing high strength with 
low weight and cost. Structural analysis of thin walled girder is usually performed by the beam theory. In the 
present study, the effect of cross-sectional warping on the dynamic behavior of box girder deck is 
investigated using discrete element approach in idealizing the structure and incorporating the warping as a 
seventh degree of freedom in a space frame element. Shear deformation due to uniform torsion in addition to 
transverse shear deformation are taken into account in the problem formulation. The analysis is performed 
using the computer programs DNG6 and DNG7.It can be seen that the transverse shear contributes 
considerably to lowering the natural frequencies of the flexural vibration modes, and the inclusion of warping 
considerably increased the natural frequencies of the torsional-dominant vibration modes. 
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INTRODUCTION 

 
The first beam theory has been established by 

Bernoulli and Navier. After that, Vlasov’s, Benscoter 
as well as Kollbrunner and Haidin’s theories followed. 
In the following article, the mathematical derivation of 
the governing equations required for the formulation of 
both stiffness and mass matrices is presented. 

 
Equation of Motion 

The equation of motion of any damped system is 
given by Clough and Peneien (Clough and Peneien, 
1995). 
 
[ ]{ } [ ]{ } [ ]{ } { })t(PUkUCUM =++ &&&                                         (1) 

 
where {U}, {U& } and {Ü} are the time-dependant 

displacement, velocity and acceleration vectors,  

respectively, and {F (t)} is the applied load vector.   
The system is assumed to have classical damping. 

Thus, the damping matrix is of the form: 
 
ሾܥሿ ൌ  ሿ                                                      (2)ܯ௜߱௜ ሾߦ2

 
in which ξi is the damping ratio corresponding to 

the mode (i). 
ωi: is the natural angular velocity (or circular 

frequency) of the system which vibrates at the mode 
shape (i). 

The equation of motion for free vibration 
undamped system can be obtained by omitting the 
damping matrix and the load vector from Equation (1), 
such that: 

 
ሾܯሿሼÜሽ ൅ ሾܭሿሼܷሽ ൌ ሼ0ሽ                                           (3) 

 
Also, the free vibration motion of the system is 
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simple harmonic, which may be expressed as: 
 

ܷሺݐሻ ൌ Ф߱݊݅ݏ௜(4)                                                      ݐ 
 
in which: 

Ф: represents the mode shape of the system which does 
not change with time, but only the amplitude varies. 
The acceleration vector in free vibration will be: 
 

Üሺݐሻ ൌ െ߱௜
ଶФ௜߱݊݅ݏ௜ݐ ൌ െ߱௜

ଶሼܷሺݐሻሽ                       (5) 
 
Substituting equations (4) and (5) into equation (3) 

results in: 
 

െ߱௜
ଶሾܯሿФ௜߱݊݅ݏ௜ݐ ൅ ሾܭሿФ௜߱݊݅ݏ௜ݐ ൌ ሼ0ሽ                 (6) 

 
Omitting the sine terms, this equation can be 

written as: 
 

ቂሾܭሿ െ ߱௜
ଶሾܯሿቃФ௜ ൌ ሼ0ሽ                                           (7) 

      
The nontrivial solution is possible only when  
                

|ሾܭሿ െ ߱௜
ଶሾܯሿ| ൌ 0                                                   (8) 

 
Equation (8) is called the frequency equation of the 

system. Expanding this equation will give an algebraic 
equation of an nth degree known as the characteristic 
equation of the system (Paz, 2006). 

The n roots of this equation. ( )22
2

2
1 n............. ωωω  

represent the square of the circular frequencies of n 
modes of vibration (eigen values) which are possible in 
the system, while the corresponding n eigen vectors of 
this eigen problem represent the n mode shapes of 
vibration of the system. It is known that the amplitude 
of these mode shapes is arbitrary, it is customary to 
normalize them. The most often used normalizing 
procedure in computer programs for structural 
vibration analysis involves adjusting each mode shape.  

 
ሼФ௜ሽ்ሾܯሿሼФ௜ሽ ൌ  (9)                                                    ܫ

 

The mode shapes normalized in this fashion are 
said to be orthonormal relative to the mass matrix 
(Clough and Peneien, 1995) or M-orthonormalized. 
Then: 
ሼФ௜ሽ்ሾܭሿሼФ௜ሽ ൌ ሾߣሿ                                                (10) 

                 
ሼФ௜ሽ்ሾܯሿሼФ௜ሽ ൌ ሾܫሿ                                                (11) 

 
where [Фi] is a modal matrix whose columns are 

M-orthonormalized mode shapes. 
[λ] is a diagonal matrix which stores the square of the 

circular frequencies, and 
[I] is an identity matrix. 

So, it is important to realize that all solution 
methods are iterative in nature, because basically 
solving the eigen value problem: 
 
KФ ൌ λФ(12)                                                           ܯ 

 
is equivalent to calculating the roots of the 

polynomial P (λ), which has an order equal to the order 
of K and M. 

