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ABSTRACT 

This paper presents two different approaches to predict the compressive strength of fibrous composites using 

three-dimensional analysis. These approaches are based on the optimization of compressive stress resulting 

from the relationship between the compressive stress of the fibrous composite and the shear strength of the 

matrix material. The first approach is an estimation of compressive strength based on the actual initial 

misalignment of fibers in the rotated plane. The second approach is an approximation of compressive strength 

in accordance with the components of the initial fiber misalignment relative to the global axes of the fibrous 

composite material. The initial fiber misalignment is defined as a curve in the form of a cosine function that 

has components on the two planes containing the longitudinal axis and defined by initial misalignment 

angles. Equilibrium equations are then derived for an infinitesimal element along the axis of the fibers using 

the total potential energy principle. Maximum compressive strength is calculated using the corresponding 

shear stresses and shear deformations in the matrix, since shear is the dominant mode of failure. The 

compressive strength corresponding to the shear mode is found to be related to the tangent shear modulus of a 

fibrous composite material. The two different approaches are used to study the following composites: 

Carbon/epoxy XAS/914C saturated and dry, Carbon/Peek AS4/PEEK (APC-2), AS4/E7K8, Glass-Vinyl 

Ester, Glass-Polyester and unidirectional HTS40/977-2. The results obtained in this paper are found to agree 

well with experimental results and theoretical results available in literature. 
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INTRODUCTION AND 

LITERATURE REVIEW 

 

A micromechanics approach is used in this paper to 

determine the compressive strength of compression 

members made of fibrous composites, thereby 

clarifying the stability state and structural behavior of 

these members. One of the most important issues to be 

considered is imperfection of the fibers which occurs 

during the manufacturing process. Fibers can exhibit 

different imperfections, such as initial curvature, 

misalignment and/or initial kinking. 

Various micro-mechanical models have been used 

by different researchers in order to predict the 

compressive strength of fibrous composites. In a two-

dimensional analysis of micro-buckling of fibrous 

composites, the main mode of failure is considered to 

be fiber buckling (Rosen, 1965). It is stated that the 

shear mode, where the fibers are assumed to bend in 

phase, is the dominant mode rather than the extension 

mode, where the fibers are assumed to bend out of 

phase. An initial, sinusoidal deflection of fibers is Accepted for Publication on 16/1/2014. 
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assumed by Häberle and Matthews (1994). The shear 

mode is considered to be the failure mode and the 

compressive strength of the fibrous composites is 

proportional to the tangent shear modulus of the shear 

stress-strain curve of the matrix material. The fibers are 

considered to be axially incompressible. A two-

dimensional micro-mechanical model to predict the 

compressive strength of unidirectional fibrous 

composite laminates is proposed by Abu-Farsakh et al. 

(1997). The fibers are assumed to have initial rotation 

with no translation at the midpoint, and doubly curved 

with maximum rotations and translations at the end 

points. Shear buckling mode is assumed to be the main 

cause of large shear deformation. The buckling load is 

determined using the minimum potential energy 

principle. Four compressive failure modes are 

suggested by Frost (1992); tensile failure, shear failure, 

fiber failure and fiber compressive failure. All modes 

depend on the fiber volume fraction and the mechanical 

properties of the fibers and the matrix. Four 

mechanisms of failure are identified by Jelf and Fleck 

(1995); fiber failure, elastic micro-buckling, matrix 

failure and plastic micro-buckling. It is found that 

plastic micro-buckling is the dominant compressive 

failure in polymeric matrix composites. In the Yeh and 

Teply (1990) model, the predicted compressive 

strength is found to be suitable for composites with a 

very large shear modulus, while local fiber 

misalignment affects the compressive strength of 

Kevlar/Epoxy composites. Soutis and Fleck (1990) 

