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ABSTRACT 

This study presents a method that combines both dimensional analysis and statistical regression analysis for 

predicting the shear capacity of slender reinforced concrete (RC) beams without web reinforcement taking the 

size effect into consideration. This method incorporates the modified Buckingham-PI theorem (Butterfield, 

1999, Geotechnique 49(3), 357-366) to formulate two mathematical models for predicting the shear capacity 

at the formation of diagonal tension cracks and at the ultimate shear strength. The results of the two models 

are compared with several sets of existing experimental results. This study shows that the variations in the 

experimental results of shear capacity of slender RC beams ( 5.2/ da ) defined at the formation of 

diagonal tension cracks of beams can be explained by the variations of the concrete tensile strength and the 

variations in the experimental results of ultimate shear strength of slender RC beams ( 5.2/ da ) can be 

explained by the variations of the concrete splitting strength. 

KEYWORDS:  Reinforced concrete beams, Diagonal tension cracking, Moment capacity, Ultimate 
shear strength, Concrete tensile strength, Concrete splitting strength. 

 
INTRODUCTION 

 

Many concrete structural members such as slabs 

and foundations do not use shear reinforcement. Hence, 

knowledge of shear carrying capacity of reinforced 

concrete (RC) beams without web reinforcement is 

necessary in these cases (Rebeiz et al., 2000). 

Furthermore, most theoretical and experimental studies 

on beams without web reinforcement also provide 

useful insights for the explanation of failure 

mechanism in beams with stirrups (Zararis and 

Papadakis, 2001) particularly in the availability of 

large shear database for reinforced concrete members 

without shear reinforcement (e.g., Reineck et al., 

2003). Reinforced concrete beams without web 

reinforcement may, depending on the shear span to 

depth ratio da /  (Fig. 1), fail in different modes 

including failure due to flexure, shear compression, 

diagonal tension cracking, concrete splitting of the 

compression zone, bond or anchorage. For RC beams 

with shear span to depth ratio da /  greater than about 

6, failure is generally governed by flexure whereas for 

RC beams with da /  of less than about 6, failure is 

initiated by the formation of diagonal tension cracks in 

the shear span. RC beams with 6/5.2  da  

generally fail upon the formation of diagonal tension 

cracks when the tensile concrete strength is reached or 

shortly afterwards (MacGregor, 1997) when concrete 

splitting strength of the compression zone is reached 

(Zararis and Papadakis, 2001); whereas beams with 

da /  of less than about 2.5 may carry additional loads 

in excess of those that cause the diagonal tension 

cracks due to arch action (MacGregor, 1997).  

Various approaches or models are available in the Accepted for Publication on 6/11/2013. 
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literature for the evaluation and/or determination of the 

shear strength of RC beams (e.g., Clark, 1951; Van 

Den Berg,1962; Zsutty, 1968, 1971; Bazant and Kim, 

1984; Vecchio and Collins, 1986; Hsu et al., 1987; 

Adebar and Collins, 1996; Collins et al., 1996; 

Reineck, 1991; Kim and Park, 1996; Rebeiz, 1999; 

Zararis and Papadakis, 2001; Russo et al., 2005; Bentz 

et al., 2006; AASHTO LRFD, 2004; CSA A23.3-2004; 

ACI318-2008; Arslan, 2008, 2010, 2012; Appa Rao 

and Injaganeri, 2011). Despite the useful and valuable 

results reported in literature for the shear behavior of 

RC beams and factors affecting their shear failure (e.g., 

ACI 445R-99), a fundamental theory explaining the 

mechanism of shear failure of beams is still missing or 

unresolved (Zararis and Papadakis, 2001; Zararis, 

2003) as evidenced by the differences between 

experimental results and theoretical analysis. As a 

result, the available methods (including international 

codes such as the AASHTO LRFD, 2004; CSA A23.3-

2004; ACI318-2008) are based on a rather empirical or 

semi-empirical consideration. Hence, a dimensional 

analysis along with statistical regression analysis may 

be suitable for predicting the behavior of RC beams 

and can be used to give reasonably well predictions and 

sufficiently accurate method of analysis if the 

appropriate governing variables are considered. For 

example, Phatak and Dhonde (2003) successfully 

formulated a general expression for the ultimate 

torsional capacity of RC beams subjected to pure 

torsion using dimensional analysis by the modified 

Buckingham-PI theorem (Butterfield, 1999). Zsutty 

(1968) also developed a model based on dimensional 

analysis for the shear capacity of slender RC beams 

with depth 50d cm without considering the size 

effect. The Zsutty (1968) model may give reasonable 

predictions for slender RC beams with 50d cm; 