                                           
Solution Methods for Eigen Problems 

It is important to realize that all solution methods 
are iterative in nature, because basically solving the 
eigen value problem KФ= λMФ is equivalent to 
calculating the roots of the polynomial P (λ), which has 
an order equal to the order of K and M. The general 
groups of solution methods (Chardrupatla and 
Belugundu, 2002) are: 

 
Vector Iteration Methods 

Various vector iteration methods are based on 
properties of the Rayleigh quotient. For the generalized 
eingen value problem of Equation (12), the Rayleigh 
quotient Q (V) is given by: 
 
( )

MVV
KVVVQ T

T
= ;                                                     (13) 

 
where V is an arbitrary vector which defines a mode 

shape. A fundamental property of Rayleigh quotient is 
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that it lies between the smallest and the largest eigen 
values; that is: 
 

( ) nVQ λλ ≥≤1 .                                                     (14) 
 

Power iteration, inverse iteration and subspace 
iteration methods are based on this property. 

Power iteration leads to the evaluation of the largest 
eigen value, the inverse iteration can be used in 
evaluating the lowest eigen value, and subspace 
iteration technique is suitable for large scale problems. 

 
Transformation Methods 

The basic approach is to transform the matrices to a 
simpler form and then determine the eigen values and 
eigen vectors. The major methods in this category are 
the generalized Jacobi method and the QR method. 

In the QR method, the matrices are first reduced to 
a tridiagonal form using Householder matrices (Bathe 
and Wilson, 1976). 

The generalized Jacobi method uses the 
transformation to simultaneously diagonalize the 
stiffness and mass matrices. This method needs the full 
matrix locations and is quite efficient for calculating all 
eigen values and eigen vectors for small problems. 

 
Polynomial Iteration Methods 

The polynomial iteration techniques which operate 
on the fact that: 

( ) 0=iP λ   is given by: 
 
( ) ( )MKdetP λλ −= .                                              (15) 

 
An advantage of the polynomial iteration method is 

that each eigen value is determined independently and 
cumulative errors do not occur. However, there is no 
guarantee which value of λ has been calculated without 
recourse to other methods; e.g., Sturm sequence 
checks. 

The Strum sequence property of the characteristic 
polynomial is as follows: 
 

( ) ( )MKdetP λλ −=                                               
and 
 
( ) ( ) ( ) ( ) )MK(det)(P rrr)r(r λλ −=                      (16) 

11 −= n.,.........r  
 
where ( ) ( ) )(P rr λ  is the characteristic polynomial 

of the r’th associated constraint problem corresponding 
to φλφ MK = . 

Considering the effectiveness of the solution 
procedures, none of these methods is always to be most 
efficient, but the solution technique to be used should 
be selected according to the specific problem to be 
solved. 

The procedure for these solutions of large eigen 
problems was very expensive for a long time, therefore 
approximate solution techniques will be used. 

Subspace iteration method is one of these 
approximate methods used for a the cases considered in 
this study. 
 
Subspace Iteration Method 

The subspace iteration method is particularly suited 
for the calculation of a few eigen values and eigen 
vectors of large finite element systems. 

The basic objective in this method is to solve for 
the smallest P eigen values and the corresponding  
eigen vectors satisfying the formula (Bathe and 
Wilson, 1976; Bathe and Wilson, 1972). 
 
ሾܭሿሼФሽ ൌ ሾܯሿሼФሽሾߣሿ                                               (17) 

 
in which Ф is a matrix storing the p eigen vectors 

and λ is the corresponding vector of eigen values. 
[K] is the stiffness matrix. 
[M] is the mass matrix. 

The subspace iterations are performed as follows: 
 
ሾܭሿሾܺ௞ାଵሿ ൌ ሾܯሿሾܺ௄ሿ                                             (18) 
 
• For K=1, 2… iterate from subspace Ek to subspace 

Ek+1.  
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• Calculate the projections of the matrices. 
ሾܭ௞ାଵሿ ൌ ሾܺ௞ାଵሿ்ሾܭሿሾܺ௞ାଵሿ                                     (19) 
 
ሾܯ௞ାଵሿ ൌ ሾܺ௞ାଵሿ்ሾܭሿሾܺ௞ାଵሿ                                    (20) 

 
• solve for the eigen system of the projected 

matrices. 
 
ሾܭ௞ାଵሿሾܳ௞ାଵሿ ൌ ሾܯ௞ାଵሿሾܳ௞ାଵሿሾλ௞ାଵሿ                (21) 
 
where ሾܳ௞ାଵሿ is the matrix of eigen vectors of the 

subspace and [λ k+1] is the diagonal matrix of the 
corresponding eigen values. 

 
• calculate an improved approximation to eigen 

vectors: 
ܺ௞ାଵ ൌ തܺ௞ାଵܳ௞ାଵ                                                    (22) 

 
Then, provided that the vectors in [X1] are not 

orthogonal to one of the required eigen vectors, the ith 
diagonal entry in [λk+1] converges to ߣ௜  or  ߱௜

ଶ and the 
ith vector in [Xk+1] converges to Ф௜. 