developed a theoretical model to predict the static 

strength of notched laminates and carried out an 

experiment on carbon/epoxy, T800/924C, composite 

laminates with circular holes, to determine the 

compressive failure stress. They find that matrix 

cracking initiates failure and micro-buckling of the 

fiber occurred at the edges of the hole, since high in-

plane compressive stresses are developed. In a study by 

Wisnom (1990), the compressive strength of fibrous 

composites is estimated using a model that assumes the 

fibers to be straight and parallel to one another, with an 

initial angle of rotation with respect to the axis of 

loading. It is concluded that shear instability in the 

matrix material reduces the compressive strength 

considerably. A mathematical model has been 

developed by Budiansky (1983) to predict the 

compressive strength of fibrous composites considering 

fiber misalignment, yield stress and shear in the matrix 

material in the kink band. Fleck and Budiansky (1990) 

and Budiansky and Fleck (1993) have considered 

plastic micro-buckling, while neglecting fiber bending 

in their analysis. Steif (1990, 1990) has assumed that 

fiber kinking is associated with fiber breakage due to 

buckling of the composite material. A bundle of fiber 

breaks are observed at a critical strain comparable to 

compressive strength, which leads to the conclusion 

that fiber breaks are the limiting step in kink band 

formation. It has been postulated by Yurgartis (1987) 

that real fiber misalignments are in and out of plane 

with the laminate. This agrees with misalignment 

patterns in carbon fibrous composites found by 

Creighton et al. (2001) using a special image analysis 

algorithm. Karakuzu et al. (2010) carried out an 

experimental work to study the behavior of a glass/ 

epoxy laminated composite plate subjected to traction 

forces by four pins. They considered the edge distance 

from the hole, longitudinal and transverse distances 

between holes and the pin diameter in their analysis. 

Ranganatahn and Mantena (2003) have studied the 

effect of hybridization of buckling characteristics of 

flat pultruded glass-graphite/epoxy beams using Euler's 

formulation, finite element modeling and 

experimentation and have found that hybridization 

improves the buckling performance of composite 

beams. Huang (2001) has developed a 

micromechanical bridging model to determine the 

properties of unidirectional and multidirectional lamina 

such as: thermoelastic, elasto-plastic, ultimate failure 

strength, strength at high temperature, fatigue strength 

and an S-N curve. An analytical model, based on 

experimentally obtained compressive strengths and 

inverse micro-mechanical models, has been developed 

by Mishra and Naik (2009) to define elastic properties 

of transversely isotropic fibers. An experimental work 
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has been conducted by Chen et al. (2006) to study the 

behavior of IM7/8551-7 Graphite Epoxy laminates 

subjected to in-plane biaxial compression. It has been 

concluded that their results agree well with the Mohr-

Coulomb shear failure law when applied to the fibers, 

but not to the matrix. It has also been concluded that 

fiber shearing is the dominant failure mechanism for 

this material for all laminates orientations and 

biaxiality ratios. Huang (2001) has also developed a 

micro-mechanical strength theory to estimate the 

ultimate strength of unidirectional fiber reinforced 

composites. This theory considers the fibers to be 

transversely isotropic in the elastic region and 

isotropically hardened in the plastic region. Constituent 

properties and fiber volume fraction are used as input 

data and a bridging matrix is used to correlate the 

stresses in the fibers with those in the matrix. The 

stress level at failure in each constituent and the failure 

mode are defined. A simple formula was proposed by 

Barbero (1998) and Tumblin and Barbero (1996) to 

estimate the compressive strength of unidirectional 

polymer matrix that can be used in the design of parts 

made of such composites. It requires the following 

parameters that can be defined by well-established 

techniques: shear stiffness, strength and standard 

deviation of fiber misalignment. A damage mechanics 

model based on a Gaussian distribution of fiber 

misalignment for the prediction of compressive 

strength of fibrous composites using material 

parameters measured by reliable methodologies is 

proposed by Barbero and Tomblin (1996). Predicted 

values of compressive strength for eleven different F-

glass reinforced pultruded composites are found to be 

in good agreement with experimental ones. A graphical 

method similar to that used by Budiansky (1983) is 

used by Jumahat et al. (2011) to predict the 

compressive strength of unidirectional Carbon fiber 

reinforced polymer composite laminates. It is based on 

the shear stress-strain curve of the fiber-matrix 

laminate rather than the shear stress-strain of the matrix 

material. It takes into account the additional 

compressive strength of the post buckling mode after 

kinking of fibers and associated yielding in shear of the 

matrix. The results for HTS40/977-2 and the failure 

mechanism have been verified experimentally using 

scanning electron microscopy (SEM) and optical 

microscopy. A similar mechanism, that is; starting by 

bending of misalignment fibers then forming a kink 

band after two breakages occurred and later a failure of 

the matrix, was illustrated by Berbinau et al. (1999) for 
0  unidirectional carbon-fiber-reinforced plastic. It 

was concluded that fibers cannot fail in tension on their 

convex side but rather fail in compression on their 

concave side.  