however, the Zsutty (1968) model may overestimate 

the shear capacity for large RC beams ( 50d cm) as 

will be shown later in this paper.  
In this study, the shear capacity of slender 

reinforced concrete beams without web reinforcement 
having shear span to depth ratio 5.2/ da  under the 

combined action of moment and shear taking the size 
effect into consideration is evaluated at the formation 
of diagonal tension cracks and at ultimate shear failure 
by using a method that combines both dimensional 
analysis and statistical analysis. Several sets of 
experimental data were carefully selected such that the 
influence of each basic variable (i.e., longitudinal steel 

ratio  , concrete compressive strength '
cf , shear span 

to depth ratio da /  or beam size d ) can be separately 

evaluated. Comparison with existing experimental 
results as well as with four existing models supports 
the validity of the two proposed models in predicting 
and explaining the observed behavior of slender RC 
beams ( 5.2/ da ) without web reinforcement. 

 

Dimensional and Regression Analysis for RC Beams 

for Different Modes of Failure 

Dimensional analysis by the modified Buckingham-

PI theorem (Butterfield, 1999) is used in this study to 

evaluate the behavior of slender RC beams without 

web reinforcement. The goal of dimensional 

analysis is to minimize the dimension space in 

which the behavior of a certain system might be 

studied by systematically combining the assumed 

governing n  variables  nVVVVVAR ,..,,, 321 , 

involving a total of m  independent primary 

dimensions  mDDDDD ,..,,, 321 , into )( mnN   

dimensionless groups (Phatak and Dhonde, 2003) as 

demonstrated in the following subsection.  

 

Slender RC Beams ( 5.2/ da ) at the Formation of 

Diagonal Tension Cracks without Size Effect 

Dimensional analysis first requires identifying the 

set of the appropriate governing variables and then the 

set of independent primary dimensions. The shear 

capacity crv  of slender RC beams without web 

reinforcement at the formation of diagonal tension 

cracking without considering size effect is dependent 

on three governing variables: the longitudinal 

reinforcement ratio  , shear span to depth ratio da /  

and concrete tensile strength '
ctf  (Zsutty, 1968). 

Hence, the set of variables may be expressed for 
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slender RC beams without considering the size effect 

as follows: 

 
 ,/,, ' dafvVariables ctcr                                     (1) 

 

Therefore, 4n  and the set of dimensions of these 

n  variables can be written as follows: 

 

 0,0,, 211211  TLMTLMDimensions                   (2) 

 

Thus, the number of independent primary 

dimensions is: 

 

3m .                                                                         (3) 

 
The condition of minD  is satisfied by minimizing 

the value of total number of primary dimensions m  

and thus accounting for the greatest number of 
dimensionless groups possible (Phatak and Dhonde, 

2003). Therefore, assuming that 211  TLMF , then: 
 

 0,0,,min FFD  .                                                      

(4) 

 

Hence, 

1min m .                                                                   (5) 

 

The number of repeating variables forming a set of 

Q is equal to 1min m . Thus, the number of 

dimensionless Pi-groups is equal to 

314)(  mnN , which is also the same as the 

number of isolated variables. Let R be the set of 

variables (in Eq. 1) that have dimensions totally 

distinct from each other, therefore,  

 

 crvR  .                                                                  (6) 

 

Dimensionless groups are formed by the 

combination of the repeating (Q) and isolated (NOTQ) 

variable sets (Phatak and Dhonde, 2003). Q is to be 

selected from R, therefore, Q may be taken as follows: 

 

 crvQ  .                                                                   (7) 

Using Eq. 7, isolated variables = { ,/,' dafc } 

and repeating variables = { crv }. Therefore, the 

dimensionless groups may be represented as follows: 

 
 '

1 , ctcr fv                                                              (8) 

 

  ,2 crv                                                         (9) 

 

 davcr /,3  .                                               (10) 

 

Thus, the dimensionless group 
b

ct
a

cr fv '
1   may 

be expressed in dimensional form as: 

 
ba TLMTLMTLM ][][ 211211000  .                  (11) 

 

Hence, 1a  and 1b , therefore,  

 

'1
ct

cr

f

v
 .                                                                 (12) 

 

Similarly, for the other two dimensionless   

groups: 

 

 2 .                                                                    (13) 

 

d

a
3 .                                                                    (14) 

 
Expressing these three   dimensionless groups by 

using a power-product relationship, the following 

expression may be obtained (i.e.,     1
3

1
21 1 CBA   ) 

 1
11

C
B

ct

cr

d

a
A

f

v








  ;                                       (15) 

 

where 1A , 1B  and 1C  are constants.  