An important aspect is the convergence of the 
method. Assuming that in the iteration the vectors in 
ܺ௞ାଵ are of order in such a way that the ith diagonal 
element in λ௞ାଵ is larger than the (i-1) st element, I=2..., 
P, than the ith column in ܺ௞ାଵ converges linearly to Ф௜ 
and the convergence rate is ߣ௜ ⁄௣ାଵߣ . 

Although this is an asymptotic convergence rate, it 
indicates that the smallest eigen values converge faster. 
Also, faster convergence can be obtained by using q 
iteration vectors, with q > p. 

In the implementation, q= min (2p, p+8) has been 
used (Bathe and Wilson, 1976). 

Considering the convergence rate, it should be 
noted that multiple eigen values do not decrease the 
rate of convergence,  ߣ௤ାଵ/ ߣ௤ . 

 
The convergence is measured as follows: 
 ( ) ( )

( )
6

1

1

10 −
+

+

=≤
−

tol
k

i

k
i

k
i

λ

λλ
.                                   (23) 

 

The Stiffness and Mass Matrices 
The formulation of the stiffness and mass matrices 

is based on approximate displacement functions.  
The structure is modelled by a three-dimensional 

beam-column element with warping deflection and 
bimoment inertia as an additional degree-of-freedom (7 
degrees of freedom per node). 

 
Warping Displacement and Stress 

The warping displacement is done by: 
 

2

2

dx
d)(x o
θωωε −= ;                                                     (24) 

 
and the warping stress is done by: 

 

2

2

dx
d)(Ex o
θ

ωωσ −= .                                                    (25) 
 

 
Torsion-Bending Element Stiffness 

The element stiffness matrix corresponding to the 
torsional-warping degree-of-freedom is derived by 
assuming the displacement field )x(θ  corresponding to 
the mentioned degree-of-freedom. 
 

p  )x(H)x( υθ =                                                    (26) 
 

p υ = local displacement vector. 
 
Using cubic Hermitean polynomials or “beam 

functions” (Weaver and Johnston, 1990), then: 
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                                         (27) 
 
 
 
 
According to the method of virtual work, the 

stiffness coefficients are derived from the equation: 
 

[ ] dx )x(a k)x(ak SS

TL

Sp ∫=
0

.                                          (28) 
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Sectional Properties (kn, m) 
 
A= 0.25 
IY = IZ = 5.20833 E-3 
J = 8.7875 E-3 
IW = h3b3/ 144 
Rg = 0.1874833,  
ρ = 2.4 kg /m3, E = 2E7, L= 6 m 

ωn= (1.875)2 ට ாூ
௅ర௠ഥ

  మ   = 40.69  rad/sec 

Therefore, the stiffness matrix will take the form: 
 

pSpB

L

p KKdx

dx
dH
dx

Hd

GJ
E

dx
dH

dx
Hdk +=

⎪
⎪
⎭
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⎫
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Mass Formulation 

The consistent mass matrix can be calculated from 
(Paz, 2006). 
 

[ ] [ ] [ ]dx)x(Hm)x(HM
L

T∫=
0

                                                 (31) 
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ρ : denotes the mass density; 
A: cross-sectional area; and 
rg: the radius of gyration of the cross-section. 

 
Computer Programming 

For the purpose of this study, two computer 
programs (DNG6 and DNG7) are used in this study. 
These programs are coded in FORTRAN99 language. 
The programs are depending on the same prepared data 
file.  

The Computer Program DNG6 
The program will formulate the stiffness and mass 

matrices for each member using a six degree freedom 
system. 

 
The Computer Program DNG7 

The program will formulate the stiffness and mass 
matrices for each member using a seven degree 
freedom system, the effect of warping is included as a 
seventh degree of freedom. The transverse shear 
deformation is also included. 

 
Validation of the Proposed D.E. Idealization 
Methods 

The proposed discrete elements (D.E.) idealization 
methods with six and seven degrees of freedom per node 
are validated by comparing the natural frequencies of 
certain examples obtained by this method against the 
results obtained by using MSC/NASTRAN program. 

Example 01: The free vibration of a rectangular 
beam shown in Figure (1) is considered. The analysis is 
performed using the exact solution in Chopra (2007) 
and the computer programs (DNG6 and DNG7) and 
MSC/NASTRAN as shown in Table (1.1). The results 
obtained by all the above methods are tabulated in 
Table (1). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 Figure 1: Rectangular beam with fixed free end condition 

0.5 

0.56
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Example 02: 
The free vibration of a single box thin-wall section 

shown in Figure (2) will be analyzed to verify the 
performance of the proposed thin wall beam column 
element in the free vibration response. The analysis is 
performed using (DNG6 and DNG7) programs and 
MSC/NASTRAN package. The results are presented in 
Table (1.2). The results obtained by all the above 
methods are given in Table (2). 

