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ABSTRACT

Macro-elements are one of the powerful means in reducing the number of equations to be solved in finite 

element analysis .In the proposed method, several finite truss elements will be transformed into a single 

element called the macro-element. This is done by equating the potential energy of the macro-element to the 

potential energy of the equivalent truss finite elements. If the order of the macro-element function 

corresponds to the order of the structural behavior it models, an exact solution is achieved.

In this paper, a truss quadratic quadrilateral macro-element is developed. The developed macro-element was 

tested and the results were compared with the results of conventional finite element solutions. Excellent 

results were achieved with a substantial reduction in the number of equations.

KEYWORDS: Truss finite element, Quadratic quadrilateral macro-element.

INTRODUCTION

The analysis of large structural systems using the 

conventional finite element method is impractical. This 

is because of the necessity to use a relatively fine mesh 

to obtain an accurate model. This will lead to a large 

number of equations to be solved. Therefore, it is 

advantageous to seek for approaches that reduce the 

total number of degrees of freedom (d.o.f.) needed to 

successfully model large systems. There were many 

trials to overcome these problems like using sub-

structuring or repeated elements, but these methods are 

complex and not easily programmed. The developed 

macro-element method used in this paper is simple and 

easily programmed and can be used in any type of 

structure.

This macro-element is based on the transformation 

of many structural truss elements into a single 

equivalent macro-element. This is done by preserving 

the same potential energies of the structure modeled by 

truss elements and the same structure modeled by 

macro-elements (Alani, 1983).

FORMULATION OF MACRO-ELEMENTS

The formulation of a truss quadratic quadrilateral 

macro-element will be developed.

In this modeling, several basic truss elements are 

combined to form a macro-element (Alani, 1983, 2002).

The original structure that consists of many truss 

finite elements will be replaced by an equivalent model 

containing one or more macro-elements.

The macro- elements are assembled and analysis 

continued in a manner analogous to that used in the 

finite element method.

BASIC ASSUMPTIONS FOR MACRO-ELEMENT

FORMULATION

The formulation is based on the following Accepted for Publication on 11/5/2014.
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assumptions (Alani, 2006):

1. The potential and kinetic energies of the original 

finite element and the equivalent macro-element 

models are equal.

2. All the elements that are composing the macro-

element must be of the same type such as truss 

elements, beam elements, plane stress elements, 

plate bending elements…etc.

3. The order of the assumed displacement field of the 

macro-element is at least of the same order as that 

of the original finite elements.

4. The macro-element behavior follows the theory 

which controls the behavior of the structural 

elements that compose the macro-element.

5. The compatibility requirements for the macro-

element are the same as those of the original finite 

elements.

NECESSARY STEPS NEEDED FOR 

DEVELOPMENT OF A MACRO-ELEMENT

The necessary steps for the development of a 

macro-element are as follows (Alani, 2006):

Step (1) - Divide the original structure that consists of 

many finite elements into macro-elements.

Step (2) - Select the order of the macro-element 

displacement function. This step depends on 

the order and number of the finite-elements 

composing the macro-element. Accuracy of 

the results depends greatly on this step.

Step (3) - Set-up the stiffness matrices of the finite-

elements forming the macro-element.

Step (4) - Calculate the local coordinates (ξ, η) for the 

nodal points of the finite elements with 

respect to the macro-element nodes so as to 

formulate the transformation matrix [T] 

required in the next step.

Step (5) - Formulate the transformation matrix [T], 

which relates the nodal degrees of freedom 

of the macro-element to the nodal degrees of 

freedom of the original structure modeled by 

finite elements.

The stiffness matrix of each finite element is 

multiplied by its corresponding transformation matrix 

to produce the participation of this element in 

establishing the macro-element stiffness matrix, as it 

will be seen later.

The stiffness matrix of the macro-element is 

formulated by equating the strain energy of the original 

structure modeled by finite-elements and that of the 

equivalent model as follows:

Uo = Um                                                 (1)

where:

Uo: The strain energy of the original structure 

modeled by many finite elements that constitute 

one macro-element. 

Um: The strain energy of the macro-element.

