Hyperbolic P-Y Criterion for Cohesive Soils
Abstract
Drilled shafts have been frequently used as a foundation to support lateral loads. The p-y method of analysis has
been widely used for predicting the behavior of laterally loaded drilled shafts. The existing p-y criteria for
cohesive soils are divided into soft or stiff clays, on the basis of a limited number of lateral load test results.
Currently, there is no p-y criterion developed for cohesive intermediate geomaterial. In this paper, a hyperbolic equation for p-y curve is presented for cohesive soils and intermediate geomaterials. Based on 3-D FEM simulation results, a new empirical equation is presented for calculating the initial tangent to p-y curve. The proposed hyperbolic p-y criterion is verified by using the results of six full-scale lateral load tests on fully instrumented drilled shafts with diameters ranging from 0.76 m to 1.83 m in the geo-medium ranging from soft clays to intermediate geomaterial. The proposed hyperbolic p-y criterion is shown to be capable of predicting the loaddeflection and bending moments of the laterally loaded shafts for the six cases studied in this paper.
been widely used for predicting the behavior of laterally loaded drilled shafts. The existing p-y criteria for
cohesive soils are divided into soft or stiff clays, on the basis of a limited number of lateral load test results.
Currently, there is no p-y criterion developed for cohesive intermediate geomaterial. In this paper, a hyperbolic equation for p-y curve is presented for cohesive soils and intermediate geomaterials. Based on 3-D FEM simulation results, a new empirical equation is presented for calculating the initial tangent to p-y curve. The proposed hyperbolic p-y criterion is verified by using the results of six full-scale lateral load tests on fully instrumented drilled shafts with diameters ranging from 0.76 m to 1.83 m in the geo-medium ranging from soft clays to intermediate geomaterial. The proposed hyperbolic p-y criterion is shown to be capable of predicting the loaddeflection and bending moments of the laterally loaded shafts for the six cases studied in this paper.
To list your conference here. Please contact the administrator of this platform.
ISSN: 1993-0461 ISSN: 2225-157X,
Edited and Published by Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan
Mailing address: Prof. Fouad Gharaybeh, Ph.D.
Editor-in-Chief Civil Engineering Department Jordan University of Science and Technology Irbid 22110, Jordan Tel. No. + 962 2 7201000 ext. 22104 Fax No. + 962 2 7201073
Submission & Subscriptions E-mail:jjce@just.edu.jo