 
 
 
 
 
 
 
 
 
 
 
 

RESULTS AND DISCUSSION 
 
Free vibration analysis with 6 elements, warping 

and shear included « DNG6 » 
 

The calculated natural frequencies 
 

No. Hz rad/sec 

1 0.64520D+01 0.40539D+02 

2 0.64524D+01 0.40542D+02 

3 0.39604D+02 0.24884D+03 

4 0.39604D+02 0.24884D+03 

5 0.79538D+02 0.49975D+03 

6 0.10774D+03 0.67697D+03 

7 0.10774D+03 0.67697D+03 

8 0.12063D+03 0.75791D+03 

9 0.20399D+03 0.12817D+04 

10 0.20399D+03 0.12817D+04 

 
 

 
 
 
 

 

 
The calculated eigen vectors ‘node number7’ 

Deflection x Deflection y Deflection z Rotation x Rotation y Rotation z 
0.000D+00 0.000D+00 - 0.105D+01 0.000D+00 0.240D+00 0.000D+00 

0.000D+00 0.105D+01 0.000D+00 0.000D+00 0.000D+00 0.240D+00 

0.000D+00 0.104D+01 0.129D−07 0.000D+00 - 0.101D−07 0.815D+00 

0.000D+00 -0.129D−07 0.104D+01 0.000D+00 - 0.815D+00 - 0.101D−07 

0.215D−10 0.000D−00 0.000D+00 0.365D+01 0.000D+00 0.000D+00 

- 0.157D−10 - 0.104D+01 0.348D−08 0.000D+00 - 0.431D−08 - 0.128D+01 

0.157D−10 - 0.348D−08 - 0.104D+01 0.000D+00 0.128D+01 - 0.431D−08 

0.749D+00 - 0.105D−06 0.105D−06 0.625D−05 - 0.373D−06 - 0.373D−06 

- 0.128D−10 - 0.104D+01 - 0.352D−08 0.000D+00 0.587D−08 - 0.173D+01 

- 0.128D−10 - 0.352D−08 0.104D+01  - 0.103D−11 - 0.173D+01 - 0.587D−08 

 

Table (1.1a). Example N° 1: free vibration analysis of a rectangular beam with a fixed- free end 
condition using DNG6 

Sectional Properties (kn, m) 
L = 500 mm, b = 25 mm, h =50 mm, 
t  = 1mm, E = 200 GN/m2, 
G = 76.9 GN/m2, Mt = 100 N.m 

X 

Y

b

h 

Figure 2: Cantilever box beam subjected to a twisting moment 
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Free vibration analysis with 6 elements, warping and shear not included « DNG6 » 

The calculated natural eigen values 
 

No. Hz rad/sec 
1 0.64768D+01 0.40695D+02 
2 0.64768D+01 0.40695D+02 
3 0.40599D+02 0.25509D+03 
4 0.40599D+02 0.25509D+03 
5 0.79538D+02 0.49975D+03 
6 0.11386D+03 0.71539D+03 
7 0.11386D+03 0.71539D+03 
8 0.12063D+03 0.75791D+03 
9 0.22414D+03 0.14083D+04 
10 0.22414D+03 0.14083D+04 

 
 
 
 

The calculated eigen vectors ‘node number7’ 
 

Deflection x Deflection y Deflection z Rotation x Rotation y Rotation z 

0.000D+00 0.745D+00 0.745D+00 0.000D+00 - 0.171D+00 0.171D+00 

0.000D+00 0.745D+00 - 0.745D+00 0.000D+00 0.171D+00 0.171D+00 

0.000D+00 0.746D+00 0.745D+00 0.000D+00 - 0.594D+00 0.595D+00 

0.000D+00 - 0.745D+00 0.746D+00 0.000D+00 - 0.595D+00  - 0.594D+00 

0.000D+00 0.000D+00   0.000D+00 0.400D+01 0.000D+00 0.000D+00 

0.000D+00 - 0.738D+00 - 0.758D+00 0.000D+00 - 0.991D+00  - 0.966D+00 

0.000D+00 - 0.758D+00 - 0.738D+00 0.221D−11 0.966D+00  - 0.991D+00 

- 0.750D+00 0.000D+00   0.000D+00 0.355D−11 0.000D+00 0.000D+00 

0.000D+00 0.329D+00 - 0.101D+01 0.000D+00 0.186D+01 0.605D+00 

0.000D+00 - 0.101D+01 - 0.329D+00 0.000D+00 0.605D+00  - 0.186D+01 

 
Table (1.1b). Example N°1: free vibration analysis of a rectangular beam with a fixed- free 

end condition using DNG6 
 

  



The Inclusion of…                                                                             H. Saidi, R. A. Eldulaimy, A. Adda and M. Benguediab 

 

- 320 - 

Free vibration analysis with 6 elements, transverse shear included « DNG7 » 
The calculated natural frequencies 
No. Hz rad/sec 
1 0.64520D+01 0.40539D+02 
2 0.64524D+01 0.40542D+02 
3 0.39604D+02 0.24884D+03 
4 0.39604D+02 0.24884D+03 
5 0.82094D+02 0.51581D+03 
6 0.10774D+03 0.67697D+03 
7 0.10774D+03 0.67697D+03 
8 0.12063D+03 0.75791D+03 
9 0.20399D+03 0.12817D+04 
10 0.20399D+03 0.12817D+04 

 
The calculated eigen vectors ‘node number7’ 