1

2
qo  [Sko] {qo} = 

1

2
qm  [Km] {qm}            (2)

where:

qo: Displacement vector of the structure modeled 

by many finite elements that  constitute one 

macro-element.

q m: Displacement vector of one macro-element.

[SKo]:The assembled stiffness matrix of all stiffness 

matrices of the finite elements constituting one 

macro-element.

[Km]: The stiffness matrix of the macro-element.

Let the displacement vector of the original structure 

(which constitutes one macro-element), {qo}, be 

related to that of the macro-element, {qm}, as:

{qo} =[T] {qm}                           (3)

where [T] is the transformation matrix for the 

macro-element.

Substituting Eq. (3) into Eq. (2) gives:
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qm [T]T [SKo] [T] {qm} = qm [Km] {qm} [T]T

[SKo] [T] = [Km]            (4)

In this solution, matrix [SKo] is not needed, only 

[Ko], the stiffness matrix of a finite element bounded 

by the macro-element, is needed. To explain this, let

n be the number of finite elements comprising the 

macro-element;

[Te] be the finite element transformation matrix.

Every time, [Te] carries a partition of the 

transformation matrix [T] that corresponds to the 

degrees of freedom of the finite element under 

consideration. The transformation for each finite 

element is placed in its proper place in the structural 

stiffness matrix of the equivalent model, which is the 

place of [Km], and:




n

e 1

[Te]T [Ko] [Te] = [Km]             (5)

The transformation matrix [T] is simply the 

evaluation of the shape functions of the macro-element 

at the nodes of the finite elements. This evaluation is 

based on local coordinates for the nodal points of the 

finite elements with respect to the macro-element 

nodes.

To form a general transformation matrix Ti 

corresponding to an arbitrary nodal point j of the 

original structure within a certain macro- element, 

consider the notation Nki
j which means the shape 

function K of node i of this macro-element is evaluated 

at point j using its local coordinates within the macro –

element, then the transformation matrix will depend on 

the macro-element type as will be seen latter.

Step (6)- Construction of the macro-element nodal load 

vector.

The external loading is applied at the nodes of the 

finite element model.

However, these nodes may not necessarily coincide 

with the macro-element nodes. It is required to 

calculate the equivalent nodal load vector of each 

macro-element.

In general, all forms of loading other than 

concentrated loads subjected to the original structure 

nodes must be first reduced to equivalent nodal forces 

acting on the original structure, as with the 

conventional finite element method. The nodal load 

vector of the original structure can then be transformed 

to equivalent macro-element structural load vector by 

equating the external work done on the original 

structure modeled by finite elements and that of the 

macro-element model as follows:

Wo= Wm                         (6)

where:

Wo: the external work done on the original 

structure that constitutes one macro-element.

Wm: the external work done on the macro-element.

   qo  {Fo} = qm {Fm}                          (7)

where:

{Fo}: the assembled nodal load vector of the finite 

elements constituting one macro-element. 

{Fm}: the equivalent nodal load vector of the macro-

element.

Substituting Eq. (3) into Eq. (7) gives:

qm [T]T {Fo] = qm {Fm}

[T]T {Fo} = {Fm}           (8)

where [T] is the same transformation matrix used in 

deriving [Km].

Step (7) - Assemble all the macro-element stiffness 

matrices into a structural stiffness matrix 

and also construct the macro-element 

structural load vector.

Step (8) -  Apply the boundary conditions which will 
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be at the macro-element nodes. Other 

boundary conditions corresponding to the 

eliminated nodes of the finite- elements of 

the original structure will be ignored.

Step (9) - Solve for the equivalent model nodal 

displacements in a straight forward 

manner.

Step (10) - Using results obtained in step (9), the 

displacements at any point inside the 

macro-elements may be calculated making 

use of the macro-element shape function.

Step (11) - After the structure is analyzed for nodal 

displacements, the stresses at selected 

points in each macro-element may be 

obtained in the usual manner.

