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ABSTRACT 

Time and cost are among the important aspects considered for every construction project. Many research 

approaches have been followed to model time-cost relationship. There is a constant rise in the use of 

innovative contract methods which provide incentives for maximizing quality. There is an increasing pressure 

to improve the project performance due to the innovative contracting methods which necessitate developing 

models incorporating quality along with time and cost. A main contractor normally subcontracts most of the 

tasks of a project for improving project performance. It is always a complex and challenging task for a main 

contractor, to choose a correct bid which satisfies the time, cost and quality requirements of a project. In the 

present study, a differential evolution algorithm is used to solve this multi-objective time-cost-quality 

optimization problem. Two case studies are analyzed and the results obtained compared with the existing 

approaches to test the applicability and efficiency of the algorithm. It is evident from the results that the 

differential evolution algorithm performs efficiently in locating the optimal solution with minimum function 

evaluation. 

KEYWORDS: Time-cost-quality trade-off, Multi-objective optimization, Differential evolution 

optimization. 

 
INTRODUCTION 

 

The main objective of construction project planning 

and control is to execute the project within the 

anticipated time while satisfying the quality 

requirements apart from minimum cost. Use of 

innovative contracting is gaining importance among 

contractors as it brings the incentives in terms of 

quality of work being executed. In case of warranties 

contract, contractors are liable for the performance of 

the project. This forces the contractor to improve the 

quality of the project. This kind of innovative 

contracting method places a huge pressure on the 

contractor to maximize the quality along with time and 

cost. Trade-off between these conflicting aspects of the 

project is a challenging job and planners are faced with 

numerous possible combinations for project delivery. 

For example, the number of possible combinations in a 

project with 18 activities and 4 possible resource 

utilization options for each activity will be more than 6 

billion (El-Rayes et al., 2005). Hence, an efficient 

searching tool is vital to evaluate best alternatives from 

options for decision makers. 

Various optimization approaches have been used to 

solve the construction scheduling problem, and they 

can be classified as mathematical, heuristic and meta-

heuristic methods (Zhou et al., 2013). Burns et al. 

(1996) used a hybrid of linear programming and Accepted for Publication on 6/4/2014. 
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integer programming. Li and Love (1997), Hegazy 

(1999) and Leu et al. (2001) used genetic algorithm. Li 

and Love (1999) used a mixture of machine learning 

and genetic algorithm. All these models targeted 

minimizing the cost without due attention to reduce the 

time simultaneously. Several researchers made an 

attempt to balance the completion time and cost for 

improving the performance of construction projects. 

Notably, Feng et al. (1997), Leu and Yang (1999) and 

Zheng et al. (2005) used genetic algorithm for solving 

this time-cost trade-off problem. Feng et al. (2000) 

used simulation techniques and genetic algorithm. 

Zheng et al. (2004) used adaptive weight approach and 

genetic algorithm. Zheng and Thomas (2005) used 

fuzzy sets theory and non-replaceable front for the 

stochastic time-cost optimization problem. Afshar et al. 

(2009) used ant colony algorithm to solve this time-

cost trade-off problem. Recent trends concentrated on 

the need for incorporating quality along with the 

traditional time-cost optimization since incentives are 

provided for maximizing quality. 

Use of traditional optimization techniques appears 

more common to solve the time-cost-quality (TCQ) 

trade-off problems. Babu and Suresh (1996) used three 

inter-related linear programming models by assuming 

the relationships among the project completion time, 

project cost and quality. Khang and Myint (1999) 

applied the method proposed by Babu and Suresh 

(1996) to a real construction project and then 

investigated its practical applicability and efficiency. 

El-Rayes and Kandil (2005) used genetic algorithm for 

solving the time-cost-quality trade-off problem, and 

measurable quality indicators for each activity in the 

project were introduced in order to quantify the 

construction quality, whereas there was no clear 

measurement approach in the previous studies. Afshar 

et al. (2006) and Shrivastava et al. (2012) used ant 

colony optimization for optimizing time-cost-quality 

and time-cost-quality-quantity, respectively. Santosh et 

al. (2013) used a fuzzy cluster genetic algorithm 

approach to optimize time, cost and quality. 

Lakshminarayanan et al. (2010) converted the quality 

parameter into a risk factor based on the comparative 

study and opinion analysis from project managers, 

building construction contractors and construction 

consultants, and it was solved by ant colony 

optimization approach to minimize the time-cost-risk 

of the project. In this paper, a differential evolution 

approach is used to model the multi-objective time-

cost-quality optimization problem. 