Deflection x Deflection y Deflection z Rotation x Warping u Rotation y Rotation z 
0.000D+00 0.000D+00 - 0.105D+01 0.000D+00 0.000D+00 0.240D+00 0.000D+00 
0.000D+00 0.105D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.240D+00 
0.000D+00 0.104D+01 0.895D−08 0.000D+00 0.000D+00 - 0.671D−08 0.815D+00 
0.000D+00 0.895D−08 - 0.104D+01 0.000D+00 0.000D+00 0.815D+00 0.671D−08 
0.271D−10 0.000D−00 0.000D+00 0.405D+01 -0.424D−01 0.000D+00 0.000D+00 
- 0.157D−10 - 0.104D+01 0.348D−08 0.000D+00 0.000D+00 - 0.431D−08 - 0.128D+01 
0.157D−10 - 0.348D−08 - 0.104D+01 0.000D+00 0.000D+00 0.128D+01 - 0.431D−08 
0.749D+00 - 0.105D−06 0.105D−06 -0.500D−05 0.531D−05 - 0.373D−06 - 0.373D−06 
- 0.128D−10 - 0.104D+01 - 0.352D−08 0.000D+00 0.000D+00 0.586D−08 - 0.173D+01 
- 0.128D−10 - 0.352D−08 0.104D+01 0.000D+00 0.000D+00 - 0.173D+01 - 0.586D−08 

Table (1.1c). Example N°1: free vibration analysis of a rectangular beam with a fixed- free end 
condition using DNG7 

Free vibration analysis with 6 elements, transverse shear not included « DNG7 » 
The calculated natural eigenvalues 

No. Hz rad/sec 
1 0.64768D+01 0.40695D+02 
2 0.64768D+01 0.40695D+02 
3 0.40599D+02 0.25509D+03 
4 0.40599D+02 0.25509D+03 
5 0.82094D+02 0.51581D+03 
6 0.11386D+03 0.71539D+03 
7 0.11386D+03 0.71539D+03 
8 0.12063D+03 0.75791D+03 
9 0.22414D+03 0.14083D+04 
10 0.22414D+03 0.14083D+04 
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The calculated eigen vectors ‘node number7’ 
 

Deflection x Deflection y Deflection z Rotation x Warping u Rotation y Rotation z 
0.000D+00 0.745D+00 0.745D+00 0.000D+00 0.000D+00 - 0.171D+00   0.171D+00 
0.000D+00 0.745D+00 - 0.745D+00 0.000D+00 0.000D+00   0.171D+00   0.171D+00 
0.000D+00 0.152D+00 0.104 D+01 0.000D+00 0.000D+00 - 0.832D+00   0.121D+00 
0.000D+00   0.104D+01 - 0.152D+00 0.000D+00 0.000D+00   0.121D+00   0.832D+00 
0.000D+00 0.000D+00 0.000D+00 0.405D+01 - 0.424D−01   0.000D+00   0.000D+00 
0.000D+00 - 0.748D+00 - 0.747D+00 0.000D+00   0.000D+00   0.978D+00 - 0.979D+00 
0.000D+00   0.747D+00 - 0.748D+00 0.000D+00 0.000D+00   0.979D+00    0.978D+00 
- 0.750D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00   0.000D+00   0.000D+00 
0.000D+00 - 0.107D+01   0.344D−02 0.000D+00 0.000D+00 - 0.633D−02 - 0.196D+01 
0.000D+00 - 0.344D−02 - 0.107D+01 0.000D+00 0.000D+00   0.196D+01 - 0.633D−02 

 
 

Table (1.1d). Example N°1: free vibration analysis of a rectangular beam with a fixed- free end 
condition using DNG7 

 
 

Table 1. Natural frequencies (Hz) of a rectangular beam with a fixed free end condition (example N°1) 
 

Predominant 
mode 

 
Exact 

DNG6 
(6D.O.F.) without 
(warping and shear) 

DNG6 
(6 D.O.F.) with 
(warping and shear) 

DNG7 
(7D.O.F.) with shear 

 
MSC/NASTRAN 

ULY1 6.465 6elem. 6.476 6elem. 6.452 6elem. 6.452 12elem. 6.4559 
ULZ1 6.465 6elem. 6.476 6elem. 6.452 6elem. 6.452 12elem. 6.4559 
ULY2 40.58 6elem. 40.599 6elem. 39.604 6elem. 39.604 12elem. 40.144 
ULZ2 40.58 6elem. 40.599 6elem. 39.604 6elem. 39.604 12elem. 40.144 
ULY3 113.6 6elem. 113.86 6elem. 107.74 6elem. 107.74 12elem. 111.61 
ULZ3 113.6 6elem. 113.86 6elem. 107.74 6elem. 107.74 12elem. 111.61 
CTW  6elem. 79.538 

Mode 5 
6elem. 79.538 6elem. 82.09 12elem. 347.28 

Mode 10 
AXIAL  6elem. 120.63 6elem. 120.63 6elem. 120.63 12elem. 120.195 

 
ULY1: 1st uncoupled lateral mode in Y- direction. 
ULZ1: 1st uncoupled lateral mode in Z- direction. 
CTW: Coupled torsional warping mode. 
UAXIAL: Uncoupled axial mode. 
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Free vibration analysis with 15 elements, warping and transverse shear included« DNG6 » 
The calculated natural frequencies 

