
Jordan Journal of Civil Engineering, Volume 7, No. 3, 2013 

- 259 - ©  2013 JUST. All Rights Reserved.

 

A Time Domain Approach for Identifying Dynamic Forces 

Applied on Structures 
 

Hasan Katkhuda 
 

Associate Professor, Chair of Civil and Infrastructure Engineering Department, American University of 
Ras Al Khaimah (AURAK), Ras Al Khaimah, United Arab Emirates, on sabbatical leave from 

The Hashemite University, Zarqa, Jordan, E-Mail: hasan.katkhuda@aurak.ae, or hasan @hu.edu.jo 
 
 

ABSTRACT 

A time domain approach based on the structural response is presented for identifying dynamic excitation 

forces applied on three-dimensional steel trusses. Sub-structure finite element model with a short length of 

measurement from only four or five accelerometers is required, and an iterative least-squares algorithm is 

used to identify the dynamic forces applied on the structure. The location of the input force is assumed to be 

known in the identification. Validity of the method is demonstrated by means of numerical examples using 

noise-free and noise-contaminated structural response. Both harmonic and impulsive forces are studied. The 

results show that the proposed approach can identify unknown excitations within very limited iterations with 

high accuracy and show its robustness even when noise-polluted dynamic response measurements are 

utilized. 

KEYWORDS:  Time domain, Dynamic force identification, Limited response and sub-structure. 

 
INTRODUCTION 

 

Accurate identification of static and dynamic forces 

can be very important to the structural design process. 

The first step in any structural design is to determine 

the static and dynamic forces that are applied to the 

floors and diaphragms of the structures. Usually, 

structural designers adopt the codes of loads available 

in each country in order to determine the required 

applied loads. In addition, in order to identify the 

location of damages in the structural elements and to 

determine the amount and importance of the defects on 

the overall structural behavior, system identification 

techniques are usually used that require information 

about the dynamic forces applied.  

The system identification techniques that have been 

used in the last three decades (Sohn et al., 2004; 

Kerschen et al., 2006) have three components; input 

excitation, the system and the output response 

information.  The input excitation is the force that 

excites the system. The system is a mathematical 

model of the structure. The output is the response of a 

structural system due to the input excitation, reflecting 

the current state of the structure. Knowing the input 

excitation and the output response information, the 

system being the third component can be identified. 

Unfortunately, in most cases (Lam et al., 2004; Beck 

and Yuen, 2004; Koh et al., 2003), it is impossible to 

insert force gauges into the force transfer path to 

directly measure those dynamic forces. Therefore, in 

order to get better damage detection, it is required to 

identify the dynamic forces applied to the structures. 

There are many methods available in the literature 

for force identification; the Frequency Response 
Accepted for Publication on 12/3/2013. 
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Function (FRF) - based least-squares approach is the 

most widely used because it can be applied to a variety 

of force identification problems. The basic premise of 

the FRF approach is based on spectral analysis. Given 

the measured vibrational response at one or more 

locations and the frequency-domain FRF matrix, one 

can back-calculate the dynamic excitation forces at 

each specific frequency by pre-multiplying the 

measured response vector by the pseudo-inverse of the 

FRF matrix at that frequency. The pseudo-inverse 

technique is also known as a least-squares method. An 

inverse Fourier transform on these computed values 

provides a time history of the dynamic forces, which is 

of great interest in many cases such as impact force 

identification. Depending on the number of measured 

response points and other important parameters, this 

technique can be used to find a single force or a set of 

forces acting on the structure. However, this least-

squares approach in the frequency domain can be 

hindered by the direct inversion of an ill-conditioned 

FRF matrix at frequencies near the structural 

resonances. To overcome this inversion instability, Liu 

and Shepard Jr. (2005) proposed two regularization 

filters; namely the Truncated Singular Value 

Decomposition (TSVD) filter and the Tikhonov Filter 

in conjunction with the conventional least-squares 

scheme at specific frequencies. 

Another efficient technique for identifying the 

impact force acting on laminated plates was proposed 

by Hu et al. (2007). Chebyshev polynomial is 

employed to approximate the impact force history 

where the coefficients in the polynomial are directly 

used as unknown parameters. The relation between 

these unknown parameters and the strain response at 

the specified positions is formulated through the finite 

element method and the mode superposition method. 

After obtaining the impact force history, the impact 

position is identified by comparing the numerical 

strains and experimental ones directly. 