 

Problem Description and Formulation 

Any construction project generally consists of 

several activities that need to be completed within the 

specified duration. Due to precedence relationships 

among those activities, the project forms an activity 

network. Main contractor usually allots certain or all 

activities to subcontractors due to the limitation in their 

own capacity and resources. They float bids and 

receive bids with respect to both duration and cost 

point of view from different subcontractors. There is a 

chance of getting several subcontractors for each 

activity of the project. The capacity of each 

subcontractor is usually assessed based on the amount 

that they have quoted, completion of the task and 

quality of work that they may render. The problem 

mainly consists of selecting appropriate resource 

utilization options for each activity to obtain minimum 

cost and time and maximum quality in the project in 

overall. The objective function defining time can be 

expressed as: 

ܶ	݊݅ܯ  = max€ ∑ ∑ ݀ݔೕୀଵ€              (1) 

 

where dij represents the duration of activity i when 

performing the jth option; and xij is the index variable of 

activity i when performing the jth option. If xij =1 , then 

activity i performs the jth
  option, and if xij = 0, then 

activity i does not. The sum of index variables must be 

equal to one. L is the set of all network paths 

{1,2,…..p}. Lp is the activity sequence on the pth path, 

and mi is the number of subcontracting option for 

activity i, for i = 1,…,N. 

The cost of a project consists of both direct and 
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indirect cost. Direct cost is the sum of direct cost of all 

activities within the project network. Indirect cost is the 

expenditure on management during project 

implementation, which depends on the project 

duration. The indirect cost will be higher in case of 

longer projects. The objective function depicting the 

total cost of the project can be expressed as: 

 Min 	C = 	∑ ∑ c୧୨x୧୨ 		+ IC	x	T			୫ౠ୨ୀଵ୧ୀଵ 		                     (2) 

 

where, cij is the  cost of subcontracting option for 

activity i for the jth option; IC is the indirect cost of the 

activities per day. 

The construction quality quantification as a 

function of different resource utilizations is a 

challenging work because of difficulty in measuring 

the impact of performing activities on the quality of 

activities. Some indicators have been investigated and 

identified in recent studies for developing contractor 

prequalification systems based on quality (Anderson 

and Russell, 2001). The identified quality indicators 

were obtained from performance-based models which 

correlate the future performance of each activity to its 

quality indicators. The objective function expressing 

the quality of the project can be expressed as: 

 Max 	Q = 	∑ wt୧୧ୀଵ 	∑ wt୧,୪	୪ୀଵ 	 q୧,୨,୪			x୧୨                    (3) 

 

where, qi,j,l is the performance quality indicator l in 

activity i using the jth
 resource utilization option. wti,l is 

the weight of quality indicator (l) compared with other 

indicators in activity i. wti  is the weight of activity i 

compared to other activities of the  project. 

Multi-objective optimization is established using 

the following approaches. 

 

Method 1 Min	Z 	 = 	 ቈW୲ ∗ ቂ	 	ିౣ			ା	γౣ౮			ିౣ			ା	γቃ 	+ Wୡ ∗ ቂ	 	େିେౣ			ା	γେౣ౮			ିେౣ			ା	γቃ 	+ W୯	 ∗ ቂ	 ୕ౣ౮ି୕ା	γ୕ౣ౮ି୕ౣା	γቃ				      (4) 

 

 

where, 

Wt , Wc  and  Wq are the  adaptive weights for time, 

cost  and quality given by: 

 	W୲ = 		 V୲	V	 	 ; 	 	Wୡ = 		Vୡ	V 	; 	 	W୯ = 		V୯	V . 
 

Vt  ,Vc  and Vq  are the criteria for time, cost and quality, 

respectively: 

 V୲	 = T୫୧୬				T୫ୟ୶		– T୫୧୬			 ; Vୡ = C୫୧୬				C୫ୟ୶		– C୫୧୬			 	 ; 										V୯ = 	 Q୫ୟ୶				Q୫ୟ୶			– Q୫୧୬			. 
 

V is the cumulative criterion given by: V = V୲	 + Vୡ +	V୯; 
T, C and Q are the objective time, cost and  quality in 

the respective sequence of solution. Tmin , Cmin , Qmin , 

Tmax , Cmax and Qmax   are the  minimum and  maximum 

time cost quality obtained when the problem is 

optimized as single objectives. 