The concrete tensile strength '
ctf  may be expressed 

as a function of the concrete compressive strength '
cf  

as follows: 

 
  1'1

E
cct fDf  .                                              (16) 

 

Hence, the shear capacity of slender RC beams 

defined at the formation of diagonal tension cracks 
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without size effect may be expressed as follows: 

 
 

1
1'11

C
E

c
B

cr d

a
fKv 






  .                           (17) 

 

Equation 17 may be expressed in a logarithmic 

form to allow the use of multiple linear regression 

analysis as follows: 

d

a
CfEBKv ccr log1log1log11loglog '  

     
;               (18) 

 

where 1A , 1B , 1C , 1D , 1E  and 1K  are constants 

to be determined empirically by multiple linear 

regression analysis using the shear capacity of slender  

RC beams ( 5.2/ da ) without web reinforcement at 

the formation of diagonal tension cracking. Zsutty 

(1968, 1971), based on a similar analysis, suggested the 

following empirical expression: 

 

 

units. MPain    '2.2

units psiin     '60

3/1

3/1

















a

d
f

bd

V
v

a

d
f

bd

V
v

ccr

ccr




          (19) 

 

 

As can be seen, the Zsutty model is independent of 

the beam size and is valid only for the sizes of beams 

(i.e., 50d cm) that were utilized to develop this 

empirical model as will be shown later in this study.  

 

Slender RC Beams ( 5.2/ da ) at the Formation of 

Diagonal Tension Cracks with Size Effect 

The beam size is an important factor affecting the 

shear strength of slender RC beams. There is strong 

evidence (Leonhardt and Walther, 1962; Kani, 1967; 

Bhal, 1968; Taylor, 1972; Walraven, 1978; Chana, 

1981; Shioya et al., 1989; Bazant and Kazemi, 1991; 

Collins and Kuchma, 1999) that the shear strength of 

beams decreases as the depth of the beam becomes 

larger. In order to take the beam size into 

consideration, the shear capacity crv  of slender RC 

beams without web reinforcement at the formation of 

diagonal tension cracking is assumed herein to be 

dependent on four governing variables: the longitudinal 

reinforcement ratio  , shear span to depth ratio da / , 

concrete tensile strength '
ctf  and beam size d . Hence, 

the set of governing variables may be expressed for 

slender RC beams including the size effect as follows: 

 

  ,/,, dafvVariables ctcr .                                (20) 

 

The size effect law (Bazant and Kim, 1984) is 

suggested to be applied directly to the concrete tensile 

strength as follows: 

 

  2'2
E

cct fDf                                                       (21) 

 

0/1

1

dd
 ;                                                      (22) 

 

where 2D  is constant and 0d  is defined in terms of 

the maximum aggregate size ad  as add 250   

(Bazant and Kim, 1984).  

Based on dimensional analysis using modified 

Buckingham theory (Butterfield, 1999) similar to the 

analysis described earlier, the following expression 

may be obtained: 

 

  ;2
2

2'2
C

E
c

B
cr d

a
fKv 






                                 (23) 

 

where 2A , 2B , 2C , 2D , 2E  and 2K  are 

constants to be determined empirically.  

The following equation is suggested in this study 

for the shear capacity of slender ( 5.2/ da ) RC 

beams without web reinforcement at the formation of 

diagonal tension cracks taking the size effect into 

consideration: 

 

 

units. MPain    '6.2

units psiin     '70

3/1

3/1

















a

d
f

bd

V
v

a

d
f

bd

V
v

ccr

ccr




                 (24) 

 

 

Slender RC Beams ( 5.2/ da ) at Ultimate Shear 

Strength with Size Effect 

The shear capacity of slender RC beams without 

web reinforcement at the formation of diagonal tension 

cracking is mobilized when the concrete tensile 

strength is reached. Still, the beam can carry additional 

loads after the formation of diagonal tension cracking 
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by the compression zone above the neutral axis. 

