Finite Element Investigation on Load Carrying Capacity of Corroded RC Beam Based on Bond-Slip

Yang Xiaoming, Zhu Hongqiang

Abstract


The finite element (FE) investigation on the load carrying capacity of corroded RC beam is carried out based on the bond-slip between the steel bars and concrete. In the numerical simulation, several FE models of RC simply supported beam with different corrosion ratios were built using ANSYS. In these FE models, element of Solid65 was used to simulate concrete, element of Link8 was used for bars and element of Combin39 was adopted to simulate the bond and bond-slip between bars and concrete. The effect of corrosion ratio on bonding force between bars and concrete was simulated by adjusting the parameter of Combin39. Besides, the reduction of bars section area and decrease of bars yielding stress were also considered for calculating the load carrying capacity of corroded RC beam with different corrosion ratios. The results show that as the corrosion ratio increases the stiffness of corroded beam would decrease, slip between bars and concrete would be larger and ductile failure of RC beam would turn to brittle failure. The load carrying capacity of corroded RC beam would obviously deteriorate and descending speed is the fastest when the corrosion rate falls in the range of 4%-7%.

Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

ISSN: 1993-0461   ISSN: 2225-157X,

Edited and Published by Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan

Mailing address: Prof. Fouad Gharaybeh, Ph.D.

Editor-in-Chief Civil Engineering Department Jordan University of Science and Technology Irbid 22110, Jordan Tel. No. + 962 2 7201000 ext. 22104 Fax No. + 962 2 7201073

Submission & Subscriptions E-mail:jjce@just.edu.jo