 

Method  2 

 Min		U 	 = W୲ ∗ ቂ		ିౣ			ౣ			 ቃଶ 	+ Wୡ ∗ ቂ	େିେౣ			େౣ			 ቃଶ +																				W୯	 ∗ ቂ	୕ౣ౮ି୕୕ౣ౮ ቃଶ	ቃ	ଵ/ଶ                                (5) 

where, 

 W୲	 = 	 1	T୫ୟ୶			– T୫୧୬			 ;Wୡ = 	 1	C୫ୟ୶			– C୫୧୬			 	 ; 													W୯ = 	 1Q୫ୟ୶			– Q୫୧୬			. 
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Differential Evolution Algorithm 

Differential Evolution (DE) algorithm is a search-

based stochastic optimization algorithm introduced by 

Storn and Price (1995) for solving complex continuous 

optimization problems as an improvement over genetic 

algorithm. The DE algorithm uses population-based 

solution exploration with the help of crossover, 

mutation and selection operators. DE explores the best 

candidate solutions iteratively until the stopping 

criterion is reached. It requires an initial population 

containing individuals or vectors (candidate solutions) 

that can be generated randomly. The fitness value of 

each candidate solution obtained from the initial 

population is calculated according to the chosen 

objective function. Two candidate solutions are 

selected randomly from the population, and the vector 

difference between them is calculated, and its weighted 

value is calculated by a multiplying factor called 

mutation (0 to 1), and the resulting weighted vector is 

added with the third randomly selected candidate 

solution which needs to be selected from the 

population other than the earlier selected two candidate 

solutions. The new candidate solution so obtained from 

the above process is called noisy vector. This noisy 

vector is now subjected to crossover process with a 

target vector selected randomly from the population. 

The candidate solution obtained at the end of crossover 

process is called the trial vector. The vector having best 

fitness among trial and target vectors is considered as a 

candidate solution to the next generation. The number 

of candidate solutions for the next generation for the 

chosen population size is obtained by repeating the 

above-mentioned procedure a  number of times equal 

to the population size. The entire process is repeated 

either a predefined number of generations or until 

specified termination criterion is achieved. 

The stepwise procedure is illustrated as follows: 

1. Initial candidate solutions are generated randomly 

for the chosen population size (pop_size) to form 

the initial population and account this as first 

generation (G = 1). The expression for creating 

random solution is as follows: 

ntojstoiddrdd L
j

U
j

G
ji

L
jji 1,1,)( )()(

,
)(0

,   

                                                                                (6) 

 

where G
jir ,  denotes a uniformly distributed random 

value within the range from 0.0 to 1.0. 
)(U

jd  and 
)(L

jd  

are upper and lower limits of variable jd . 

2. In the next step, weighted vector is calculated by 

multiplying mutation factor F with differential 

vector obtained by finding the difference between 

two randomly selected vectors from population. ݓீ = ܨ ∗ ൫݀,ீ − ݀,ீ ൯											 ntoj 1  

                                                                           (7) 

The weighing factor is usually selected between 0.4 

and 1.0. 

 

3. The population of trial vectors )1( GP  is generated 

as follows: 
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Cr is crossover constant, which assists for differential 

perturbation in order to select the pipe diameter either 

from noisy vector or from target vector to form a new 

population for the next generation. 

4. The population of the next generation )1( GP  is 

created as follows (Selection): 

where )( )(G
idf  represents the cost of the ith 

individual in the Gth generation. 

The superior performance of differential evolution 

over other competing algorithms has been reported by 

Suribabu (2010) for the design of water distribution 

network problem. 
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Application Example 1 

A project example is analyzed to illustrate the use 

of the present optimization model and explain its 

capabilities. The example consists of seven activities, 

where each has a number of possible resource 

utilization options as shown in Table 1. The example is 

originally obtained from Feng et al. (1997). The same 

example was later investigated by Zheng et al. (2005), 

Afshar et al. (2006) and Lakshminaryanan et al. (2010) 

using different optimization approaches. The data 

presented in Table 1 is obtained from Afshar et al. 

(2006). For the sake of comparison, the indirect cost is 

assumed to be zero. 