Therefore, the ultimate shear strength of slender RC 

beams without web reinforcement may be attained after 

the formation of diagonal tension cracking when the 

concrete splitting strength spf  of the compression zone 

is reached (Zararis and Papadakis, 2001). Hence, the 

ultimate shear strength is dependent on the longitudinal 

reinforcement ratio  , span to depth ratio da / , 

concrete splitting strength spf  and beam size d . 

Therefore, the sets of variables may be expressed for 

slender RC beams taking into consideration the size 

effect as follows: 

 
  ,/,, dafvVariables spu .                             (25) 

a

d

P P

L

h
longintudinal reinforcement

a
shear span shear spanpure bending

P P

 
Figure (1): Typical simply supported reinforced concrete beam under two-point loading 

 

Based on dimensional analysis using the modified 

Buckingham-PI theory (Butterfield 1999), the 

following expression may be obtained for the ultimate 

shear strength: 

 3
33

C
B

sp

u

d

a
A

f

v




















                                          (26) 

 

  3'3
E

csp fDf                                                      (27) 

 
 

3
3'33

C
E

c
B

u d

a
fKv 






  .                                 (28) 

 

The following expression is suggested in this study 

for the ultimate shear strength of slender RC beams 

( 5.2/ da ) without web reinforcement taking the size 

effect into consideration: 

 

 

units. MPain    2.3

units psiin     85

3/1
'

3/1
'

















a

d
f

bd

V
v

a

d
f

bd

V
v

ccr

ccr




           (29) 

 

Comparison between Ultimate and Cracking Shear 

Strengths 
The ratio of the ultimate shear strength (Eq. 29) to 

the cracking shear capacity at the formation of diagonal 
tension cracks (Eq. 24) is about 1.22. This value is 
within the range obtained from the experimental results 
of slender RC beams of Fig. 2, which shows the 

variation of ultimate shear strength '/ cu fbdV  as a 

function of cracking shear capacity '/ ccr fbdV .  

The variation or scatter observed in Fig. 2 may be 

due the differences (between and within the tests 

series) in the definition and identification of the 

cracking shear and in the representation of the concrete 

compressive strength (Zsutty, 1968). Furthermore, it is 

difficult, in many cases, to differentiate experimentally 

between the shear capacity at the formation of diagonal 

tension cracking and the ultimate shear strength at 

beam failure; the same values for the ultimate and 
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cracking shear strengths have been reported for a 

considerable number of slender RC beams as 

evidenced in Fig. 2. 

 

Vc / b d sqrt f'c  ,  psi units

1.5 2 3 4 5 6 7

V
u
 /

 b
 d

 s
qr

t 
f' c 

 , 
 p

si
 u

ni
ts

1.5

2

3

4

5

6

7

Moody (1954)
Krefeld and Thurston (1966)
Van Den Berg (1962)

ra
tio

 =
 1

.0
0

ra
tio

 =
 1

.1
5

more than 80 % of data points are
within 15 % above the cracking loads

ra
tio

 =
 1

.3
0

a / d = 2.87 to 8.52
  =  0.80 to 5.09 %
f'c = 1.77 to 5.66 ksi

d = 9.36 to 19.0 in.
b = 6.0  to 12.0 in.

116 beams

ratio = 1.073

CoV = 13.7 %

 
Figure (2): Comparison between ultimate shear strength and cracking shear capacity for 

116 beams without web reinforcement 
 

Slender RC beams, with 6/5.2  da , generally 

fail upon the formation of diagonal tension cracks or 

shortly afterwards (MacGregor, 1997). Diagonal 

tension cracks are expected to form when the diagonal 

tensile stress becomes equal to concrete tensile 

strength. However, slender RC beams may fail after the 

formation of diagonal tension cracks when concrete 

splitting strength of the compression zone is reached 

(as may be deduced from the work of Zararis and 

Papadakis, 2001). Hence, the ratio between the 

ultimate and cracking shear strengths may also be 

interpreted on average as the ratio between the concrete 

splitting strength that may be given by '6 csp ff   

and the concrete tensile strength that may be taken as 
'5 cct ff  . Figure 3 shows that the experimental 

results of slender RC beams (Mphonde and Frantz, 

1984) are practically within the range or limits 

provided by the two models presented in Eq. 24 for the 

cracking shear capacity (as a lower limit) and in Eq. 29 

for the ultimate shear strength (as an upper limit). 

