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ABSTRACT 

This paper presents the dynamic (earthquake response) analysis of cable stayed bridges under different types 

of static loading and due to longitudinal directions of earthquake base excitations. The deck and the tower of 

the bridge were idealized by discrete element idealization scheme (space frame element) with warping 

considered as a seventh degree of freedom. For comparison purposes, the discrete element with six degrees of 

freedom (warping neglected) were also used to model the structure under investigation. 

The cables were modelled by the nonlinear truss elements.   

It was found that the warping becomes of significant influence on the behaviour of the bridge deck only if the 

deck is acted upon by loading that is coupled with initial torsional moment. 

KEYWORDS: Response characteristic, Cable stayed bridges, Static loading, Earthquakes, 
Longitudinal direction. 

 
UNDAMPED FREE VIBRATION ANALYSIS 

 

The equation of motion of any damped system is 

given by (Clough and Peneien, 1993).      

 

          )(tPUkUCUM                                    (1) 

 

where {U}, {U } and {Ü} are the time-dependent 

displacement, velocity and acceleration vectors, 

respectively and {F (t)} is the applied load vector.   

 The system is assumed to have classical damping. 

Thus, the damping matrix is of the form: 

 

C=2ξi
i
 M                                                                 (2) 

 

where ξi is the damping ratio corresponding to the 

mode (i). 

i is the natural angular velocity (or circular 

frequency) of the system which vibrates at the mode 

shape (i). 

The equation of motion for free vibration 

undamped system can be obtained by omitting the 

damping matrix and the load vector from Eq. (1), such 

that: 

 

[M]{Ü}+ [K] {U} = {0}.                                           (3) 

 

Also, the free vibration motion of the system is 

simple harmonic, which may be expressed as: 

 

U (t) = Фi sin it                                                        (4) 

 

in which: 

Ф represents the mode shape of the system which 

does not change with time, but only the amplitude 

varies.  Accepted for Publication on 15/9/2013. 
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The acceleration vector in free vibration will be: 

 

Ü (t) = - 
i

2 Фi sin 
i
 t = - 

i

2 {U}.                            (5) 

 

Substituting equations (4) and (5) into equation  

(3) results in: 

 


i

2 [M] Фi sin 
i
 t+ [K] Фi sin 

i
.t= {0}.                  (6) 

 

Omitting the sine terms, this equation can be 

written as: 

 

[[K] - 
i

2
 [M] ]Фi ={0}.                                             (7) 

 

The nontrivial solution is possible only when: 

 

│ [K]-i
2 [M] │= 0.                                                  (8) 

 
Eq. (8) is called the frequency equation of the 

system. Expanding this equation will give an algebraic 
equation of an nth degree known as the characteristic 
equation of the system (Paz, 1985). The n roots of this 

equation
  22

2
2

1 ............. n  represent the square of 

the circular frequencies of n modes of vibration (eigen 
values) which are possible in the system, while the 
corresponding n eigen vectors of this eigen problem 
represent the n mode shapes of vibration of the system. 
It is known that the amplitude of these mode shapes is 
arbitrary, it is customary to normalize them. The most 
often used normalizing procedure in computer 
programs for structural vibration analysis involves 
adjusting each mode shape.  

 

{Фi}
T[M] {Фi} = I.                                                   (9) 

  

The mode shapes normalized in this fashion are 

said to be orthonormal relative to the mass matrix 

(Clough and Peneien,1993) or M-orthonormalized. 

Then: 

 

{Фi}
T [K] {Фi} = [λ ]                                             (10) 

{Фi}
T [M] {Фi} = [ I ]                                            (11) 

where [Фi] is a modal matrix whose columns are 

M-orthonormalized mode shapes, [λ] is a diagonal 

matrix which stores the square of the circulars 

frequencies and [I] is an identity matrix. 

So, it is important to realize that all solution 

methods are iterative in nature because, basically 

solving the eigen value problem: 

 

KФ= λMФ                                                               (12) 

 

is equivalent to calculating the roots of  the 

polynomial P(λ), which has an order equal to the order 

of K and M. 

The general groups of solution methods are given in 

(Chardrupatla and Belegundu, 1991) as well as in 

(Bathe and Wilson, 1976). 