No. Hz rad/sec 
1 0.39148D+01 0.24597D+02 
2 0.65826D+01 0.41360D+02 
3 0.23186D+02 0.14568D+03 
4 0.38119D+02 0.23951D+03 
5 0.60077D+02 0.37747D+03 
6 0.70341D+02 0.44196D+03 
7 0.96276D+02 0.60492D+03 
8 0.10726D+03 0.67394D+03 
9 0.16105D+03 0.10119D+04 
10 0.16776D+03 0.10541D+04 

 
The calculated eigen vectors ‘node number16’ 

Deflection x Deflection y Deflection z Rotation x Rotation y Rotation z 
0.000D+00 0.000D+00 0.260D+01 0.000D+00 - 0.705D−02 0.000D+00 
0.000D+00 0.260D+01 0.000D+00 0.000D+00 0.000D+00 0.699D−02 
0.000D+00 - 0.127D−09 0.253D+01 0.000D+00 - 0.230D−01 0.000D+00 
0.000D+00 0.250D+01 0.000D+00 0.000D+00 0.000D+00 0.233D−01 
0.000D+00 0.000D+00 0.245D+01 0.000D+00 - 0.337D−01 0.000D+00 
0.392D−01 0.225D−11 0.292D−11 0.111D+00 0.000D+01 0.000D+00 
0.000D+00 0.241D+01 0.000D+00 0.000D+00 0.000D+00 0.315D−01 
0.000D+00 0.000D+00 - 0.238D+01 0.000D+00 0.418D−01 0.000D+01 
0.000D+00 0.000D+00 0.233D+01 0.000D+00 - 0.474D−01 0.000D+00 
0.000D+00 0.233D+01 0.000D+00 0.000D+00 0.000D+00 0.397D−01 

Table (1.2a). Example N° 2: free vibration analysis of a cantilever box beam using DNG6 
 

Free vibration analysis with 15 elements, warping included and transverse shear not included « DNG6 » 
The calculated natural frequencies 
No. Hz rad/sec 
1 0.39694D+01 0.24941D+02 
2 0.49677D+02 0.31213D+03 
3 0.80101D+02 0.50329D+03 
4 0.14958D+03 0.93982D+03 
5 0.24118D+03 0.15154D+04 
6 0.25112D+03 0.15778D+04 
7 0.35541D+03 0.22331D+04 
8 0.40491D+03 0.25441D+04 
9 0.46357D+03 0.29127D+04 
10 0.57307D+03 0.36007D+04 
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The calculated eigen vectors ‘node number16’ 
Deflection x Deflection y Deflection z Rotation x Rotation y Rotation z 

0.000D+00 0.550D−01 0.261D+01 0.000D+00 - 0.720D−02 0.152D−03 

0.000D+00 0.000D+00 0.000D+00 0.784D−01 0.000D+00 0.000D+00 

0.185D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 

0.000D+00 0.000D+00 0.000D+00 - 0.790D−01 0.000D+00 0.000D+00 

- 0.186D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 

0.000D+00 0.000D+00 0.000D+00 0.802D−01 0.000D+00 0.000D+00 

0.000D+00 0.000D+00 0.000D+00 0.819D−01 0.000D+00 0.000D+00 

- 0.189D+01 0.130D−10 - 0.177D−11 0.000D+00 0.000D+00 0.000D+00 

  0.000D+00 0.000D+00 0.000D+00 0.844D−01 0.000D+00 0.000D+00 

- 0.193D+01  -0.151D−10 0.236D−11 0.000D+00 0.000D+00 0.000D+00 

Table (1.2b). Example N° 2: free vibration analysis of a cantilever box beam using DNG6 
 

Free vibration analysis with 15 elements, warping not included and transverse shear included « DNG6 » 
The calculated natural frequencies 
No. Hz rad/sec 
1 0.39148D+01 0.24597D+02 
2 0.65826D+01 0.41360D+02 
3 0.23186D+02 0.14568D+03 
4 0.38119D+02 0.23951D+03 
5 0.49676D+02 0.31213D+03 
6 0.60077D+02 0.37747D+03 
7 0.96276D+02 0.60492D+03 
8 0.10726D+03 0.67394D+03 
9 0.16105D+03 0.10119D+04 
10 0.16776D+03 0.10541D+04 

 
The calculated eigen vectors ‘node number16’ 