Two approaches based on a three-dimensional 

micro-mechanical model are developed herein to 

predict the maximum buckling load and, thus, the 

compressive strength of fibrous composite materials. A 

continuous displacement cosine function that satisfies 

continuity conditions is proposed to define the 

imperfect fibers before and after deformation. 

Equilibrium equations of a matrix-fiber infinitesimal 

element are derived using the total potential energy 

principle and then are simplified using the proposed 

displacement field. The critical buckling load is then 

defined in terms of matrix shear strength and the initial 

misalignment of fibers. The compressive strength is 

estimated for some fiber-reinforced composites and is 

compared to available experimental data and the results 

of other models available in literature. 

 

MODEL DERIVATION 

 

A representative volume of a fibrous composite in 

three-dimensional space is shown in Figure 1. It is 

composed of a curved fiber of length l and diameter df, 

embedded in a matrix of widths ty and tz, in y- and z- 

directions, respectively. The material is assumed to be 

macroscopically orthotropic, homogeneous and 

initially stress-free. The position vector from the origin 

to any point on the space curve, which represents the 

initial waviness of fibers, is given by: 

 

kjir
l

x
B

l

x
AxC


coscos 000                          (1) 
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As illustrated in Figure 2, A0 and B0 are the 

amplitudes of the initial wave in the y- and z- 

directions, respectively. The space curve is assumed to 

make only one pitch, of length l, along the x-axis, 

leading to C0 =1 in Equation (1). The proposed space 

curve and corresponding position vector satisfy the 

location of the tips (
2

@
2

l
x

l
 ir  and

2
@

2

l
x

l
 ir ) and midpoint of the fiber 

( 0@(  xk)
0

Bj
0

Ar ). The position vector after 

fiber deformation is given by: 

 

kjiR
l

x
B

l

x
ACx


coscos                  (2) 

 

where A and B are amplitudes in the y- and z- 

directions, respectively, and )(1 0uuC  . The 

displacement vector ( rRδ  ) is given by: 

 
kjiδ )()()( ooo wwvvuu               (3) 
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Figure (1): Representative volume of the present model 
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Figure (2): Projection of deformed fiber before and after loading in (a)x-y plane; (b) x-z plane 
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according to the assumed deformation of fibers. The 

angles between the fiber and the x-axis can be 

expressed in terms of amplitudes before and after 

loading. The components of these angles in the x-y and 

x-z planes are defined as follows: 00 A
l


  , 

A
l


  , B

l


 0  and B

l


  . 

 

Using the total potential energy principle, the strain 

energy of the fibrous composite is given by:  
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where,  )( 02

2

vv
dx

d
IEM ffz  , 

02

2

( ww
dx

d
IEM ffy  ) 

 

and Ef and If are the modulus of elasticity and moment 

of inertia of the fiber, respectively; zy  ,  are the 

curvatures in the x-y plane and in the x-z plane, 

respectively.  

Neglecting the bending terms of the fiber, and 

noting that the moment of inertia of the fiber fI is very 

small, Equation (5) reduces to:  

 

 

dydzxd
l

l

xy xcz
xzdxzxydxyU
















 














 
2/

2/ 0 0

 
   (6) 

 

 

The potential energy of the externally applied 

forces is given by: 
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The total potential energy is given by: 

 

VU                                                                  (8) 

 

which can be written, after substitution of  Equation 

(6) and 
dx

du
into Equation (7), as: 
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                                                                                    (9) 

Minimization of the total potential energy with 

respect to xy , 0




xy


, yields the following: 

 

  




A

l

l

xycxy dxdA

2/

2/

0 .                                    (10) 

 

Equation (10) yields the following equilibrium 

equation in the x-y plane: 

0 xycxy                                                          (11) 

and implies that  xyc G   . 