Lu and Law (2007) proposed a method based on the 

sensitivity of structural response for identifying both 

the system parameters and the input excitation force of 

a structure. An iterative gradient-based model updating 

method based on the dynamic response sensitivity was 

adopted. The poor identification with relatively 

insensitive parameters in a mixture of parameters with 

different sensitivities was addressed and solved with 

another loop of optimization. 

Marchesiello and Garibaldi (2008) proposed a 

method in the time domain for the identification of 

nonlinear vibrating structures. The method allows for 

the estimation of the coefficients of the nonlinearities 

away from the location of the applied excitations and 

also for the identification of the linear dynamic 

compliance matrix when the number of excitations is 

smaller than the number of response locations. 

Allen and Carne (2008) proposed an extension of 

the Inverse Structural Filter (ISF) force reconstruction 

algorithm that utilizes data from multiple time steps 

simultaneously to improve the accuracy and robustness 

of the ISF. The ISF algorithm uses a discrete time 

system model of a structure and the measured response 

to estimate the forces causing the response. 

Yan and Zhou (2009) proposed a genetic algorithm 

(GA)-based approach for impact load identification, 

which can identify the impact location and reconstruct 

the impact force history simultaneously. In this study, 

impact load is represented by a set of parameters, thus 

the impact load identification problem in both space 

(impact location) and time (impact force history) 

domains is transformed to a parameter identification 

problem. A forward model was incorporated to 

characterize the dynamic response of the structure 

subject to a known impact force. By minimizing the 

difference between the analytical response given by the 

forward model and the measured ones, GA adaptively 

identifies the impact location and force history with its 

global search capability. 

Lately, Xu et al. (2012) proposed an iterative 

approach for both structural parameters and dynamic 

loading identification, referred to as Weighted 

Adaptive Iterative Least-Squares Estimation with 

Incomplete Measured Excitations (WAILSE-IME). 

The accuracy, convergence and robustness of the 
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proposed approach were demonstrated via numerical 

simulation on a six-storey shear building model with 

noise-free and different levels of noise-polluted 

structural dynamic response measurements. 

In the present paper, a time domain approach based 

on the least-squares method is used to identify the 

dynamic forces applied on three-dimensional steel 

trusses using a sub-structure finite element model. A 

short length of measurement from only four or five 

accelerometers is required for the identification 

process. The location of the input force is assumed to 

be known in the identification. Validity of the method 

is demonstrated with numerical examples using noise-

free and noise-contaminated structural response. 

 

ALGORITHM AND SUB-STRUCTURE 

MODELING 

 

The sub-structure required for force identification 

should be selected in a way that the response 

measurements are available at all Degrees of Freedom 

(DOF) of the sub-structure and the location of the 

dynamic excitation force is assumed to be known and 

included in the sub-structure. These constraints will not 

affect the accuracy of identification and will use a short 

length of measurement from only four or five 

accelerometers instead of the whole structure.  

The selection of the sub-structure will start by 

determining the node where the unknown dynamic 

force is applied. Then, it is required to determine the 

nodes and elements that are attached to that node. 

Accordingly, the sub-structure is now selected and the 

governing dynamic equation for the sub-structure can 

be written as: 

 
(t)(t)(t)(t) fxMxCxK  sssSss                 (1) 

 

where Ks, Cs and Ms are the global stiffness, 

damping and mass matrices for the sub-structure, 

respectively, ẍs (t), ẋs (t) and xs (t) are vectors containing 

the dynamic response in terms of acceleration, velocity 

and displacement at time t for the sub-structure, 

respectively, and f (t) is the unknown dynamic force 

vector applied on the structure.   

The global stiffness matrix for the sub-structure 

(Ks) can be assembled by using the method of 

superposition, the direct stiffness method for the local  

stiffness matrices of all the elements in the sub-

structure. The local stiffness matrix (Ki) for a three-

dimensional truss element of uniform cross-section is 

given by: 

 

 

 





































2
zzyzx

2
zzyzx

zy
2
yyxzy

2
yyx

zxyx
2
xzxyx

2
x

2
zzyzx

2
zzyzx

zy
2
yyxzy

2
yyx

zxyx
2
xzxyx

2
x

i

ii
i

CCCCCCCCCC

CCCCCCCCCC

CCCCCCCCCC

CCCCCCCCCC

CCCCCCCCCC

CCCCCCCCCC

L

AE
K             (2) 

 

 

 

 

 

where Ei, Ai and Li are the Young's modulus, area of 

the cross-section and length of the ith element in the 

sub-structure, respectively. In addition: 

 

Cx = cos θx,  Cy = cos θy,   Cz = cos θz                                (2a) 

 

where θx, θy and θz are the angles between the local 

axis z and y ,x 
and global axis X, Y and Z, 

respectively.  