 

Table 1. Detailed data of the example 

Activity Preceding activity Resource options 
Duration 

(days) 

Cost 

($) 
Weight (%) 

Qualtiy 

(%) 

1  

1 14 23000 

8 

98 

2 20 18000 89 

3 24 12000 84 

2 1 

1 15 3000 

6 

99 

2 18 2400 95 

3 20 1800 85 

4 30 1200 70 

5 60 600 59 

3 1 

1 15 4500 

14 

98 

2 22 4000 81 

3 33 3200 63 

4 1 

1 12 45000 

19 

94 

2 16 35000 76 

3 20 30000 64 

5 

 
2,3 

1 22 20000 

17 

99 

2 24 17500 89 

3 28 15000 72 

4 30 10000 61 

6 4 

1 14 40000 

19 

100 

2 18 32000 79 

3 24 18000 68 

7 5,6 

1 9 30000 

17 

93 

2 15 24000 71 

3 18 22000 67 

 

Application Example 2 

Another example introduced by Feng (1997) to 

illustrate construction time-cost trade-off has been 

considered in the present study to evaluate the 

efficiency of the proposed multi-objective models with 

differential evolution algorithm. El-Rayes and Kandil 
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(2005) gave the quality indicators for this example and same is present in Table 2.  

 

Table 2. Complete data with quality indicator for Example 2 

Activity 
Preceding 

activity 

Resource 

options 

Time 

(days) 

Cost 

($) 

Activity

Weight

 (ܑܜܟ) (%)
Indicator

Weight (ܔ,ܑܜܟ) 
Qualtiy 

Perform-

ance (ܔ,ܒ,ܑܙ) 
Indicator 

Weight (ܔ,ܑܜܟ) 
Qualtiy 

Perform-

ance (ܔ,ܒ,ܑܙ) 
Indicator

Weight (ܔ,ܑܜܟ) 
Qualtiy 

Perform-

ance (ܔ,ܒ,ܑܙ ) 
1 0 

1 14 2400 

3 50 

100 

30 

96 

20 

98 

2 15 2150 90 89 89 

3 16 1900 86 77 84 

4 21 1500 75 72 73 

5 24 1200 63 60 65 

2 0 

1 15 3000 

5 40 

98 

40 

94 

20 

99 

2 18 2400 87 94 95 

3 20 1800 81 92 85 

4 23 1500 77 72 70 

5 25 1000 60 66 59 

3 0 

1 15 4000 

8 70 

100 

15 

97 

15 

98 

2 22 4000 80 82 81 

3 33 3200 62 60 63 

4 0 

1 12 45000 

11 50 

99 

35 

91 

15 

94 

2 16 35000 74 71 76 

3 20 30000 59 63 64 

5 1 

1 22 20000 

10 60 

100 

20 

97 

20 

99 

2 24 17500 93 89 89 

3 28 15000 77 71 72 

4 30 10000 61 64 61 

6 1 

1 14 40000 

11 50 

95 

25 

95 

25 

100 

2 18 32000 76 74 79 

3 24 18000 59 62 68 

7 5 

1 9 30000 

10 30 

97 

30 

99 

40 

93 

2 15 24000 70 73 71 

3 18 22000 61 62 67 

8 6 

1 14 220 

1 100 

95 

0 NA 0 NA 

2 15 215 83 

3 16 200 75 

4 21 208 68 

5 24 120 61 
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9 6 

1 15 300 

1 50 

100 

50 

99 

0 NA 

2 18 240 97 92 

3 20 180 81 88 

4 23 150 71 75 

5 25 100 63 64 

10 6 

1 15 450 

1 60 

94 

40 

97 

0 NA 2 22 400 79 83 

3 33 320 63 69 

11 7 

1 12 450 

2 70 

96 

30 

95 

0 NA 2 16 350 72 75 

3 20 300 61 66 

12 5,9,10 

1 22 2000 

3 50 

99 

35 

98 

15 

95 

2 24 1750 89 85 87 

3 28 1500 70 71 79 

4 30 1000 62 61 63 

13 3 

1 14 4000 

7 40 

99 

40 

96 

20 

97 

2 18 3200 73 71 76 

3 24 1800 60 62 63 

14 4,10 

1 9 3000 

6 80 

100 

10 

95 

10 

98 

2 15 2400 79 82 81 

3 18 2200 63 67 66 

15 12 1 16 3500 7 70 100 30 98 0 NA 

16 13,14 

1 20 3000 

3 30 

97 

30 

96 

40 

98 

2 22 2000 89 85 87 

3 24 1750 81 79 78 

4 28 1500 72 73 74 

5 30 1000 67 60 62 

17 11,14,15 

1 14 4000 

6 70 

98 

20 

97 

10 

99 

2 18 3200 73 75 72 

3 24 1800 62 65 61 

18 17,16 

1 9 3000 

5 30 

98 

45 

99 

25 

94 

2 15 2400 75 77 71 

3 18 2200 63 66 67 

 