Similarly, minimization of the total potential energy 

with respect to xz yields the following equilibrium 

equation in the x-z plane: 

 

0 xzcxz                                                         (12) 

 

which implies  xzc G   . 

The nonlinear shear stress-strain relationships of the 

composite material are: xy  xyGxy  )( , and 

xz xzGxz  )( , 

where, G(xy) and G(xz) are the secant shear 

modulus at xy and xz shear strains, respectively. 

Applying the strain-displacement relationship, the 

shear strain can be expressed as: 

l

x

l

AA
xy


 sin

)( 0
 , and 

l

x

l

BB
xz


 sin

)( 0
 . 

In the x-y plane for 00 B  and 00  , the 

maximum compressive strength is: 

 

0
max )(









xy

xy

yc .                                            (13) 

 

In the x-z plane for 00 A and 00  , the 

maximum compressive strength is: 

 

0
max )(









xz

xz
zc .                                            (14) 

 

These equations are derived after substitution of 

dv/dx and dw/dx, neglecting the My and Mz terms, and 

proving that the maximum compressive strength values 

are simply )( xyG   in Equation (13) and )( xzG   in 

Equation (14), as discussed in (Häberle and Matthews, 

1994) and derived in this study. These equations 

indicate that the maximum compressive stress can be 

obtained using the tangent of the shear stress-strain 

curve at the shear strain where instability occurs. 

The first approach is based on the direct calculation 

of the maximum compressive stress for the proposed 

deformed shape of the fiber, Figure (2), which can be 

used for the case of similar shear stress- strain curves 

in the x-y and x-z planes according to the following 

formula: 
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0
max







c ,                                                      (15) 

 

where  , are, respectively, the shear stress and 

shear strain in the matrix for the proposed deformed 

curve of the fiber. 0  is the initial misalignment angle 

of the deformed shape of the fiber, which is defined by 

the initial misalignment angles in the x-y plane, 0 , 

and in the x-z plane, 0 , and given by the following 

formula: 

 
2
0

2
00   .                                                      (16) 

 

The second approach is based on the maximization 

of c  in the following quadratic expression, which is 

the magnitude of the zero vector having components in 

the y- and z- directions, Equations (11) and (12): 
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Accordingly, the minimization of compressive 

strength with respect to xy , we obtain:: 
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where ** , xyxy  are, respectively, the shear strain and 

shear stress in the x-y plane for a given value of 0 and 

are found from Figure 3, using 0 instead of 0 . 

And, with respect to xz , we obtain: 
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xzxy

xzxzxyxy

zc  .            (19) 

 

 

where 
** , xzxz  are, respectively, the shear strain and 

shear stress in the x-z plane for a given value of 0 and 

are found from Figure 3, using 0 instead of 0 . 

 
yc max  and  

zc max  are evaluated using the 

solution procedure discussed in the following section 

of this paper. The maximum compressive stress is 

estimated using least square approximation: 

    

2

2
max

2
max

max

zcyc

c





 .                            (20) 

 

METHOD OF SOLUTION 

 

First Approach 

Given the values of 0  and 0 , the misalignment 

angle, 0  is calculated from Equation (16). A shift, by 

an amount 0 , is taken in the negative direction of the 

abscissa, axis , in the shear stress- strain curve of the 

matrix. A tangent curve is drawn such that it passes 

through the point  0  on the axis . The shear 

stress and shear strain values corresponding to the 

tangent point at the curve are obtained. The value of 

the maximum compressive strength is evaluated using 

Equation (15). This method of solution is illustrated in 

Figure (3). 

