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ABSTRACT 

The principles of damage mechanics are used to predict the displacements and stresses in a uniaxially-loaded 

one-dimensional elastic tapered bar. The variation of the damage variable along the length of the bar is 

studied. A random distribution of the damage variable along the length of the bar is also considered. It is 

shown how the displacements and stresses are obtained in closed-form solutions whenever possible. 

Otherwise, finite element analysis is employed to solve the resulting problem. The computer algebra system 

MAPLE is used to write a symbolic finite element program specifically for this problem with the random 

distribution of the damage variable for which there is no closed form solution. 
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INTRODUCTION 

 

Kachanov (1958) pioneered the subject of damage 

mechanics by introducing the concept of effective 

stress. This concept is based on considering a fictitious 

undamaged configuration of a body and comparing it 

with the actual damaged configuration. The damage 

variable was defined in terms of both the damaged and 

effective cross-sectional areas of the body. Kachanov 

(1958) originally formulated his theory using simple 

uniaxial tension. Following Kachanov's work, 

researchers in different fields applied damage 

mechanics to their areas in fields like brittle materials 

(Krajcinovic and Foneska, 1981; Krajcinovic, 1988) 

and ductile materials (Lemaitre, 1984, 1985, 1986; 

Kachanov, 1986; Murakami, 1988). In the 1990s, 

applications of damage mechanics to plasticity and 

composite materials have appeared (Voyiadjis and 

Kattan, 1990, 1993, 1999; Kattan and Voyiadjis, 1990, 

1993a, 1993b, 1996, 2001; Voyiadjis and Park, 1997a, 

1997b; Voyiadjis and Thiagarajan, 1996; Voyiadjis et 

al., 1995). 

A uniaxially-loaded one-dimensional elastic tapered 

bar is considered in this work. It is assumed that the bar 

is damaged and we seek the displacements and stresses 

in the damaged bar. The principles of continuum 

damage mechanics are used to predict the 

displacements and stresses in this case. However, the 

nature of the damage is not explored as the formulation 

is formal and can be applied to any source of damage. 

It is seen that for some damage variations, a closed-

form solution can be obtained. However, if one 

assumes a random distribution of the damage variable 

along the length of the bar, finite element analysis is 

employed to solve the resulting problem. A symbolic 

finite element program is written specifically for this 

problem using the computer algebra system MAPLE.  
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BRIEF REVIEW OF DAMAGE MECHANICS 

 

The principles of damage mechanics are first 

reviewed for the case of uniaxial tension. In this case, 

isotropic damage is assumed throughout the analysis. 

Consider a one-dimensional elastic tapered bar 

subjected to a uniaxial tensile force T as shown in 

Figure 1a. The cross-sectional area of the bar is )(xA  

at a distance x  from the origin. The uniaxial stress 

)(x  in the bar is found easily from the formula 
)()( xAxT  . In order to use the principles of damage 

mechanics, we consider a fictitious undamaged 

configuration of the bar as shown in Figure 1b. In this 

configuration, all types of damage including both voids 

and cracks, are removed from the bar. The effective 

cross-sectional area of the bar in this configuration is 

denoted by )(xA  and the effective uniaxial stress is 
)(x . The bars in both the damaged configuration and 

the effective undamaged configuration are subjected to 

the same tensile force T . Therefore, considering the 

effective undamaged configuration, we have the 

formula )()( xAxT  . Equating the two expression 

of T  obtained from both configurations, one obtains 

the following expression for the effective uniaxial 

stress )(x : 
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Next, one uses the definition of the damage variable 
)(x  as originally proposed by Kachanov (1958): 
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Thus, the damage variable is defined as the ratio of 

the total area of voids and cracks to the total area. Its 

value ranges from zero (for the case of an undamaged 

specimen) to one (for the case of complete rupture). 

Substituting for )(/)( xAxA  from equation (2) into 

equation (1), one obtains the following expression for 

the effective uniaxial stress: 

)3(.
)(1

)(
)(

x

x
x





  

 

Equation (3) above was originally derived by 

Kachanov  in  1958 for  cylindrical  bars.  It is clear  

from equation (3)  that the case  of complete rupture 

( 1)( x ) is unattainable, because the damage 

variable )(x  is not allowed to take the value 1 in the 

denominator.  