Model Implementation 

To provide optimal trade-off among cost, time and 

quality for decision makers, the formulated model with 

three objectives is solved using differential evolution 

algorithm. In the present study, computer code for 

differential evolution has been implemented in Eclipse 

Java platform. The termination criterion for the 

optimization process is arbitrarily set to 100, and the 

population size (p), crossover probability (Cr) and 

mutation factor (F) are assigned as 30, 0.5 and 0.8, 

respectively. The best set of solutions with its 

subcontracting plan is given in Table 3. The best 

solutions are generated by considering a single 

objective function alone. Most promising solution in 
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terms of cost, time and quality from the generated 

solution is collected and listed in Table 3. Tmin, Cmin, , 

Qmin,  Tmax, Cmax and Qmax values are selected from 

Table 3 to evaluate weighted multi-objective functions 

(i.e., Eq. 4 & Eq. 5). 

 

Table 3. Best set of solutions with subcontracting plan for example 1 

Time 

(days) 

Cost 

(%) 

Quality 

(%) 
Resource Utilization Option 

60 143500 90 1 1 1 1 1 3 1 

60 165500 97 1 1 1 1 1 1 1 

63 131000 85 1 1 1 2 2 3 1 

63 133500 87 1 1 1 2 1 3 1 

65 141300 86 1 3 1 3 1 2 1 

65 142300 90 1 3 1 1 1 3 1 

66 128500 90 1 1 1 2 3 3 1 

69 136900 86 1 2 1 1 1 3 2 

75 118000 76 1 1 2 3 4 3 1 

74 112500 75 1 1 1 3 4 3 2 

78 142200 86 1 1 3 1 1 3 1 

81 106900 77 3 2 1 3 4 3 1 

84 101500 73 3 1 1 3 4 3 2 

85 108500 76 3 1 2 3 2 3 2 

87 99500 73 3 1 1 3 4 3 3 

91 101000 71 3 1 2 3 4 3 2 

94 97800 70 3 3 2 3 4 3 3 

105 97000 67 3 3 3 3 4 3 3 

132 95800 65 3 5 3 3 4 3 3 

 

RESULTS AND DISCUSSION 

 

Table 3 provides the list of best solutions obtained 

by solving the model with single objective function. It 

can be seen from Table 3 that when least cost solution 

is selected, its time and quality need to be 

compromised. If quality alone is considered, then cost 

needs to be compromised, but minimum time is 

feasible. The multi-objectiveness of the present 

problem is handled in two different weighted objective 

functions. For any population-based algorithm, the 

selection process is considered as one of the crucial 
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parts. In case of single objective optimization problem, 

the solution obtained in the present generation is 

carried to the next generation if the obtained solution is 

better than the initial population. In the DE algorithm, 

this selection process is carried out after obtaining trial 

vectors. Vector having least cost in case of 

minimization problem is selected by comparing trial 

vector cost and target vector cost chosen from the 

initial population. The solution having least cost 

between these two vectors enters to the next 

generation. This process in the present problem is 

handled by comparing with the weighted objective 

function values (i.e., Z as per Eq. 4 and U as per Eq. 5), 

which represent the sum of weighted values of cost, 

time and quality objective functions. That is; the 

solution having least Z and U values will be entering to 

the next generation. Table 4 shows the optimal solution 

obtained from the two models. First solution in Table 4 

is obtained through the first approach (i.e., by Z as per 

Eq.4), and the second solution is obtained using the 

second approach (i.e., by U as per Eq. 5). Ten trial runs 

for each method are made by changing the random 

seed value. In the first approach, the minimum number 

of iterations at which the generation’s average time, 

cost and quality reach the solution time, cost and 

quality is seventeen. In the second approach, it is 

reached at fourteenth generation. Hence, the second 

approach performance is more commendable than the 

first approach in terms of algorithm performance. 

 

Table 4. Optimal solutions for seven activity problem 

Method 
Time 

(Days) 

Cost 

($) 

Quality 

(%) 

No. of trial 

runs by 

changing 

random seed 

Population

size 

Total 

iterations

Minimum number of 

iterations at which the 

generation’s average 

equals the solution 

1 60 165500 97 10 30 30 17 

2 60 165500 97 10 30 30 14 

 

The selection of appropriate weights can also be 

done based on the importance predicted by the 

construction planner or decision maker. This can be 

implemented by considering either equal weight for 

each objective function or different weightage to each 

objective function according to the priority and 

importance considered by the construction manager. 