 

Second Approach 

For given values of 0  and 0 , the value of 

maximum stress of fibrous composite is estimated 

according to the following solution procedure. First, 

the values of *
xy and *

xy are found using graphical 

determination of the tangent point, as discussed 

previously, for a shift in the abscissa axis, xy  equal to 

 0 . Second, the values of xz are obtained from 

the shear stress-strain curve of the matrix material for 

values of xz  between 0.01 and 0.06. Third, the values 

of  
yc max are calculated from Equation (18) and are 

plotted for values of xz from 0.01 to 0.06. Fourth, the 

value of  
yc max  is defined as the maximum value on 

the  
yc max - xz  plotted curve, Figure (4). The same 

four previous steps are repeated for a shift of  0 to 

evaluate 
*
xz and

*

xz , xy is obtained for values of xy

between 0.01 and 0.06. The values of  
zc max are 

calculated from Equation (19) and are plotted for the 

different values of xy from 0.01 to 0.06, and the value 

of  
zc max is defined as the maximum value on the 

 
zc max - xy  curve. Finally, the compressive strength 

of the fibrous composite material in consideration is 

estimated using a least squares approximation, 

Equation (20). 
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Figure (3): A representative curve for matrix material showing the tangential line method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4): The maximum compressive stress  
yc max  or  

zc max  versus shear stress xy or xz  
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RESULTS AND DISCUSSION 

 

The three-dimensional micromechanical model and 

the two different solution approaches are examined for 

the following different fibrous composite materials; 

XAS/914 C 'Saturated', XAS/914C 'Dry', AS4/PEEK 

‘APC-2’, AS4/E7K8, Glass-Vinyl Ester, Glass-

Polyester and unidirectional HTS40/977-2. 

Engineering and geometric properties of these 

materials, shown in Table 1, and the shear stress-strain 

curve, used to establish the results in this study, are 

taken from (Abu Farsakh et al., 1997; Jumahat et al., 

2011; Berbinau et al., 1999). The maximum 

compressive stresses are estimated using the two 

approaches for different values of initial misalignment 

angles 0  and 0 . A value of 
10  is used for 

XAS/914C 'Saturated' and XAS/914C 'Dry', a value of 
25.10  is used for AS4/PEEK 'APC-2', a value of 

2.10   is used for AS4/E7K8, a value of 
3.30 

is used for Glass-Vinyl Ester, a value of 
4.30  is 

used for Glass-Polyester, a suggested value of 
10 

is used for UD HTS40/977-2, and different values of

0  are used. In this study, the values of 0 used for 

the different fibrous composites are chosen according 

to measured or estimated values available in literature, 

see (Häberle and Matthews, 1994; Barbero, 1998), 

while the values of 0 , which are not available in 

literature, are taken to be in the range of  0 to 25.2 . 

The value of compressive stress is estimated 

according to the first and second approaches, Equations 

(15) and (20), for different values of 
2
0

2
00   , 

which are listed in Tables 2,3 and 4, and compared to 

experimental values (Häberle and Matthews, 1994) and 

theoretical models (Rosen, 1965; Häberle and 

Matthews, 1994) available in literature. Table 2 

includes a list of the compressive strengths of 

XAS/914C 'Saturated' for a value of 
10  , 0  and, 

thereby, 0 . It can be seen that the results obtained 

from the present first approach in this study are in good 

agreement with the experimental ones from (Häberle 

and Matthews, 1994) for an initial misalignment angle 

0 ~ 1 . It can also be observed that the results obtained 

from the present second approach approximate the 

experimental value at initial misalignment angles

10  and 0  ~ 54.0 . Therefore, the present three-

dimensional analysis using a cosine function for initial 

curvature of the fiber suggests an initial misalignment 

angle of 
1 in one direction and 0.0 , according to the 

present first approach, and 54.0 , according to the 

present second approach, in the other direction. The 

compressive strength value obtained by model (Rosen, 

1965) overestimates the experimental value because the 

two-dimensional model (Rosen, 1965) assumes that the 

compressive strength is proportional to the elastic shear 

modulus. The percentage difference from the 

experimental value for the present first approach is -1% 

and is 3.3% for the present second approach, when 

00  . It can be concluded that the present first 

approach yields better results than the present second 

approach, since the present first approach is an estimate 

of the compressive strength for the actual initial 

misalignment angles of fibers in the rotated plane 

rather than the global axes of fibrous composites. The 

first and second approaches of the present study are 

examined for XAS/914C 'Dry' and AS4/PEEK 'APC-2'. 