The damping matrix Cs is assumed to be Rayleigh-

type damping and can be represented as: 

 
sss KMC βα                                             (3) 
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where α  is the mass-proportional damping 

coefficient and β  is the stiffness-proportional damping 

coefficient.  

The global consistent mass matrix for the sub-

structure (Ms) can be assembled by using the method 

of superposition for the local mass matrices of all the 

elements in the sub-structure. The local consistent mass 

matrix (Mi) for a three-dimensional truss element of 

uniform cross-section is given by: 
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where ρi, Ai and Li are the density, area of the cross-

section and length of the ith element in the sub-

structure, respectively. 

Accordingly, Equation (1) can be rewritten in a 

matrix form as: 

      GBA *                                                 (5) 

 

where [A] is a matrix of size (3 x n) × Ls; n is the 

total number of sample time points; Ls is the total 

number of elements and damping coefficients in the 

sub-structure and can be expressed as: 
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where Q is the 6x6 matrix in Equation (2) 

excluding (EA/L) for each element in the sub-structure 

and nes is the total number of elements in the sub-

structure. 

 

{B} vector in Equation (5) is a vector of size Ls x 1 and 

can be shown to be: 

 

 

 

 

 

 

 
 









































α

kβ

....

kβ

kβ

k

...

k

k

2

1

2

1

nes

nes

B                                             (7) 

 

 

 

 

 

 

 

{G} vector in Equation (5) is a vector of size (3 x n) x1 

and can be shown to be: 
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where f is the unknown dynamic force needed to be 

identified and TD is the total number of DOF in the 

sub-structure. 

The stiffness of each element (EA/L) in the three-

dimensional trusses could be assumed known and can 

be provided from the “As Built” drawings. Since it is 

sometimes difficult to obtain this information from “As 

Built” drawings, especially for old structures, it is 

assumed that the stiffness of each element is unknown 

and will be identified with the unknown dynamic force.  

A least-squares-based procedure proposed by Wang 

and Haldar (1994) is used in this paper for the solution 

of the unknown dynamic force f (t) by starting an 

iteration process assuming the unknown dynamic force 

to be zero at all n time sample points. This assumption 

will assure a nonsingular solution of Equation (5), 

without compromising the convergence or the accuracy 
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of the method. It is observed through the numerical 

examples shown below that the method is not sensitive 

to this initial assumption, or the type and form of 

excitation. 

Using the least-squares-based procedure proposed 

by Wang and Haldar (1994), the solutions of unknown 

system parameters {B} and unknown dynamic force 

f(t) are evaluated using the following expression: 

 
        GAAAB TT 1

 .                            (9) 

 

The algorithm will iterate until a convergence in the 

unknown dynamic force with a predetermined 

tolerance set to be infinitesimal; i.e. 10-8. Accordingly, 

the unknown dynamic force is determined with a 

reasonable accuracy.  

The basic steps for the iterative algorithm can be 

summarized as follows: 

Step 1: Formulate the local stiffness matrix for each 

element from Equation (2). 

Step 2: Assemble the global consistent mass matrix 

(Ms) for all the elements in the sub-structure 

from the local mass matrix (Mi); i.e. Equation 

(4). 

Step 3: Formulate the [A] matrix from Equation (6) 

which is composed of global consistent mass 

matrix Ms, the local stiffness matrices of each 

element and the velocity and displacement 

response of the system as at each DOF in the 

sub-structure. 

Step 4:  Formulate the {G} vector from Equation (8). 

Step 5: Assume the dynamic excitation force vector 

f(t) to be zero at all time points. 

Step 6: Obtain the first estimation of {B} vector by 

solving Equation (9) using the least-squares 

concept. 

Step 7: Substitute {B} vector estimated from Step 6 

into Equation (1) to obtain the unknown 

dynamic excitation force vector f(t) at all time 

points. 

Step 8: Iterate until a convergence in the unknown 

dynamic force with a predetermined tolerance 

set to be infinitesimal; i.e. 10-8. 