Apart from weightage assigned based on the above-

mentioned procedure, investigation is also made by 

changing the values of weights in the first and the 

second approaches. With different combinations of 

weightage values in both methods, several trial runs are 

also made and obtained solutions are presented in 

Table 5. The proposed multi-objective optimization 

model is found to be more sensitive to weights when its 

value is altered. First method has given a distinct result 

for each weight combination. Out of eight 

combinations in the first method, only two solutions 

have the same result. But in case of the second method, 

five solutions are found to be the same for same 

combinations of the weightage. This indicates that the 

influence of formulated objective function to satisfy the 

multi-objectiveness is also an important factor in the 

multi-objective optimization model. 
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Table 5. Optimal solutions based on different proportions of weight (Example 1) 

Method Wt Wc Wq 
Time 

(days) 

Cost 

(%) 

Quality 

(%) 
Resource Utilization Option 

1 0.333 0.334 0.333 66 128500 90 1 1 1 2 3 3 1 

1 0.2 0.2 0.6 66 150500 96 1 1 1 2 3 1 1 

1 0.6 0.2 0.2 60 143500 90 1 1 1 1 1 3 1 

1 0.2 0.6 0.2 86 104500 83 3 1 1 3 3 3 3 

1 0.5 0.3 0.2 67 123500 88 1 1 1 3 3 3 1 

1 0.5 0.2 0.3 66 138500 94 1 1 1 1 3 3 1 

1 0.3 0.5 0.2 77 112500 87 3 1 1 3 3 3 1 

1 0.3 0.2 0.5 66 150500 96 1 1 1 2 3 1 1 

2 0.333 0.334 0.333 67 123500 88 1 1 1 3 3 3 1 

2 0.2 0.2 0.6 67 123500 88 1 1 1 3 3 3 1 

2 0.6 0.2 0.2 67 123500 88 1 1 1 3 3 3 1 

2 0.2 0.6 0.2 78 107500 77 3 1 1 3 4 3 1 

2 0.5 0.3 0.2 68 118500 78 1 1 1 3 4 3 1 

2 0.5 0.2 0.3 67 123500 88 1 1 1 3 3 3 1 

2 0.3 0.5 0.2 74 113500 78 2 1 1 3 4 3 1 

2 0.3 0.2 0.5 67 123500 88 1 1 1 3 3 3 1 

 

The performance of the present approach is 

compared with the solution of multi-objective 

optimization model (MOOM) by Lakshminarayanan et 

al. (2010) and multi-objective ant colony algorithm 

(MOACO) model proposed by Afshar et al. (2006). 

Table 6 shows the results of the present approach and 

other methods. Direct comparison shows that 

differential evolution approach provided the same time, 

higher cost and high quality with respect to the second 

solution for a smaller number of function evaluation 

and same time, cost and quality with respect to the first 

solution. 
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Table 6. Comparison of solutions between present approach and other approaches (Example 1) 

Solution Models Time (days) 
Cost 

($) 

Quality 

(%) 
Resource Option 

1 MOOM 60 165500 97 1 1 1 1 1 1 1 

2 *50,30- MOACO 60 155500 92 1 1 1 2 1 1 1 

3 

30,30 – 

DE APPRAOCH 

(Method 1) 

60 165500 97 1 1 1 1 1 1 1 

4 

30,30- 

DE APPRAOCH 

(Method 2) 

60 165500 97 1 1 1 1 1 1 1 

50, 30 – 50 is the number of iterations and 30 is the population size, respectively. 

 

The time-cost-quality optimization problem is an 

extension to the time-cost optimization problem. So, it 

is valid to compare the performance of differential 

evolution approach with other time-cost optimization 

problems. For converting the time-cost-quality trade-

off problem into a time-cost trade-off problem, the 

weights of quality in multi-objective optimization 

equations of both methods are made zero. By solving 

the time-cost trade-off problem, method 1 gives a 

solution of time 68 days, cost $118500 and quality 

78%. Its resource utilization option is [1,1,1,3,4,3,1]. 

Solving by method 2 gives the solution of time 60 

days, cost $143500 and quality 90%. The resource 

utilization option obtained for this case is 

[1,1,1,1,1,3,1]. For comparison with the proposed 

approach, three more works have been taken from the 

literature in addition to already compared approaches 

for time, cost and quality, and the results are listed in 

Table 7. Geem (2010) used harmony search approach 

to optimize the same problem. Santhosh et al. (2013) 