Values of maxc are listed in Tables 3 and 4. A value of 

1790max c MPa is predicted for 
10  according 

to the present first approach and a value of 

1905max c  MPa is predicted at 
10  and

00 

according to the present second approach, compared to 

an experimental value of 1800 MPa for XAS/914C 

'Dry'. The percentage difference from the experimental 

value of 1800 MPa for the present first approach is -

0.55% and for the present second approach is 5.83% 

when using
00  . Again, model (Rosen, 1965) 

overestimates the maximum compressive strength for 

this material. The difference of the results obtained by 

the two present approaches and those obtained by 

analytical models (Häberle and Matthews, 1994; 

Barbero, 1998) is due to the fact that the model used in 

this paper is three-dimensional, taking into account the 

actual initial misalignment angle of fibers in the rotated 
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plane and in the global axes of fibrous composite; 

while the models from (Häberle and Matthews, 1994; 

Barbero, 1998) are according to a two-dimensional 

analysis. Also, maxc predicts the experimental value 

of 1500 MPa for 0 ~ 25.1 according to the present 

first approach and 
25.10  and 0  ~ 73.0 according 

to the present second approach for AS4/PEEK 'APC-2'. 

The percentage difference from the experimental value 

for the present first approach is -0.67% and is 4.67% 

for the present second approach at
00  . Again, for 

this material, the results obtained by model (Rosen, 

1965) give an overestimate of the compressive 

strength. The compressive strength value of 1490 MPa 

obtained by model (Häberle and Matthews) at 

25.10  , based on the mean of distribution of 

absolute fiber angles, MDAFA, is in good agreement 

with the experimental value, while the value of 1295 

MPa, obtained at 
53.10  , based on the standard 

deviation of transformed distribution of fiber angles, 

SDTDFA, underestimates the experimental value. 

 

Table 1. Engineering and geometric properties of fibrous composite materials 

 

 

Property 

Fibrous Composite 

XAS/914C 

‘saturated’ 

XAS/914C 

‘dry’ 

AS4/PEEK 

'APC-2' 

AS4/E7K8 Glass-Vinyl 

Ester 

Glass-

Polyester 

HTS40/977-2 

G (GPa) 4.75 5 5.5 NA NA NA NA 

Gm (Gpa) 2.27 2.4 2.55 NA 2.35 2.35 NA 

Ef (GPa) 235 235 220 241 72.35 72.35 239 

df (m) 7 7 7 7 13 13 7 

L (m) 0.01 0.01 0.01 NA NA NA NA 

Vf 0.58 0.58 0.61 0.60 0.43 0.40 0.58 

G: Effective shear modulus, Gm: Matrix shear modulus, Ef: Longitudinal Young's modulus of fiber, Vf: Fiber volume fraction. 

 

Table 2. Compressive strength of XAS/914C ‘saturated’,
 


10   

0  

(deg.) 

 

0  

(deg.) 

 

Present 

Eqn. (15) 

cmax 

(MPa) 

Present 

Eqn. 

(20) 

cmax 

(MPa) 

Model (Häberle 

and Matthews, 

1994) 

c max 

(MPa) 

Model (Häberle 

and Matthews, 

1994) 

c max 

(MPa) 

Model 

(Rosen, 

1965) 

cmax 

(MPa) 

Exp. Result 

(Häberle 

and 

Matthews, 

1994) 

(MPa) 
Based on 

SDTDFA 

Based on 

MDAFA 

1 0 1480 1550 

1470 

 

 

1650 

 

 

5400 

 

 

1500 
1.03 0.25 1470 1540 

1.12 0.5 1400 1510 

1.25 0.75 1350 1435 

1.41 1 1280 1365 

 

The compressive strength values for different initial 

misalignment angles are estimated using the first and 

second approaches of this study and compared to 

values available in literature for other fibrous 

composites, namely; AS4/E7K8, Glass-Vinyl Ester, 

Glass-Polyester and unidirectional HTS40/977-2, see 

Tables 5, 6, 7 and 8. The compressive strength values 

of AS4/E7K8 are listed in Table 5. As can be seen, the 

values 1670 MPa, and 1685 MPa, according to 

approximate and explicit formulae of (Barbero, 1998), 



Jordan Journal of Civil Engineering, Volume 8, No. 2, 2014 

 