For the uniaxial tension case shown in Figure 1, the 

constitutive relation is Hooke’s law of linear elasticity 

given by: 

 

)4();()()( xxEx    

 

where )(x  is the strain and )(xE  is the modulus 

of elasticity (Young’s modulus). The same form of the 

linear elastic constitutive relation applies to the 

effective (undamaged) state; i.e., 

 

)5();()( xEx    

 

where )(x  and E  are the effective counterparts 

of )(x  and )(xE , respectively. Next, we will derive 

the necessary transformation equations between the 

damaged and the hypothetical undamaged states of the 

material. In the derivation, the following assumptions 

are incorporated: (1) The elastic deformations are small 

(infinitesimal) compared with the plastic deformations 

(finite), and (2) there exists an elastic strain energy 

scalar function )(xU . This function is assumed based 

on the linear relation between the Cauchy stress )(x  

and the engineering strain )(x  given by equation (4). 

The elastic strain energy function )(xU  is defined by: 

 

)6().()(
2

1
)( xxxU   

 
It is clear from equations (4) and (6) that 

)()()( xdxdUx    and )()()( xdxdUx   . 

Sidoroff (1981) proposed the hypothesis of elastic 
energy equivalence. This latter hypothesis assumes that 
“the elastic energy for a damaged material is equivalent 
in form to that of the undamaged (effective) material, 
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except that the stress is replaced by the effective stress 
in the energy formulation”. Thus, according to this 

hypothesis, the elastic strain energy )()(
2

1
)( xxxU   

is equated to the effective elastic strain energy 

)()(
2

1
)( xxxU   as follows: 
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Figure (1): A One-Dimensional Tapered Bar Subjected to Uniaxial Tension 
 

Substituting equation (3) into equation (7) and 

simplifying, we obtain the following relation between 

the strain )(x  and the effective strain )(x : 

 

)8(.)()](1[)( xxx    

 

Continuing further, we substitute equations (3) and 

(8) into equation (5), simplify the result and compare it 

with equation (4) to obtain: 

 

)9(.)](1[)( 2xExE   

Equation (9) represents the transformation law for 

the modulus of elasticity. It is clear now that Young’s 

modulus for the damaged material depends on the 

value of the damage variable )(x . Solving equation 

(9) for )(x , one obtains: 
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Once the values of )(xE  are measured 
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experimentally for the damaged material, one can use 

equation (10) to obtain values of the damage variable 

)(x . It should be noted that the value of E  is 

constant for the effective (undamaged) material. 

 

ANALYTICAL SOLUTION 

 

We are interested in determining the displacement 

0u  at the left end of the bar at the point of application 

of the load. The displacement 0u  can be determined 

using the following formula from mechanics of 

materials: 

 

)11(;)(
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L

dxxu   

 

where L  is the length of the bar. Substituting for 

)(x  from equation (8), for the strain )(x  from 

equation (5) and for the stress )(/)( xATx  , we 

obtain: 
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Considering the bar to have a circular cross-section 

with a diameter Ad  at the left end and a diameter Bd  

at the right end, we can write the following formula for 

the effective cross-sectional area )(xA  at a distance x  

from the origin: 

)13(.)]([
4

)( 2
ABA dd

L

x
dxA 


 

 

Next, we will explore several alternatives for the 

distribution of the damage variable )(x  along the 

length of the bar. We will consider the following three 

cases: 

1. 0)(  x  - The damage variable is constant along 

the length of the bar. 

2. )()( 010  
L

x
x - The damage variable 

 

varies linearly along the length of the bar from a 

value of 0  at the left end to a value of 1  at the 

right end. 

3. )(x  varies as a random function along the length 

of the bar. 

We can obtain analytical solutions for cases (1) and 

(2) only. Case (3) needs to be solved using an 

approximate solution like the finite element method 

(FEM). Considering case (1), using 0)(  x , 

substituting for )(xA  from equation (13) into equation 

(12) and integrating, we obtain the following 

expression for the displacement at the left end of the 

bar: 
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Next, we consider case (2), where a linear 

distribution of damage is assumed along the length of 

the bar. Using )()( 010  
L

x
x , substituting for 

)(xA  from equation (13) into equation (12) and 

integrating, we obtain the following expression for the 
displacement at the left end of the bar:  
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The above expression reduces to equation (14) 

when 10   . For a prismatic bar with BA dd   , the 

above expression reduces to: 
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Both equations (14) and (15) are exact analytical 
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solutions for the tapered bar. However, if the 

distribution of the damage variable )(x  along the bar 

is not analytically defined but as a random function, 

then we cannot obtain an analytical expression for the 

solution. In this case, we need to resort to an 

approximate solution method like the finite element 

method. 

 

FINITE ELEMENT SOLUTION 

 

In this section, finite element analysis is used to 

determine the displacements and stresses in the bar 

when the damage variable is randomly distributed 

along the length of the bar. If the bar is discretized into 

n  elements, then we will assume that the value of the 

damage variable is 1  in element 1, 2  in element 2, 

3  in element 3,… and so on until we reach the value 

n  in element n . The values n ,.....,,, 321  are 

random numbers in the range 10  i . To illustrate 

how the solution is obtained in this case, we will first 

use two elements followed by a program that can solve 

the problem for any number of elements. 