 

NUMERICAL EXAMPLES 

 

A three-dimensional steel truss (shown in Figure 1) 

is used to validate the effectiveness of the method in 

identifying the unknown dynamic forces. The length of 

the truss is 6.0 m at the base and 3.0 m at the top, the 

width is 6.0 m and the height is 8.0 m as shown in 

Figure 2. Steel tubes are used for all members; the 

outer and inner diameters are 11.4 cm and 10.2 cm, 

respectively. The nominal wall thickness of the tubes is 

0.60 cm and the area (A) of each member is 19.16 cm2. 

The truss is made of 20 nodes and 52 elements. Each 

node consists of 3 DOF; translation in x, y and z. The 

total number of DOF for the whole structure is 48 

considering nodes 9, 10, 19 and 20 are pin supports.  

Two cases representing two types of dynamic 

forces are adopted in this example:  

Case 1: A harmonic force  f(t) = 10 sin (20π t) is 

applied on node 1 of the three-dimensional 

truss. Figure 3 shows the details of the 

harmonic force. 

Case 2: An impact force of 10 kN at 0 sec and 0 kN at 

0.05 sec as shown in Figure 4 is applied on 

node 1 of the three-dimensional truss. 

Based on the basic modeling and formulation of the 

least-squares method mentioned above, a sub-structure 

is needed for identifying the unknown dynamic force. 

The selection of the sub-structure is started by 

determining the node where the unknown dynamic 

force is applied which is node 1 in this example, 

followed by determining the nodes and elements 

attached to node 1, which are: nodes 1, 2, 3, 4 and 11 

and elements 1, 6, 14 and 35. Figure 5 shows the sub-

structure needed. It consists of 5 nodes and 4 elements. 

Accordingly, five accelerometers are needed to be 

placed at nodes 1, 2, 3, 4 and 11 to measure the x, y 

and z dynamic translation response; i.e. the total 

number of DOF required for this sub-structure is 15. 
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Figure 1: Three-dimensional steel truss used in the numerical examples 

 

Case 1: Identifying Unknown Harmonic Force 

The 3D steel truss is modeled using finite element 

software package SAP 2000. The harmonic force is 

applied on node 1. The theoretical dynamic responses 

and the acceleration, velocity and displacement of all 

48 DOF were obtained. These responses resemble the 

recorded data of a real structure under the effect of 

dynamic loadings. As soon as the theoretical response 

has been evaluated, the information on the harmonic 

force is completely ignored, and the nodal response of 

the sub-structure; i.e. 15 DOF is only used in the 

algorithm. The location of the input harmonic force is 

assumed to be known in the identification and the 

stiffness of each element (EA/L) in the sub-structure is 

assumed to be unknown since it is sometimes difficult 

to obtain this information from “As Built” drawings as 

mentioned previously. The response used in the 

algorithm is with a short length of measurement. In this 

case, the response is from 0.03 sec to 0.50 sec at a time 

interval of 0.01 sec, yielding 48 time points only. The 

response is assumed to be noise-free. However, from 

an experimental point of view, noise in the response 

measurements cannot be avoided. To address the issue 

of noise in the dynamic response, a numerically 

generated noise with an intensity of 8% of the root 

mean square (RMS) values of the response observed at 

all DOF is added to the theoretical response. 

Accordingly, the unknown harmonic force is identified 

by using both noise-free and noise-including dynamic 

response. 

Figure 6 shows the results of the harmonic force 

identification for noise-free and noise-including cases 

compared with the exact force. It is obvious that the 

algorithm and the sub-structure identified the unknown 

harmonic force very effectively in both cases. The 

maximum error in force identification in the noise-free 

case was less than 1%, and this percentage was more 

for the noise-including dynamic response but less than 

3%. 
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Figure 2: Two-dimensional elevations and side views of the three-dimensional truss 

 

Case 2: Identifying Unknown Impact Force 

The 3D steel truss is modeled again using finite 

element software package SAP 2000. The impact force 

is applied on node 1. The theoretical dynamic response 

including the acceleration, velocity and displacement 

of all the 48 DOF were obtained. After the theoretical 

response is evaluated, the information on the impact 

force is completely ignored and the nodal response of 

the sub-structure; i.e. 15 DOF is only used in the 

algorithm. The response used in the algorithm is with a 

short length of measurement. In this case, the response 

is from 0.01 sec to 0.05 sec at a time interval of 0.001 
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sec, yielding 41 time points only. The unknown impact 

force is identified by using both noise-free and noise-

including dynamic response. To address the issue of 

noise in the dynamic response, a numerically generated 

noise with an intensity of 10% of the root mean square 

(RMS) values of the response observed at all DOF is 

added to the theoretical response. 