- 175 - 

agree well with the experimental one of (Tomblin and 

Barbero, 1996). Also, it can be seen from the results 

that the present first approach yields the experimental 

value at 0 ~ 39.1 , while the present second approach 

yields the experimental value at 2.10   and
05.10  . The percentage difference from the 

experimental value for the present two approaches is 

25.6% and 40.7%, respectively, when neglecting the 

misalignment in the opposing direction. The values of 

approximate and explicit formulae of (Barbero, 1998) 

and the experimental value of (Barbero and Tomblin, 

1996) of about 522 MPa for Glass-Vinyl Ester with an 

initial misalignment angle of 
3.3 agree well with the 

present first approach for an initial misalignment angle 

0 ~ 11.4 and with the present second approach for 
3.30  and 0 ~ 7.1 , see Table 6. The percentage 

difference from the experimental value for the present 

first approach is 22.61% and is 39.85% for the present 

second approach, at
00  . For Glass-Polyester, 

Table 7, the compressive strength value of about 370 

MPa according to the approximate and explicit 

formulae of (Barbero, 1998) underestimates the 

experimental value obtained by (Barbero and Tomblin, 

1996). The experimental value of 478 MPa agrees with 

the present first approach for 
4.30  and with the 

present second approach for 
4.30   and 22.10  . 

 

Table 3. Compressive strength of XAS/914C 'dry',
 


10    

 

0  

(deg.) 

 

0  

(deg.) 

 

Present 

Eqn. (15) 

cmax 

(MPa) 

Present 

Eqn. (20) 

cmax 

(MPa) 

Model (Barbero, 1998) 

c max 

(MPa) 

Model (Häberle and 

Matthews, 1994) 

c max 

(MPa) 

Model 

(Rosen, 1965) 

cmax 

(MPa) 

Exp. 

Result 

(Häberle and 

Matthews, 

1994) 

(MPa) Approximate 

formula 

Explicit 

formula 

Based on 

SDTDFA 

Based on 

MDTDFA 

1 0 1790 1905 

1762 1705 1775 1970 5710 1800 

1.03 0.25 1760 1900 

1.12 0.5 1730 1895 

1.25 0.75 1560 1830 

1.41 1 1470 1750 

 

 

Table 4. Compressive strength of AS4/PEEK 'APC-2', 


2510 .  

 

0  (deg.) 

 

0  (deg.) 

 

Present 

Eqn. (15) 

cmax 

(MPa) 

Present 

Eqn. (20) 

cmax 

(MPa) 

Model (Häberle and  

Matthews, 1994) 

c max 

(MPa) 

Model 

(Rosen, 1965) 

cmax 

 

(MPa) 

Exp. 

Result 

(Häberle and 

Matthews, 1994) 

(MPa) 
Based on 

SDTDFA 

Based on 

MDAFA 

1.25 0 1490 1570 

1295 1490 6071 1500 

1.27 0.25 1480 1560 

1.35 0.5 1420 1535 

1.46 0.75 1360 1495 

1.6 1 1290 1425 
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Table 5. Compressive strength of AS4/E7K8, 


210 .  

0  

(deg.) 

 

0  

(deg.) 

 

Present 

Eqn. (15) 

cmax 

(MPa) 

Present 

Eqn. (20) 

cmax 

(MPa) 

Model 

(Barbero, 1998) 
Exp. 

Result 

(Tomblin and 

Barbero, 1996) 

(MPa) 

Approximate 

formula 

c max 

(MPa) 

Explicit 

formula 

c max 

(MPa) 

1.2 0 2120 2375 

1670 1685 1688 

1.23 0.25 2025 2320 

1.3 0.5 1870 2200 

1.42 0.75 1630 1980 

1.56 1.0 1410 1740 

1.73 1.25 1190 1480 

 

Table 6. Compressive strength of Glass-Vinyl Ester,
 


330 .  

0  

(deg.) 

 

0  

(deg.) 

 

Present 

Eqn. (15) 

cmax 

(MPa) 

Present 

Eqn. (20) 

cmax 

(MPa) 

Model 

(Barbero, 1998) 

Exp. 