Figure 2 shows the bar discretized into two finite 

elements with the value of the damage variable being 

1  in element 1 and 2  in element 2. The average 

effective cross-sectional area for each element can be 

obtained as follows: 
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The stiffness coefficient for each element is given 

by: 
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Substituting for E , 1A  and 2A  from equations (9) 

and (2), respectively and using equations (17), one 

obtains: 
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Assembling the global stiffness matrix, applying 

the boundary conditions and solving the resulting 

equations, one obtains the nodal displacements as 

follows: 
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where the minus sign indicates that the node 

displacement is to the left. The stresses in the elements 

are then obtained as follows: 
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The displacement at the left end from the finite 

element solution shown in equation (20a) is compared 

with the displacement at the left end from the analytical 

solution shown in equations (14) and (15). 
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Figure (2): Finite Element Discretization Using Two Elements 
 

For a higher number of elements, we use symbolic 

computation to solve the problem. A symbolic finite 

element program is written specifically for this 

problem using the computer algebra system MAPLE. 

In this program, the nodal displacements and element 

stresses are determined for any number of elements n . 

The following is a listing of the program: 

fem:=proc(n elements) 

with(linalg): 

nn nodes:=n elements+1: 

y:=vector(nn n odes): 

k:=vector(n elements): 

A:=vector(nn nodes): 

AVR:=vector(n elements): 

phi:=vector(n elements): 

for i from 1 to nn nodes do 

y[i]:=dA + (i-1)*(dB-dA)/n elements: 

A[i]:=Pi*y[i]^2/4: 

od: 

for i from 1 to n elements do 

AVR[i]:=(A[i]+A[i+1])/2: 

k[i]:=E*AVR[i]*n elements*(1-phi[i])/L: 

od: 

ST:=matrix(n n nodes, n nodes): 

RHS:=vector(n n nodes): 

for i from 1 to n n nodes do 

for j from 1 to n n nodes do 

ST[i,j]:=0: 

od: 

RHS[i]:=0: 

od: 

for i from 1 to n elements do 

ST[i,i]:=ST[i,i]+k[i]: 

ST[i+1,i+1]:=ST[i+1,i+1]+k[i]: 

ST[i,i+1]:=ST[i,i+1]-k[i]: 

ST[i+1,i]:=ST[i+1,i]-k[i]: 

od: 

RHS[1]:=RHS[1]+T: 

A:=matrix(n elements,n elements): 

B:=vector(n elements): 

for i from 1 to n elements do 

for j from 1 to n elements do 

A[i,j]:=ST[i,j]: 

od: 

B[i]:=RHS[i]: 

od: 

AINV:=matrix(n elements,n elements): 

AINV:=inverse(A): 

u:=vector(n elements): 

sig:=vector(n elements): 

u1:=vector(n n nodes): 

u:=evalm(AINV &* B): 

for i from 1 to ne lements do 

u1[i]:=u[i]: 

od: 

u1[nn nodes]:=0: 

for i from 1 to n elements do 

sig[i]:=E*(u1[i+1]-u1[i])*n elements/L: 

od: 

print(u): 

print(sig): 

end: 

21

2 31

L/2L/2

P
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In order to obtain the results shown above for the 

two-element discretization, the program is invoked by 

executing the command fem(2). For three elements, 

execute the command fem(3). This works for any 

number n  of elements (e.g. for 10 elements, execute 

the command fem(10)).  

The results become very complicated for any 

number 2n ; therefore, we need to use some 

numerical values except for the damage variables. 

Using the following values ( Ad = 50 mm, Bd = 100 

mm, L = 2 m, T = 250 kN, E = 70 GPa), expressions 

(22a), (22b), (22c) and (22d) show the displacement at 

the left end for n  = 2, 3, 4 and 5 elements, 

respectively. In the expressions shown below, we have 

neglected all nonlinear terms like 21  and 432  , 

since they are very small and can be neglected. 

Furthermore, if these terms are retained, the equations 

will become so huge that they will not fit here. 
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We will not attempt to obtain a numerical solution in 

this work, because we have not explored the determination 

of the random values of the damage variable. These values 

can be determined using models of damage evolution 

which is beyond the scope of this work.  

 

CONCLUSION 

 

The problem of a one-dimensional uniaxially 

loaded elastic tapered bar is solved including the 

effects of damage. The problem is solved using 

analytical solutions where possible. A finite element 

solution is also included to solve the problem when the 

values of the damage variable are randomly determined 

along the length of the bar. A symbolic finite element 

program is written using the computer algebra system 

MAPLE to solve the problem for any number of finite 

elements. 
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