Perturbation Solution of the Jackson’s Dusty Gas Model Equations for Ternary Gaseous Systems
Abstract
A perturbation technique was used to obtain an approximate closed-form solution for the mass balance equations when the dusty gas model (DGM) is used to calculate total molar fluxes of components of ternary gaseous systems. This technique employed the straight-forward expansion method to the second-order approximation. Steady-state, isobaric, isothermal and no reaction conditions were assumed. The obtained solution is a set of equations expressed to calculate mole fractions as functions of dimensionless length, boundary conditions, properties of the gases and parameters of transport mechanisms (i.e., Knudsen diffusivity and effective binary diffusivity). Three different systems represent field and experimental conditions were used to test the applicability of perturbation solution. Findings indicate that the obtained solution provides an effective tool to calculate mole fractions and total molar fluxes of components of ternary gaseous systems.
To list your conference here. Please contact the administrator of this platform.
ISSN: 1993-0461 ISSN: 2225-157X,
Edited and Published by Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan
Mailing address: Prof. Fouad Gharaybeh, Ph.D.
Editor-in-Chief Civil Engineering Department Jordan University of Science and Technology Irbid 22110, Jordan Tel. No. + 962 2 7201000 ext. 22104 Fax No. + 962 2 7201073
Submission & Subscriptions E-mail:jjce@just.edu.jo