Formulation of Truss Quadratic Quadrilateral 

Macro-Element

Truss problems in two dimensions are plane stress 

problems in general. In order to demonstrate the 

formulation, let a simple problem be considered. The 

procedure will then be generalized to any problem. In 

this problem, the structure consists of repeated cells 

called repeated elements. Each repeated cell is 

composed of many truss elements. It is not necessary to 

have the structure consist of repeated elements as will 

be shown later. Consider the structure shown in Fig. 1 

which consist of many truss elements and denote this 

system as case a.

This structure will be modeled by two repeated 

macro-elements as shown in Fig. 2. Denote this system 

as case b.

A single macro-element is isolated as shown in Fig. 

3. The order of the element function to be selected 

depends largely on the configuration of the original 

structure. It is then evident that a quadrilateral element 

with quadratic interpolation functions models the 

structure exactly. 

For quadratic curved-sided quadrilateral elements 

as shown in Fig. 4, the shape functions are (Cook, 

1983):

Figure (1): Case a
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Figure (2): Case b

Figure (3): Eight-node quadratic quadrilateral isoparametric element

Figure (4): Quadratic curved-sided quadrilateral isoparametric element
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Corner nodes:

where :  ξ0= ξ * ξi ;  η 0= η * η i and ξi , η i are the 

values of ξ , η at the nodes (joints) of the original truss 

structure with respect to the macro-element enclosed in 

those joints.

In this paper, the deformed configuration of the 

original structure is represented by quadratic 

quadrilateral macro-element and the displacement 

functions are :

Now, the formulation of transformation matrix, 

which is steps 5 will be done, and then we will return 

to steps 3 and 4.

The displacement relations between cases a and b 

are:

{q0}= [T] {qm}

where:

   

   









bbbbbbbb

aaaaaaaa

vuvuvuvuq

vuvuvuvuq

T
m

T

66332211

66332211

................

................0

                                                                         …….(11)

In general, the relations between case a and case b 

are :
ba

k uu ),(        and 
ba

k vv ),(                   …… (12)

where   k=1, 2, 3,………........., n

ξ,η are the local coordinates of node k of the 

original structure within the macro-element.

At any point within the macro-element:

Then, the general form of transformation matrix is as shown in Eqn. 14 below.
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;
8

1
),(  b

ii
b uNu  

8

1

b
ii

a
k uNu

;
8

1
),(  b

ii
b vNv  

8

1

b
ii

a
k vNv

…………………..(13)

therefore,

therefore,

               n

u (ξ, η) = ∑   Ni * ui   

                  
i=1

                                                …………… (10)
               n

v (ξ, η) = ∑  Ni * vi

               i=1

Ni =1/4 ( 1+ξ0)(1+ η0)( ξ0 + η 0 -1)
Mid-side nodes :                                        …………(9)
For  ξi = 0 ; Ni = 1/2 (1-ξ2) (1+ η 0)
For  η i = 0 ; Ni = 1/2 (1+ ξ0) (1- η 2)
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where

i

a
N

j
is the shape function i evaluated at node j of 

case a.

As an example, let us find 3ܽݑ and their relations 

with u b . This d.o.f. 3ܽݑ is acting at node 3 of system a.

According to the macro-element, this node has ξ = 0.0, 

η=+1, then:

887766

5544332211)1,0(3

uNuNuN

uNuNuNuNuNuu ba





Therefore,
au3 = 1/4 (1- ξ)(1- η)(- ξ- η-1)u1 +1/2 (1- ξ2)(1- η) u2

+1/4(1+ ξ)(1- η)( ξ- η-1)u3 +1/2(1- ξ2)(1- η)u4 +

1/4 (1+ ξ)(1+ η)( ξ+ η-1)u5 + 1/2(1- ξ2)(1+ η) 

u6+1/4(1- ξ)(1+ η)(- ξ+ η-1)u7 +1/2 (1- ξ)(1-

η2)u8

=1/4(1-0)(1-1)(0-1-1) u1+1/2(1-0)(1-1) u2 +1/4 

(1+0)(1-1)(1-1-1) u3 +1/2 (1+0)(1-1) u4

+1/4(1+0)(1+1)(0+1-1) u5 +1/2 (1-0)(1+1) u6 +1/4(1-

0)(1+1)(0+1-1) u7 +1/2(1-0)(1-1) u8.