Result 

(Barbero and 

Tomblin, 1996) 

(MPa) 

Approximate 

formula 

c max 

(MPa) 

Explicit 

formula 

c max 

(MPa) 

3.3 0 640 730 

498 506 522 

3.31 0.25 635 725 

3.34 0.5 620 715 

3.38 0.75 600 700 

3.45 1.0 540 660 

3.53 1.25 520 615 

3.62 1.50 500 560 

3.74 1.75 465 500 

 

Table 7. Compressive strength of Glass-Polyester,
 


430 .   

0  

(deg.) 

 

0  

(deg.) 

 

Present 

Eqn. (15) 

cmax 

(MPa) 

Present 

Eqn. (20) 

cmax 

(MPa) 

Model 

(Barbero, 1998) 
Exp. 

Result 

(Barbero and 

Tomblin, 1996) 

(MPa) 

Approximate 

formula 

c max 

(MPa) 

Explicit 

formula 

c max 

(MPa) 

3.4 0 480 540 

370 374 478 

3.41 0.25 477 535 

3.44 0.5 475 528 

3.48 0.75 470 515 

3.54 1 460 500 

3.62 1.25 445 480 

3.72 1.5 430 460 
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Table 8. Compressive strength of UD HTS40/977-2, 


10   

 

0  

(deg.) 

 

0  

(deg.) 

 

Present 

Eqn. (15) 

cmax 

(MPa) 

Present 

Eqn. (20) 

cmax 

(MPa) 

Model 

(Jumahat et al., 2011) 

cmax 

(MPa) 

Model 

(Berbinau et 

al., 1999) 

cmax 

(MPa) 

Model 

(Budiansky, 

1983) 

cmax 

(MPa) 

Exp. 

Result 

(Jumahat et 

al., 2011) 

(MPa) 

Combined 

modes 

model 

Fiber 

microbuckling 

Fiber 

kinking 

1 0 1480 1730  

 

 

 

1334 

 

 

 

 

1059 

 

 

 

 

1588 

 

 

 

 

 

057 

 

 

 

 

0777 

 

 

 

 

 

1396 

1.03 0.25 1425 1675 

1.12 0.5 1370 1625 

1.25 0.75 1315 1575 

1.41 1 1250 1500 

1.6 1.25 1175 1420 

1.8 1.5 1100 1340 

2.02 1.75 990 1240 

2.24 2 890 1120 

2.46 2.25 890 1000 

 

The percentage difference from the experimental value 

of this material is 0.41% based on the present first 

approach and is 12.97% based on the present second 

approach, when
00  . For the unidirectional 

HTS40/977-2 composite material, a suggested value of 
10  is used. The values of compressive strength are 

listed in Table 8. The value of 1334 MPa for an initial 

misalignment angle of 
2  predicted in (Jumahat et al., 

2011), taking into account the additional strength 

provided by the matrix after the formation of a kink 

band, agrees well with the experimental value. An 

experimental value of 1396 MPa has been measured by 

(Jumahat et al., 2011). This value agrees with the 

present first approach at 0 ~
06.1 and with the present 

second approach at 
10  and 0 ~

32.1 . The value 

750 MPa from (Berbinau et al., 1999) underestimates 

the compressive strength because it does not take into 

account the additional strength provided by the matrix 

after the formation of the kink band. Bearing in mind 

that the actual initial misalignment angle is about 
2 , 

the present first approach value is in good agreement 

with that of (Budiansky, 1983), 1000 MPa, for 
20   

as well as the present second approach value for 
10  and 0 ~ 25.2 .  

 

CONCLUSIONS 

 

Two approaches are developed in the present study 

to estimate the compressive strength of fibrous 

composites using a three-dimensional micromechanical 

model having a cosine function representing the initial 

curvature of the fibers. It is found that the initial 

misalignment of fibers excites the dominant shear 

failure mode of the matrix, accompanied with the non-

linear shear stress-strain relationship of the matrix 

material, the compressive strength is determined 

accordingly. In addition, the shape of the initial 

misalignment of the fibers plays a vital role in the 

determination of the compressive strength of fibrous 

composites. The two approaches are validated for 

several fibrous composite materials. The two 

approaches used herein are found to be useful in a 
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three-dimensional analysis, and lead to reliable results 

that are in good agreement with experimental data.  
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