Additional experimental results are provided later in 

this study for supporting the validity of the two 

proposed models.  

 

Validity of the Proposed Models: Comparison with 

Experimental Results and Other Existing Models 

Several sets of existing experimental results on 

shear capacity at the formation of diagonal tension 

cracking and on ultimate shear strength of slender RC 

beams are utilized herein to show the capability of the 

two proposed models in predicting the observed 

behavior and variations of the experimental results with 
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different governing variables. Each set was carefully 

selected in order to examine the influence of one single 

variable at a time. Furthermore, four expressions for 

computing the shear capacity of slender RC beams 

without web reinforcement (Zsutty, 1968; MCFT of 

Vecchio and Collins, 1986; Zararis and Papadakis, 

2001; ACI 318-08) have been selected in order to 

verify and compare the two proposed models with 

these existing models. 

 

Influence of Shear Span- Depth Ratio da /  on 

Cracking and Ultimate Shear Strengths 
Figures 4 and 5 compare the variation of 

bdfV c'/  as a function of shear span - depth rati 

 ( da /  value) of the proposed cracking and ultimate 

shear strengths with experimental results (Kani, 1967; 
Bukhari and Ahmad, 2007) as well as with the models 
of Zsutty (1968) and Zararis and Papadakis (2001); 

other variables (  , cf ' , and d ) are being practically 

constant as shown in the figures. As can be seen, the 
experimental ultimate shear strength decreases 
drastically as the da /  value increases from 1 to about 

2.5 after which the shear strength decreases much more 
slowly. Figures 4 and 5 show that deep RC beams 
( 5.2/ da ) can carry large additional loads after the 

formation of diagonal tension cracking by arch action.  

Figures 4 and 5 also show that, for slender RC 

beams ( 5.2/ da ), the experimental results are within 

the range or limits provided by the two models 

proposed for the shear capacity at the diagonal tension 

cracking (as a lower limit) and for the ultimate shear 

strength (as an upper limit). Furthermore, the values of 

the cracking and ultimate shear strengths are quite 

comparable to those of the models of Zsutty (1968) and 

Zararis and Papadakis (2001).  

It should be pointed out that the Zsutty (1968) 

model is independent of the beam size d  (i.e., shear 

capacity is constant with d ). It is thus expected that 

this model may give reasonable results for beams with 

50d cm because this model was developed 

empirically for such beams. The Zsutty (1968) model 

may significantly overestimate the shear capacity for 

large beams ( 50d cm) as will be illustrated later in 

this paper. 
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V
u
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 b
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qr
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P
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 = 3.36 % ; a / d = 3.6
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da = 0.953 cm
Data from Mphonde 
and Frantz (1984)

Cracking capacity (experimental)

cracking shear capacity (Eq. 24)

Ultimate strength (experimental)

ultimate shear strength (Eq. 29)

 
Figure (3): Experimental results are within the limits provided by the two proposed models developed for 

cracking shear capacity and for ultimate shear strength 
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cracking shear capacity (Eq. 24)
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Kani (1967) ultimate shear (experimental)

Zararis and Papadakis (2001)

ultimate shear strength (Eq. 29)

 
Figure (4): Comparison of the two proposed models with experimental results and models of 

Zsutty (1968) and Zararis and Papadakis (2001) for different values of da /  from 1 to 8 
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Figure (5): Comparison of the two proposed models with experimental results and models of 

Zsutty (1968) and Zararis and Papadakis (2001) for different values of da /  from 1 to 6 
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Figure (6): Comparison of the proposed models with experimental results and models of Zsutty (1968) and 
Zararis and Papadakis (2001) with varying   (cracking and ultimate strengths) 
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Figure (7): Comparison of the two proposed models with experimental results and with the models of 

Zsutty (1968) and Zararis and Papadakis (2001) for varying '
cf  

  



Diagonal Cracking Capacity…                                                                                                  Mohammed Shukri Al-Zoubi 

 