investigated the same problem using fuzzy-clustering-

based genetic algorithm approach (FCGA). Zheng and 

Thomas (2005) proposed modified adaptive weight 

approach (MAWA) to handle multi-objectiveness of 

the problem. Method 1 gives a solution with higher 

time, but it gives a much lesser cost when compared to 

all other models. Method 2 gives better results when 

compared to MAWA, MOACO and MOOM in both 

cost and time. It gives the same time and cost as 

FCGA-APPROACH and HS-APPROACH with lesser 

functional evolutions. While comparing the two 

solutions obtained using method 2 for time and cost 

trade-off with time-cost-quality trade-off, time-cost 

trade-off problem gives time and cost as 60 days and 

$143500, respectively, with 90% quality. But, in case 

of optimal solution obtained by solving it as a time-

cost-quality trade-off problem, the solution has 97% 

quality at the additional expense of $22,000. If same 

comparison is made with method 1, time-cost trade-off 

problem gives time and cost as 68 days and $118500, 

respectively, with 78% quality. For time-cost-quality 

trade-off problem, optimal solution saves 8 days and 

has 97% quality at the additional expense of $47,000. 
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Table 7. Comparison of the results obtained by MAWA, MOOM, MOACO, HS approach, 

FCGA approach with the proposed DE approach (Example 1) 

Solution Model 
Time 

(days) 
Cost ($) 

1 *50,50-MAWA 61 173000 

2 100,50-MAWA 61 173000 

3 30-MOACO 61 173000 

4 MOOM 60 165500 

5 30-MOACO 60 155500 

6 1000,30-HS-APPROACH 60 143500 

7 200-FCGA-APPROACH 60 143500 

8 
30,30-DE-APPRAOCH 

(Method 1) 
68 118500 

9 
30,30-DE-APPRAOCH 

(Method 2) 
60 143500 

*50, 50 – 50 is the number of iterations and 50 is the population size, respectively. 

 

Figs. 1 to 3 show the average value of objective 

time, cost and quality, respectively, for both methods. 

Method 2 reaches the minimum time a little faster as 

compared to method 1. Average cost and quality 

increase more or less the same for both solutions. In 

both cases, method 2 has performed slightly better. 

But, its ability to adopt to change in adoptive weight is 

not as good as that of method 1. 

 

Figure (1): Average objective time value in the population in the present approach (Example 1) 

 

 

50

55

60

65

70

75

80

85

90

0 5 10 15 20 25 30 35

Av
er

ag
e 

Ti
m

e

Iteration number

Method 1

Method 2



Jordan Journal of Civil Engineering, Volume 8, No. 4, 2014 

 

- 387 - 

 

Figure (2): Average objective cost value in the population in the present approach (Example 1) 
 

 

Figure (3): Average objective quality value in the population in the present approach (Example 1) 

 

The results of example 2 are presented in Table 8. 

As this example is relatively of larger size in terms of 

search space, the number of iterations is set to 200 

instead of 30. Ten trial runs are made by changing the 

random seed. The best solution found in these trial runs 

is tabled. It can be seen from Table 8 that the results 

obtained in both methods have the same time, but are 

of different cost and quality. The first method provided 

least cost and relatively lesser quality solution 

compared to method 2. Further, comparison is made 

with the solution obtained using Genetic Algorithm 

(GA) by El-Rayes and Kandil (2005). It is observed 
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from Table 9 that the optimal solutions obtained using 

the proposed models are distinct from the solutions 

obtained from earlier studies. However, the time 

required to complete the project is found to be the same 

for all three solutions. From these three solutions, it is 

possible to note the influence of quality on the cost. For 

converting the time-cost-quality trade-off problem into 

a time-cost trade-off problem, the weights of quality in 

multi-objective optimization equations of both methods 

are made zero. By solving as time-cost trade-off 

problem, method 1 gives a solution of time 114 days, 

cost $105270 and quality 70%. The obtained resource 

utilization option is [1,5,3,3,4,3,3,5,1,1,3,1,3,3,1,5,1,1]. 

By method 2, it gives the solution of time 104 days , 

cost $ 132270 and quality 75%. The resource 

utilization option obtained in this case is 

[1,5,3,3,3,1,3,5,1,1,3,1,3,3,1,5,1,1]. In the time-cost 

trade-off optimization, when method 1 of the present 

work is compared with Harmony Search (HS) approach 

presented by Geem (2010), the solution of the present 

work gives a solution with 9 days extra time and saves 

$22050. Similarly, when method 2 solution is 

compared with HS approach, it saves a day  at an 

expense of $4950. By changing the weights as shown 

in Table 11, optimal solutions are obtained using both 

methods. Like in the first example, method 2 has less 

ability to adopt to changing weights than method 1. 