Deflection x Deflection y Deflection z Rotation x Rotation y Rotation z 

0.000D+00 0.000D+00 0.260D+01 0.000D+00 - 0.705D−02 0.000D+00 

0.000D+00 0.260D+01 0.000D+00 0.000D+00  0.000D+00   0.699D−02 

0.000D+00   0.000D+00  -0.253D+01 0.000D+00   0.230D−01 0.000D+00 

0.000D+00   0.250D+01 0.000D+00 0.000D+00  0.000D+00 0.233D−01 

0.243D−02   0.000D+00 0.000D+00 0.111D+00   0.000D+00 0.000D+00 

0.000D+00 0.000D+00 0.245D+01 0.000D+00 - 0.337D−01 0.000D+00 

0.000D+00 0.241D+01   0.000D+00 0.000D+00   0.000D+00 0.315D−01 

0.000D+00 0.000D+00 - 0.238D+01 0.000D+00   0.418D−01 0.000D+01 

0.000D+00 0.000D+00  -0.233D+01 0.000D+00   0.474D−01   0.000D+00 

0.000D+00 -0.233D+01 0.000D+00 0.000D+00   0.000D+00  -0.379D−01 

Table (1.2c). Example N° 2: free vibration analysis of a cantilever box beam using DNG6 
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Free vibration analysis with 15 elements, warping and transverse shear not included « DNG6 » 
The calculated natural frequencies 
No. Hz rad/sec 
1 0.39694D+01 0.24941D+02 
2 0.49677D+02 0.31213D+03 
3 0.80101D+02 0.50329D+03 
4 0.14958D+03 0.93982D+03 
5 0.24118D+03 0.15154D+04 
6 0.25112D+03 0.15778D+04 
7 0.35541D+03 0.22331D+04 
8 0.40491D+03 0.25441D+04 
9 0.46357D+03 0.29127D+04 
10 0.57307D+03 0.36007D+04 

 
The calculated eigen vectors ‘node number16’ 

Deflection x Deflection y Deflection z Rotation x Rotation y Rotation z 
0.000D+00 0.550D−01 0.261D+01 0.000D+00 - 0.720D−02 0.152D−03 
0.000D+00 0.000D+00 0.000D+00 0.784D−01 0.000D+00 0.000D+00 
0.185D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 
0.000D+00 0.000D+00 0.000D+00 - 0.790D−01 0.000D+00 0.000D+00 
- 0.186D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 
0.000D+00 0.000D+00 0.000D+00 0.802D−01 0.000D+00 0.000D+00 
0.000D+00 0.000D+00 0.000D+00 0.819D−01 0.000D+00 0.000D+00 
- 0.189D+01 0.130D−10 - 0.177D−11 0.000D+00 0.000D+00 0.000D+00 
0.000D+00 0.000D+00 0.000D+00 0.844D−01 0.000D+00 0.000D+00 
- 0.193D+01  -0.151D−10 0.236D−11 0.000D+00 0.000D+00 0.000D+00 
Table (1.2d). Example N° 2: free vibration analysis of a cantilever box beam using DNG6 

 
Free vibration analysis with 15 elements, warping and transverse shear included « DNG7» 

The calculated natural frequencies 
No. Hz rad/sec 

1 0.39023D+01 0.24519D+02 
2 0.65616D+01 0.41228D+02 
3 0.23112D+02 0.14521D+03 
4 0.37997D+02 0.23874D+03 
5 0.51370D+02 0.32276D+03 
6 0.59885D+02 0.37627D+03 
7 0.79846D+02 0.50169D+03 
8 0.95969D+02 0.60299D+03 
9 0.10692D+03 0.67179D+03 
10 0.15582D+03 0.97905D+03 
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The calculated eigen vectors ‘node number16’ 
Deflection x Deflection y Deflection z Rotation x Warping u Rotation y Rotation z 
0.000D+00 0.000D+00 0.259D+01 0.000D+00 0.000D+00 -0.703D−02 0.000D+00 
0.000D+00 0.259D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.966D−02 
0.000D+00 0.000D+00 0.253D+01 0.000D+00 0.000D+00 -0.229D−01 0.000D+00 
0.000D+00 0.249D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.222D−01 
0.000D+00 0.000D+00 0.000D+00 0.113D+00 -0.207D−04 0.000D+00 0.000D+00 
0.000D+00 0.000D+00 0.245D+01 0.000D+00 0.000D+00 -0.336D−01 0.000D+00 
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 
0.184D+01 0.240D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.314D−01 
0.000D+00 0.000D+00 -0.237D+01 0.400D−11 0.000D+00 0.416D−01 0.000D+00 
0.000D+00 0.000D+00 0.605D−11 -0.115D+00 0.188D−03 0.377D−11 0.000D+00 

Table (1.2e). Example N° 2: free vibration analysis of a cantilever box beam using DNG7 
 

Free vibration analysis with 15 elements, warping and transverse shear not included « DNG7» 
The calculated natural frequencies 

No. Hz rad/sec 
1 0.39678D+01 0.24931D+02 
2 0.66682D+01 0.41898D+02 
3 0.24775D+02 0.15567D+03 
4 0.41867D+02 0.26306D+03 
5 0.51534D+02 0.32380D+03 
6 0.69378D+02 0.43591D+03 
7 0.80101D+02 0.50329D+03 
8 0.11724D+03 0.73663D+03 
9 0.13597D+03 0.85434D+03 
10 0.15632D+03 0.98218D+03 

 
The calculated eigen vectors ‘node number16’ 