 

The Stiffness and Mass Matrices 

The formulation of the stiffness and mass matrices 

is based on approximate displacement functions. The 

deck and tower are modeled by a three-dimensional 

beam-column element with warping deflection and 

bimoment inertia as an additional degree-of-freedom (7 

degrees of freedom per node), whereas cables are 

modeled as space truss. Transformation matrices used 

to relate local-global and master-slave are formulated 

to be suitable for the proposed elements. 

 

Earthquake Response Analysis 

 

The earthquake response analysis of cable stayed 

bridges when acted upon by ground motion is studied 

using the response spectrum procedure. 

The accelerogram of al-hindya earthquake are 

considered, in the longitudinal, lateral and vertical 

directions, separately. 

The longiudinal base excitation component 

produces axial motion of the bridge deck, whereas the 

lateral base excitation component produces lateral and 

torsional motion, and for vertical base excitation 

component, only vertical motion is produced.  
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Methods of Seismic Analysis 

In general, the response of a structure to seismic 

forces can be evaluated based on one of the following 

analytical procedures (Dowrick, 1977): 

1. Equivalent static force analysis.  

2. Dynamic analysis, including time domain and 

frequency domain. 

For large or complex structures, the static methods 

of seismic analysis are not reliable because of the 

complexity of the vibrational modes and hence, the 

directions of the resulting inertia forces. Therefore, the 

structural response should be based on dynamic 

analysis (Dowrick, 1977). 

 Direct integration of the equations of motion based 

on step by step procedure. 

 Normal mode analysis. 

 Response spectrum technique. 

 

Equation of Motion 

The governing equation of motion for a structure 

when subject to a single component of a uniform 

ground motion is given by (Clough and Peneien, 1993): 

 
ሾܯሿ൛ ሷܷ ൟ ൅ ሾܥሿ൛ ሶܷ ൟ ൅ ሾܭሿሼܷሽ ൌ െሾܯሿሼܴሽ ሷܷ௥௚           (13) 

 

where {R} denotes an earthquake influence vector 

consisting of ones and zeros, where the ones 

correspond to the degree of freedom in the direction of 

the base excitation component, and zeros elsewhere. 

Equation (13) can be transformed to the normal 

coordinates to give the nth vibration mode of the 

structure; that is: 

  
ሷܻ௡ ൅ ௡߱ߦ2 ሶܻ௡ ൅ ߱௡ଶ ௡ܻ ൌ െ

௟೙ೝ
ெ೙

ሷܷ௥௚ሺݐሻ                     (14) 

 

where 

௡ܯ ൌ Ф௡
 .Ф௡ is the generalized mass at mode (n)ܯ்

݈௡௥ ൌ Ф௡
 ௡ is the modal earthquake excitation in theܴܯ்

r-direction (r=x, y, z). 
ሷܷ ௥௚ሺݐሻ is the time varying base acceleration component 

in the r-direction. 

The solution of Eq. (14) may be written as: 

௡ܻ,௠௔௫ ൌ
௟೙ೝ

ெ೙ఠ೙
మ ܵܽሺߦ, ܶሻ.                                        (15) 

 

The displacement U n is given by the product of the 

mode shape Ф௡and the generalized coordinate ( ௡ܻሻ; 
hence the local displacements are : 

 
ሼܷ௡௥ሽ ൌ Ф௡

௟೙
ெ೙ఠ೙

మ ܵܽሺߦ, ܶሻ.                                   (16) 

 

The elastic forces Fs associated with the relative 

displacements can be obtained directly by 

premultiplying the relative displacement by the 

stiffness matrix, such that: 

 

ሻݐሺݏܨ	 ൌ ሻݐሺܷܭ ൌ  ሻ.                                  (17)ݐФܻሺܭ

 

It is more convenient to express these forces in 

terms of the equivalent inertia forces developed in the 

undamped vibration (Clough and Peneien,1993) such 

that:		 
ሼܨ௦௡௥ሽ ൌ ߱௡ଶሾܯሿሼܷ௡௥ሽ ൌ ሾܯሿሼФ௡ሽ

௟೙ೝ
ெ೙
ܵ௔௥ሺߦ, ܶሻ.	   (18) 

 

Structural Response 

The maximum response cannot be obtained by 

merely adding the modal maxima because these 

maxima usually do not occur at the same time. 