Therefore, ba uu 63 

By the same way, all the elements of transformation 

matrix [T] will be evaluated. Now, the construction of 

the transformation matrix [T] is done. Step 3 requires 

setting –up the stiffness matrices of the finite elements

forming the macro-element. The assumptions are based 

on the notion that the structure is a truss. The 

formulation of the stiffness matrix of the truss element 

required will be done . The displacement function of a 

truss element is linear. This is because a truss element 

has two nodes with one degree of freedom per node. 

See Fig.5.

Figure (5): Truss element in local

The shape functions in dimensionless coordinates are:
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where m is the number of concentrated loads at the 

nodes of the truss structure. But,
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where

[Ke] is the element stiffness matrix in local 

coordinates.

{Fe} is the load vector applied at the truss nodes. To 

transform the element stiffness matrix to global 

coordinates, a coordinate transformation matrix is 

needed. In two-dimensional problems, this has 

the form:
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Now, the formulation of the macro-element is:

�
[௠ܭ] = ෍ [଴ܭ] [ ௘ܶ]
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where Fix, Fiy are the components of the load Fi in 

the x and y global directions. Construction of the 

transformation matrix T is based on the evaluation of 

the shape functions at specific points inside the macro-

element. These points are the nodes of the original 

structure; i.e., truss nodes.

It is then clear that a local coordinate for each of 

those nodes is required. There are two methods to do 
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this. The first is the closed form solution, and the 

second is an iterative scheme. Although the closed 

form solution of the local coordinates is readily

formulated for quadratic curved-sided quadrilateral 

elements, it is more complex to formulate for higher 

order elements. 

Closed Form Solution for (ξ and η) for Quadratic

Isoparametric Quadrilateral Macro-elements

Step 4 required calculating the local coordinates (ξ and 

η) for the nodal points of the truss finite elements with 

respect to the macro-element nodes. The relations 

between the local coordinates (ξ and η) and the global 

coordinates (X , Y) of any point in the region of the 

macro-element are :


8

1
ii XNX                                                        (17)


8

1
iiYNY                                                          (18)

where Xi and Yi are the values of the global 

coordinates of node i, and (X , Y) are the values of the 

required point in global coordinates. In the above two 

Eqns., the unknowns are ξ and η only. The shape 

functions of the quadratic isoparametric quadrilateral 

element are shown in Eqn. 9. Expanding and 

rearranging them gives (Smith and Griffith, 2004).

Substituting Eqns. (19) into Eqn. (17) yields:

X = N1 X1+ N2 X2+ N3X3 +  N4 X4 +  N5 X5+  N6 X6+  N7 

X7+  N8 X8

     = [1/4 (1- ξ)(1- η)(- ξ- η-1)]X1 + [1/2 (1- ξ2) (1- η)] 

X2 + [1/4 (1+ ξ)(1- η)( ξ- η-1)] X3

       + [1/2 (1+ ξ) (1- η2)] X4 + [1/4 (1+ ξ)(1+ η)( ξ+ η-

1)] X5 +[1/2 (1- ξ2) (1+ η)] X6 +

       [1/4 (1- ξ)(1+ η)(- ξ+ η-1)] X7+[1/2 (1- ξ) (1- η2)] 

X8 .

Expand, simplify and transfer all terms with η only 

and Xi to left-hand side (LHS) and rearrange to get:

Therefore,

           
ADXBDXCDX

BBRXCCRXARXBRXCRXCLXBLXALX 











 222 )( 

N1 = 1/4 (1- ξ) (1- η) (- ξ- η-1) 

N2 = 1/2 (1- ξ2) (1- η)

N3 = 1/4 (1+ ξ) (1- η) ( ξ- η-1)

N4 = 1/2 (1+ ξ) (1- η2)                  

N5=1/4 (1+ ξ) (1+ η) ( ξ+ η-1)

N6 =1/2 (1- ξ2) (1+ η)

N7 =1/4 (1- ξ) (1+ η) (- ξ+ η-1)

N8 = 1/2 (1- ξ) (1- η2)

…….………….(19)

   
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     
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





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











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    

      
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Therefore, 

    02  CDXBDXADX  .

Therefore,

    
ADX

CDXADXBDXBDX

2

42 
          (20)

The right-hand side of the above Eqn. is a function 

of η only.