Deflection x Deflection y Deflection z Rotation x Warping u Rotation y Rotation z 
0.000D+00 0.000D+00 0.261D+01 0.000D+00 0.000D+00 -0.720D−02 0.000D+00 
0.000D+00 0.261D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.720D−02 
0.000D+00 0.000D+00 0.261D+01 0.000D+00 0.000D+00 -0.250D−01 0.000D+00 
0.000D+00 0.261D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.250D−01 
0.000D+00 0.000D+00 0.000D+00 0.113D+00 -0.208D−04 0.000D+00 0.000D+00 
0.000D+00 0.000D+00 -0.262D+01 0.000D+00 0.000D+00 0.411D−01 0.000D+00 
0.185D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 
0.000D+00 0.262D+01 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.412D−01 
0.000D+00 0.000D+00 0.262D+01 0.000D+00 0.000D+00 -0.575D−01 0.000D+00 
0.000D+00 0.000D+00 0.000D+00 -0.116D+00 0.188D−03 0.000D+00 0.000D+00 

Table (1.2f). Example N° 2: free vibration analysis of a cantilever box beam using DNG7 
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Table 2. Natural frequencies (Hz) of a cantilever box beam (Example N° 2) 

 
Conditions 6-D.O.F. 

(15elements) 
7-D.O.F. 
(15elements) 

MSC/ 
NASTRAN 

With shear and warping 
ULZ1 3.9148 3.9023 3.8924270 
ULY1 6.5826 6.5616 6.5597000 
ULZ2 23.186 23.112 21.809105 
ULY2 38.119 37.997 37.459114 

 
Discussion 

From the results obtained for example 01, Tables 
(1.1a), (1.1b), (1.1c) and (1.1d), we can say that: 

 For all cases the 1st, 2nd and 3rd uncoupled lateral 
(flexural) Y and Z modes are within the same 
frequencies, since the section is square and hence it 
has equal rigidities or stiffnesses and masses in the 
Y and Z directions. 

 The approximate results obtained using (MSC/ 
NASTRAN) package are reached by dividing the 
beam into twelve elements, as shown in Table 1, 
while excellent results are obtained by only six 
elements in the (DNG6 and DNG7) programs. 

It means that the beam element displacement field 
used by MSC/NASTAN is not very accurately 
representing the behavior as the Hermitean cubic 
polynomials used in the proposed 6and 7 D.O.F. 
methods given in this study. It can be seen that a half of 
the number of elements used in MSC/NASTRAN is 
enough to give more accurate results by using the 
proposed 6 and 7 D.O.F. (DNG6 and DNG7) 
programs. 

 From the results obtained using (DNG6 and 
DNG7) programs, the transverse shear contributes 
considerably to lowering the natural frequencies of 
the flexural vibration modes (translational in Yand 
Z directions). 

 The inclusion of warping considerably increased 
the natural frequencies of the torsional-dominant 
vibration modes. 

 The axial modes are identical, since the axial 

stiffnesses and masses are not changed. 
 

From the results obtained for example 02, it can be 
seen that: 

 Table (1.2a) shows that mode number 6 (60.34 Hz) 
is the 1st torsional mode when warping and shear 
deformations are included, but it becomes the 5th 
mode (49.67 Hz), as shown in Table (1.2c), when 
warping is neglected. It means that warping affects 
the results of not only magnitude of the natural 
frequency but also the torsional mode numbers. 

 Table (1.2b) shows that mode number 1(3.969 Hz) 
is the 1st uncoupled lateral mode (in the Z-
direction), when shear deformation is not included, 
and it becomes (3.914), shown in Table (1.2a), 
when shear deformation is included. Also, the 2nd 

uncoupled lateral y- mode (6.582 Hz), shown in 
Table (1.2a), disappears and the 2 nd mode becomes 
the torsional mode when shear deformation is 
neglected, Table (1.2b). 

 From Table 2, and by comparing the results 
obtained by 6D.O.F. method with the results 
obtained by MSC/NASTRAN, warping and shear 
deformation must be considered in the analysis for 
accurate results. 

 In the case of 7D.O.F., the inclusion of shear 
deformation alters only the magnitude of the 
flexural modes but does not alter the nature of 
distribution of modes; i.e., if the 2nd mode is the 
lateral mode it will remain the 2nd mode in all cases 
even when shear deformation is not included. 
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 From Table 2, and by comparing the results 
obtained by 7 D.O.F. methods with the results 
obtained by MSC/NASTRAN, shear deformation 
must be considered in the analysis for better 
results. 

 
CONCLUSIONS 

 
Free vibration formulation of tubular structure and 

the methods that are used for the solution of the 
equation of motion are considered in this paper. 

The analysis is performed using the computer 

programs DNG6 and DNG7.  
The first ten eigen values and the corresponding 

mode shapes were considered in free vibration 
response of certain examples as well as the comparison 
between 7 D.O.F. per node and 6 D.O.F. per node with 
the results obtained by MSC/NASTRAN. 

It can be seen that the transverse shear contributes 
considerably to lowering the natural frequencies of the 
flexural vibration modes (translational in Y- and Z-
directions), and the inclusion of warping considerably 
increased the natural frequencies of the torsional-
dominant vibration modes. 
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