- 106 - 

Influence of Steel Ratio   on Diagonal Tension 

Cracking and Ultimate Shear Strengths 

Figure 6 compares the variation of bdfV c'/  as a 

function of steel ratio   obtained by the two proposed 

models for diagonal tension cracking capacity and for 
ultimate shear strength with experimental results 
(Krefeld and Thurston, 1966) as well as with the 
models of Zsutty (1968) and Zararis and Papadakis 
(2001). As can be seen, the general trend and values of 
the experimental results can be predicted quite 

reasonably utilizing the four models. These models 

show that the shear capacity ( bdfV c'/ ) generally 

increases with  , but the rate of increase varies 

significantly. The rate of increase in shear capacity is 
relatively small for beams with steel ratio greater than 
about 1% to 2%. The Zsutty (1968) model again gives 
reasonable results because the beams of Fig. 6 have 

50d  cm. However, the Zsutty (1968) model may 

significantly overestimate shear capacity for large 
beams ( 50d cm) as shown later in this paper. 
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Figure (8): Comparison of the two proposed models with experimental results (Papadakis, 1996) and 

with the models of Zsutty (1968) and Zararis and Papadakis (2001) for varying '
cf  

 
Influence of Concrete Compressive Strength cf '  on 

Shear Strength 

Figures 7 to 9 compare the variation of bdfV c
'/  

as a function of '
cf  obtained by the two proposed 

models for diagonal tension cracking capacity and for 
ultimate shear strength of slender RC beams with three 
sets of experimental results as well as with the models 
of Zsutty (1968) and Zararis and papadakis (2001). 

Figures 7 to 9, which include a wide range of concrete 
compressive strength, show that these models can 
reasonably predict the general behavior of shear 

capacity with '
cf  that yield almost parallel lines for 

bdfV c
'/  as a function of '

cf . Figures 7 to 9 show 

that the experimental results of slender RC beams are 
practically within the range or limits provided by the 
two models presented in Eq. 24 for the cracking shear 
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capacity and in Eq. 29 for the ultimate shear strength 
(despite the relatively large scatter in the experimental 
results observed particularly in Fig. 9). Figure 10, 
however, shows that the calculated values of the 
cracking shear capacity are within about 10% of those 
experimentally measured for the cracking shear 
capacity of slender RC beams with 5.2/ da .  

 

Influence of Beam Size d  on Shear Capacity 

Figure 11 compares the variations of bdfV c'/  

as a function of the beam depth d  obtained by the two 

proposed models for cracking and ultimate shear 

strengths and experimental results of Bhal (1968) 

slender RC beams with depth in the range 

12030  d  cm. As can be seen, the two proposed 

models and MCFT model (Appendix 3) as well as the 

model of Zararis and Papadakis (2001) can reasonably 

predict the general trend of the shear capacity with the 

variation of the beam size d  where the diagonal 

cracking shear capacity model (Eq. 24) provides a 

lower limit and the ultimate shear strength model (Eq. 

29) provides an upper limit for the slender RC beams 

with 5.2/ da . Figure 11 shows that the Zsutty 

(1968) model, which is independent of the beam size 
d , overestimates the shear capacity for slender RC 

beams with depth greater than about 30 cm for this 

series of tests. 
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Figure (9): Comparison of the two proposed models with experimental results and with 

the models of Zsutty (1968) and Zararis and Papadakis (2001) for varying '
cf  

 
SUMMARY AND CONCLUSIONS 

 

A method that combines dimensional analysis and 

statistical regression analysis for predicting the shear 

strength of slender reinforced concrete beams without 

web reinforcement taking into consideration the size 

effect under the combined action of moment and shear 

is presented. This method incorporates the modified 

Buckingham-PI theorem (Butterfield, 1999) to 

formulate general expressions for the shear capacity 
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under different conditions. Two models are proposed 

for predicting the cracking shear capacity at the 

formation of diagonal tension cracks and the ultimate 

shear strength. Comparison of the results of the two 

proposed models with several sets of existing 

experimental results supports the validity of the two 

proposed models in predicting and explaining the 

observed behavior of slender RC beams ( 5.2/ da ) 

without web reinforcement and also shows that 

dimensional analysis can be used to give reasonably 

well predictions and sufficiently accurate method of 

analysis. This study shows that the large variations in 

the experimental results of shear strength of slender RC 

beams ( 5.2/ da ) defined at the formation of 

diagonal tension cracks can be explained by the 

variations of the concrete tensile strength.  