In the same way, substituting Eqns. (19) into Eqn. 

(18) and simplifying yield:

    
ADY

CDYADYBDYBDY

2

42 
            (21)

The right-hand side of the above Eqn. is a function 

of η only

Eqns. (20) and (21) are equal. By equating Eqn.

(20) to Eqn. (21), one can solve for  η . Use the solved 

value of η in Eqn. (17) or Eqn. (18) to get the value of 

ξ.

Now, the values of local coordinates ξ and η for any 

point of coordinates X,Y are known. Therefore,  T is 

constructed. Also, [Ke] is known. Extract from the 

transformation matrix  T that part corresponding to

the degrees of freedom of [Ke]. Let this part be called

 eT , then:

    

                                     (22)

The external loadings are applied at 

the truss structure nodes although they may not 

coincide with the macro-element nodes. Thus, a 

subroutine to calculate the equivalent consistent nodal 

load vector for the macro-element is required. This is 

done for each concentrated load by the evaluation of 

the equation shown below.

   

12216116

sin

cos














i
T

m FNiF
                                  (23)

where

1 0 2 0 3 0... 8 0

0 1 0 2 0 3 0 8

N N N N
N

N N N N

 
  
 

Fi is the force at node i. Fm is the macro-element 

nodal load vector from Fi only. Summing up the effect 

of all loadings yields:

   









 


sin

cos

1
i

Tn

i
m FNF                                   (24)

Here, the shape functions are evaluated at the local 

coordinate values of the point of application of Fi. 

Next, the total stiffness and load vector of the structure 

composed of macro-elements is formulated. This is 

done by the conventional assembling subroutine used 

in finite element methods. The boundary conditions are 

applied.

The linear system is solved using Gauss elimination 

or any solving subroutine. The solution is for the 

macro-element nodal values.

Applications

Problem No.1: A cantilever truss consists of nine 

truss members with a total of 12 degrees of freedom, 

all members are of same AE. Three degrees of freedom 

are constrained as shown in Fig.6.

This problem was modeled by a quadratic 

quadrilateral isoparametric macro-element as shown in 

Fig.7. The results are shown in Table 1.

Figure (6): Cantilever truss in two dimensions: 

problem no. 1
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Problem No. 2: A cantilever truss consists of 13 

truss members with 16 degrees of freedom, all 

members are of same AE. Four degrees of freedom are 

constrained as shown in Fig. 8.

This problem was modeled by a quadratic 

quadrilateral isoparametric macro-element as shown in 

Fig.7. The results are shown in Table 2.

Figure (7): Macro-element method modeling of truss problem no. 1 & 2 in two dimensions

Problem No. 3: Same as problem no. 1: a) Using 

one linear quadrilateral macro-element with 8 degrees 

of freedom to model the whole truss, the results are as 

tabulated in Table 3. b) Using two linear quadrilateral 

macro-elements to model the truss, the results are as 

tabulated in Table 2.

Figure (8): Cantilever truss in two dimensions, problem no. 2
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Table 1. Displacement results of truss problem no.1 

in two dimensions

Displaces FEM MEM
Error 

%

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 -1.958 × 10-4 -1.958 × 10-4 0.0

4 -1.072 × 10-3 -1.072 × 10-3 0.0

5 -4.865 × 10-5 -4.865 × 10-5 0.0

6 -2.741 × 10-3 -2.741 × 10-3 0.0

7 -4.160 × 10-4 -4.160 × 10-4 0.0

8 -2.941 ×10-3 -2.941 ×10-3 0.0

9 2.517 × 10-4 2.517 × 10-4 0.0

10 -1.272 × 10-3 -1.272 × 10-3 0.0

11 0.0 0.0 0.0

12 -6.000 × 10-4 -6.000 × 10-4 0.0

Table 2. Displacement results of truss problem no. 2 

and truss problem no. 3-b in two dimensions

Displaces FEM MEM
Error 

%

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 -1.001X10-3 -1.001X10-3 0.0