 

 
 

Figure 3: Harmonic force applied on the 3D truss 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 4: Impact force applied on the 3D truss 
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Figure 5: Sub-structure needed for identifying the unknown dynamic force 

 
Figure 6: Force identification at Node 1 for Case 1 

 
Figure 7: Force identification at Node 1 for Case 2 
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Figure 7 shows the results of impact force 

identification for noise-free and noise-including cases 

compared with the exact force. It is obvious that the 

algorithm and the sub-structure identified the unknown 

impact force very well in both cases. The maximum 

error in force identification in the noise-free case was 

less than 0.8%, and this percentage was more for the 

noise-including dynamic response but less than 4%. 

 

CONCLUSIVE REMARKS AND DISCUSSION 

 

For the two cases studied in this paper, the method 

identified the unknown dynamic forces that are applied 

on three-dimensional steel trusses very well. The main 

advantage of this method over many other methods 

available in the literature was the fact that it uses an 

optimum number of accelerometers in the 

identification process. It is not feasible or practical to 

place a large number of accelerometers on all nodes of 

3D trusses and record the accelerations for all DOF to 

use those dynamic response records in identifying 

unknown dynamic forces. As was shown in the 

numerical examples, the steel truss has 20 nodes, 52 

elements and 48 DOF, but only a sub-structure with 5 

nodes, 4 elements and 15 DOF was enough to identify 

the unknown dynamic forces accurately.  

Another advantage of this approach was the short 

length of measurement used in the force identification. 

In case 1; i.e. harmonic force, 48 time points were only 

used, as well as a time interval from 0.03 sec to 0.50 

sec at 0.01 sec. For case 2; i.e. impact force, 41 time 

points only were used, as well as a time interval from 

0.01 sec to 0.050 sec at 0.001 sec. Although the 

algorithm used a small number of time points, the 

results of force identification are considered to be 

accurate. It has been observed by the author that 

increasing the number of sample points does not have 

major impact on the accuracy of force identification. 

This can be considered as an advantage, since most of 

time domain methods available in the literature are 

very sensitive to the number of sample points used in 

identification. 

On the other hand, the two cases studied in this 

paper showed that the method is capable  of identifying 

the unknown dynamic force accurately regardless the 

type of the unknown dynamic load applied on the 

three-dimensional steel trusses. The algorithm 

identified the harmonic and impact forces with a 

maximum error in identification less than 1% and 

0.8%, respectively. Even more, the algorithm identified 

the unknown dynamic forces very well by using noise-

including response. The algorithm identified the 

harmonic and impact forces with a maximum error in 

identification less than 3% and 4% for noise-including 

response with an intensity of 8% and 10% of the root 

mean square (RMS) values of the response observed, 

respectively. These results can be considered another 

substantial advantage, since most of time domain 

methods available in the literature are very dependent 

on the type of forces applied on the structures and very 

sensitive to the noise-including response. 

It is worth mentioning that these results were 

obtained based on the assumption that the stiffness 

(EA/L) of each member in the sub-structure used is 

unknown, since it is sometimes difficult to obtain this 

information from “As Built” drawings, especially for 

old structures as previously mentioned. It seems that 

this assumption does not have major impact on the 

accuracy of force identification.  

Accordingly, this method can be considered as an 

effective method in identifying unknown dynamic 

forces that can be used in system identification 

approaches in time and frequency domains to identify 

the locations of the structural elements that suffered 

structural damage and to determine the amount and 

importance of the defects on the overall structural 

behavior. 

 

CONCLUSIONS 

 

A time domain approach based on the structural 

response is presented for identifying dynamic 

excitation forces applied on three-dimensional steel 

trusses. A sub-structure finite element model with a 
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short length of measurement from only four or five 

accelerometers was required for the iterative least-

squares algorithm to identify the unknown dynamic 

force applied on the structure.  

The results showed that the method identified the 

unknown dynamic force applied on three-dimensional 

trusses accurately for both harmonic and impulsive 

forces. Also, the results showed that the approach can 

identify unknown excitations within very limited 

iterations with high accuracy. The approach also 

showed its robustness in the case that even noise- 

polluted dynamic response measurements had been 

utilized. 
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