This study also shows that the large variations in 

the experimental results of ultimate shear strength of 

slender RC beams ( 5.2/ da ) can be explained by 

the variations of the concrete splitting strength. 
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Figure (10): Comparison of the calculated cracking shear capacity with experimentally 

measured shear capacity for slender RC beams with different values of 5.2/ da  

 

The model proposed for the cracking shear capacity 

at the formation of diagonal tension cracks provides a 

lower limit (within only about 10%) for the 

experimentally measured values and the model 

proposed for the ultimate shear strength provides an 

upper limit for the experimentally measured values.  

 

Appendices 

1- Model of Zararis and Papadakis (2001) 

Zararis and Papadakis (2001) suggested the 

following expression for evaluating the ultimate shear 

strength for slender RC beams without web 

reinforcement having 5.2/ da . 
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Figure (11): Comparison of the two proposed models with experimental results and MCFT model and 
the models of Zsutty (1968) and Zararis and Papadakis (2001) for varying d  

 

 

ctdu f
d

c

bd

V
v                                               (30) 

 

 
65.02.02.1 






  d

d

a
d                                     (31) 

 

 

0600600
''

2









cc fd

c

fd

c 
                              (32) 

 
  3/2'30.0 cct ff  ;                                                    (33) 

 

where d  is in meters and '
cf  in MPa. This model 

was developed based on the concrete splitting strength 

of compression zone above the neutral axis in the shear 

span. The Zararis and Papadakis (2001) model may 

also be rewritten as follows: 
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2- ACI Code Formula (ACI 318-08) 

The ACI Code (ACI 318-08) has accepted the 

following empirical bilinear expression as the nominal 

shear strength at which diagonal flexure-shear cracking 

develops in beams without web reinforcement. 
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The ACI Code (ACI 318-08) has also allowed the 

use of a simplified expression as follows: 

 

 

 

units]. MPa[in             
6

1

'

units] psi[in             2
'





c

c

fbd

V

fbd

V

                        (36) 

 
 
 
3- Model of the Modified Compression Field Theory 

(MCFT) (1986) 

In the modified compression field theory MCFT 

(Vecchio and Collins, 1986), the behavior of reinforced 

concrete is evaluated by considering equilibrium, 

compatibility and stress-strain relationships that 

include an average concrete tension component to the 

concrete stress-strain relationship (Bentz and Collins, 

2006). The MCFT was used as the basis for the shear 

provisions in the Canadian Standard Association (CSA 

2004 A23.3-04) and the American Association of State 

Highway and Transportation Officials LRFD bridge 

design specifications (AASHTO, 2004).  

The MCFT is formulated in terms of average 

stresses and requires a check to ensure that the loads 

resisted by the average stresses can be transmitted 

across the crack. For members without transverse 

reinforcement, the local stresses at cracks always 

control the capacity of the member; the average stress 

calculation is used only for estimating the inclination 

of the critical diagonal crack (ACI-ASCE, 1998). 

According to the MCFT model, the shear strength of 

RC members without web reinforcement may be 

expressed as follows: 

 

c
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f
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V
v '                                                  (37) 

 

where   is a function of the size effect 
)15/(35 gzxe ass   and strain x  that can be 

expressed for reinforced concrete beams (ACI-ASCE 

1998) as follows: 
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x EA
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The two proposed models are compared with the 

MCFT models in terms of the shear capacity 

cfbdV '/  as a function of the steel ratio d  (Fig. 11). 

The MCFT predictions were carried out according to 
the general procedure described in Bentz and Collins 

(2006) using a spread sheet; the strain x  and the angle 

  of the average principal compression were adjusted 

until the value of   from the average shear stress is 

equal to the value of   from the local shear stress and 

the strain x  is equal to that calculated from Eq. 38. 

 
NOTATION 

 
a  = shear span 

da /  = shear span-to-depth ratio 

As = area of tension reinforcement 

b  = width of beam 

d  = effective depth of beam 

1D , 2D … etc. = primary dimensions 
'

cf  = cylindrical compressive strength  
'

ctf  = concrete tensile strength  

spf  = concrete splitting strength  

yf  = yield strength of longitudinal steel 

h  = total depth of beam 

L  = length 
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m  = number of independent primary dimensions 

M  = mass 

n  = number of the basic variables  

T  = time 

crv  = diagonal cracking capacity 

uv  = ultimate shear strength 

1V , 2V … etc. = basic variables 

  = longitudinal reinforcement ratio 

   = beam size factor 
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