 

 

Table 8. Optimal solution for 18 activities example 

 

Method 
Time 

(Days) 

Cost 

($) 

Quality 

(%) 

No. of trial runs by 

changing ranom seed 

Pop. 

size 

Total 

iterations

Minimum number of 

iterations at which the 

generation’s average equals 

the solution 

1 104 152620 92 10 30 200 90 

2 104 167770 96 10 30 200 55 

 

 

 

Table 9. Comparison of solutions of present approach with El-Rayes and Kandil (2005) 

 

Sol. 

No. 
Models 

Time 

(days) 

Cost 

($) 

Quality 

(%) 
Resource Option 

1 GA 104 166320 95 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 

*200,30 – 

DE 

(Method 1) 

104 152620 92 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 

200,30- 

DE 

(Method 2) 

104 167770 96 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 

*200, 30 – 200 is the number of iterations and 30 is the population size, respectively. 
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Table 10. Comparison of the results generated by HS APPROACH (Geem, 2010) 

Solution Models Time (days) 
Cost 

($) 

1 HS 105 127320 

2 

*200,30 – 

DE APPROACH 

(Method 1) 

114 105270 

3 

200,30 – 

DE APPROACH 

(Method 2) 

104 132270 

*200, 30 – 200 is the number of iterations and 30 is the population size, respectively. 

 

Table 11. Optimal solutions under different weights (Example 2) 

 

Method Wt Wc Wq 
Time 
(days) 

Cost 
($) 

Qu 
(%)

Resource Option 

1 0.333 0.334 0.333 114 112220 81 1 2 1 3 4 3 3 1 1 1 1 1 1 1 1 2 1 1

1 0.2 0.2 0.6 104 167770 96 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1

1 0.6 0.2 0.2 104 142870 88 1 3 1 3 2 1 2 1 1 1 1 1 1 1 1 3 1 1

1 0.2 0.6 0.2 114 107565 76 1 5 1 3 4 3 3 2 1 2 1 1 3 1 1 5 1 1

1 0.5 0.3 0.2 105 133115 84 1 3 1 3 4 1 3 2 1 1 1 1 1 1 1 4 1 1

1 0.5 0.2 0.3 104 152620 92 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0.3 0.5 0.2 114 110615 80 1 3 1 3 4 3 3 2 1 1 1 1 1 1 1 5 1 1

1 0.3 0.2 0.5 104 167770 96 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1

2 0.333 0.334 0.333 114 110570 80 1 3 1 3 4 3 3 1 1 2 1 1 1 1 1 5 1 1

2 0.2 0.2 0.6 114 119570 84 1 3 1 3 4 3 1 1 1 2 1 1 1 1 1 2 1 1

2 0.6 0.2 0.2 114 110570 80 1 3 1 3 4 3 3 1 1 2 1 1 1 1 1 5 1 1

2 0.2 0.6 0.2 114 108315 77 1 3 1 3 4 3 3 2 1 1 2 1 3 1 1 5 1 1

2 0.5 0.3 0.2 114 110570 80 1 3 1 3 4 3 3 1 1 2 1 1 1 1 1 5 1 1

2 0.5 0.2 0.3 114 112220 81 1 2 1 3 4 3 3 1 1 1 1 1 1 1 1 2 1 1

2 0.3 0.5 0.2 114 110570 80 1 3 1 3 4 3 3 1 1 2 1 1 1 1 1 5 1 1

2 0.3 0.2 0.5 114 114770 82 1 1 1 3 4 3 2 1 1 2 1 1 1 1 1 2 1 1

Qu denotes Quality 
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Figs. 4 to 6 show the average values of objective 

time, cost and quality, respectively, for both methods. 

Methods 1 and 2 reach two distinct solutions. Method 1 

converges to a solution with lesser cost  and relatively 

lesser quality compared to method 2 . Method 2 

converges a little  faster than method 1. But, its ability 

to adopt to change in adoptive weight is not as good as 

that of method 1. 
 

 
 

Figure (4): Average objective time value in the population in the present approach (Example 2) 
 

 
Figure (5): Average objective cost value in the population in the present approach (Example 2) 
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Figure (6): Average objective quality value in the population in the present approach (Example 2) 
 

CONCLUSIONS 

 

Differential evolution approach is applied to 

optimize the multi-objective time, cost and quality 

optimization problem. The model is designed to select 

optimal subcontracting plans that minimize time and 

cost of the projects while maximizing quality. The 

capability of the present approach in generating best 

general optimum solution is tested by comparing it 

with other existing approaches. It is noted that the 

differential evolution approach is capable of generating 

efficient results comparatively. The present approach 

provides an interesting substitute for the solution of 

construction multi-objective optimization problems. 
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