In most cases, when one mode achieves its 

maximum response, the other model responses are less 

than their individual maxima. Many methods are used 

to calculate the maximum response. 

The square root of the sum of the squares of the 

model response is one of these methods and is used in 

the present study, thus the maximum total displacement 

and force are approximated by: 

 

ܷ௠௔௫ ൌ ඥሺ ଵܷሻଶ݉ܽݔ ൅ ሺܷଶሻଶ݉ܽݔ ൅⋯                (19) 

 

 

௠௔௫ݏܨ ൌ ඥሺݏܨଵሻଶ݉ܽݔ ൅ ሺݏܨଶሻଶ݉ܽݔ ൅⋯           (20) 

 

where (U1max, U2max ...) and (Fs1max, Fs2max ...) are 

calculated from Eqs. (16) and (17), respectively. 
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Response Characteristic to Cable Stayed Bridges 

A cable stayed bridge is composed of the following: 

towers, girders, stays and foundations sustaining them. 

Such a kind of bridge can be regarded as a coupled 

vibrational system composed of these plural elements. 

The coupled vibration in the superstructure is 

particular to cable stayed bridges, while the coupled 

vibration between superstructure and foundation is 

common to ordinary bridges. 

The coupled phenomenon in the superstructure can 

be divided into two responses (Nojiri et al., 1977), as 

follows: 

 

Response Characteristic to Transverse Component 

of Earthquakes 

As stays are generally set in the longitudinal vertical 

plane which is perpendicular to both planes, where a 

tower or a girder makes response, the stiffening effects 

of stays are scarcely expected. Then, the main vibrating 

elements; i.e. the tower and the girder, are restricted by 

each other only on the pier, and consequently, the form 

of a so- called weakly coupled system. 

In this case, the natural frequencies of this partial 

system are close, two corresponding modes also with 

close frequencies exist in the coupled system. One is 

like a superposition of each mode in partial systems 

with same phase; the other, with an inverse phase. 

These modes are deformed in comparison with modes 

in non-coupled system. 

 

Response Characteristic to Longitudinal Component 

of Earthquakes 

In this case, a tower and a girder vibrate in the same 

plane, in which stays are set tightly. Then, a tower and 

a girder form a strongly coupled system. It can be 

considered that the natural frequencies hardly come 

extremely close to each other and that the complex 

interaction between a tower and a girder as mentioned 

above rarely occurs. 

 

Case Study 

Al-Adhamiyah bridge whose configuration is 

shown in Figure 1 is studied for its earthquake response 

behavior when acted upon by the separate base 

excitations in three normal directions. 
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Figure (2): Maximum vertical displacement of 

the bridge deck under own and military loawhen 

the earthquake is in X-direction (m) 

Figure (1): Al-Adhamiya bridge 
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Figure (3): Maximum longitudinal displacement of the bridge deck under own and 

military load when the earthquake is in X- direction (m) 
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Figure (4): Maximum shear force of the bridge deck under own and military load when 

the earthquake is in X-direction (kN) 
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Figure (5): Maximum axial forces of the bridge deck under own and military load when 

the earthquake is in X- direction (kN) 
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Figure (6): Maximum bending moment of the bridge deck under own and 

military load when the earthquake is in X- direction (kN.m) 

 

CONCLUSIONS 

 

The dynamic (earthquake response) analysis of cable 

stayed bridges under different types of static loading and 

due to the longitudinal directions of earthquake base 

excitations is carried out. The deck and the tower of the 

bridge were idealized by discrete element idealization 

scheme (space frame element) with warping considered 

as a seventh degree of freedom. 

The comparison of the results is made vis-a-vis the 

discrete idealization approach with warping neglected; 

that is using 6 d.o.f. per node. 

The plots presented for earthquake response of the 

bridge demonstrate that warping has significant 

influences on the structure response when the structure 

is acted upon by a base excitation in the longitudinal 

direction. 

In the lateral response, when warping is considered; 

that is using 7d.o.f. per node, the structure response 

seems to be larger than the response of the structure 

with warping neglected (6 d.o.f. per node), especially 

close to the tower base, this behavior is related to the 

increasing torsional and warping stiffness which results 

in large torsional response. 
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