4 -4.044X10-3 -4.044X10-3 0.0

5 -2.827X10-3 -2.827X10-3 0.0

6 -1.313X X10-2 -1.313X X10-2 0.0

7 -2.475X X10-4 -2.475X X10-4 0.0

8 -1.128 X10-2 -1.128 X10-2 0.0

9 3.535 X10-3 3.535 X10-3 0.0

10 1.55X X10-2 1.55X X10-2 0.0

11 1.168X X10-3 1.168X X10-3 0.0

12 -2.961X X10-3 -2.961X X10-3 0.0

13 0.0 0.0 0.0

Table 3. Displacement results of truss problem no. 

3-a in two dimensions

Displaces FEM MEM Error %

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 -1.958 × 10-4 -5.082 × 10-5 74.0

4 -1.072 × 10-3 -1.211 × 10-3 12.96

5 -4.865 × 10-5 -1.016 × 10-4 52.10

6 -2.741 × 10-3 -2.421 × 10-3 11.67

7 -4.160 × 10-4 -3.589 × 10-4 13.72

8 -2.941 ×10-3 -2.588 × 10-3 12.00

9 2.517 × 10-4 -1.794 × 10-4 -

10 -1.272 × 10-3 -1.582 × 10-3 20.00

11 0.0 0.0 0.0

12 -6.000 × 10-4 -5.770 × 10-4 3.8

DISCUSSION OF RESULTS

The solved problems showed that using macro-

elements in the analysis reduced the number of 

equations to be solved. When the order of the 

displacement function of the macro-element is at least 

the same order as the displacement function of the 

original truss structure, excellent results are achieved 

with good amount of reduction in d.o.f.

In example 1, the number of nodes in the truss 

structure is six nodes, and the quadratic quadrilateral 

isoparametric macro-element has eight nodes with 

quadratic shape functions. This means that the shape 

functions of the macro-element are of higher order than 

the truss displacements and can describe the 

displacement of the truss structure exactly, and this is 

the case in Table 1, where there are no errors between

the two solutions.

In example 2, the number of nodes in the truss 

structure is eight nodes, and the quadratic quadrilateral 
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isoparametric macro-element has eight nodes with 

quadratic shape functions. This means that the shape 

functions of the macro-element can describe the 

displacement of the truss structure exactly, and this is 

the case in Table 2, where there are no errors between 

the two solutions.

In example 3, the number of nodes in the truss 

structure is six nodes, and the linear quadrilateral 

macro-element has four nodes. This means that the 

shape functions of the macro-element can not describe 

the displacement of the truss structure exactly, and this 

is the case in Table 3, where there are large errors 

between the two solutions. But, when two linear

quadrilateral macro-elements are used to model the 

truss, an exact solution is achieved. This means that 

even if the order of the macro-element is less than the 

order of the truss modeled, an exact solution can be 

achieved, but with increasing the number of macro-

elements used in modeling.

The beautifulness of this method is that one can use 

different kinds of finite elements inside the macro-

element if required and the method still yields good 

results.

CONCLUSIONS

New modeling of truss quadrilateral isoparametric 

macro-element based on truss type finite element was 

developed.

The solved examples demonstrated that using these 

macro-elements in the analysis largely reduced the total 

number of d.o.f. required to model a certain structure. 

This in turn reduced the total number of equations to be 

solved.

Reduction in total number of equations reduced 

computer time and memory space for storage.

At the same time, these macro-elements provided 

accurate results. In addition, finite elements of different 

sizes and material properties can easily be used inside 

the macro-elements if required in the analysis. This 

developed macro-element theory was applied to 

different kinds of structural elements like beams, thin 

plates and thick plates, and good results were achieved 

in terms of accuracy and time of execution. This theory 

can be applied to any kind of structure as long as the 

basic assumptions for macro-element formulation are 

satisfied.
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