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Abstract 

The nature of biological adaptation to deuterium oxide on an example of cells of various taxonomic groups of 

prokaryotic and eucaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, 

and photosynthetic ways of assimilation of carbon substrates was discussed. It was demonstrated that the effects 

observed at adaptation to 2H2O, possess a complex multifactorial character and connected to cytological, 

morphological and physiological changes – the magnitude of the lag- period, time of cellular generation, output 

of biomass, a parity ratio of synthesized amino acids, proteins, carbohydrates and lipids, and also with an 

evolutionary level of the organization of the investigated object and the pathways of assimilation of carbon 

substrates as well. These data suggest that adaptation to deuterium oxide is a multifactorial phenomenon, 

affecting many cellular systems, as biosynthesis of macromolecules, metabolism and cellular transport. 
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Introduction 

The most interesting biological phenomenon is the ability of some microorganisms to grow on heavy water (2H2O) 

media in which all hydrogen atoms are replaced with deuterium (Ignatov & Mosin, 2013a; Ignatov & Mosin, 2013b). 
2H2O has high environmental potential in biomedical studies due to the absence of radioactivity and poccebility 

of detecting the deuterium label in the molecule by high-resolution methods as NMR, IR, and mass spectrometry 

that facilitates its use as a tracer in biochemical and biomedical research (Kushner et al., 1999). 

The average ratio of 1H/2H in nature makes up approximately 1:5700 (Lis et al., 2008). In natural 

waters, the deuterium is distributed irregularly: from 0.02–0.03 mol.% for river water and sea water, to 0.015 

mol.% for water of Antarctic ice – the most purified from deuterium natural water containing in 1.5 times less 

deuterium than that of seawater. According to the international SMOW standard isotopic shifts for 2H and 18O in 

sea water: 2H/1H = (155.76±0.05).10-6 (155.76 ppm) and 18O/16O = (2005.20±0.45).10-6 (2005 ppm). For SLAP 

standard isotopic shifts for 2H and 18O in seawater make up 2H/1H = 89.10-6 (89 ppm) and for a pair of 18O/16O = 

1894.10-6 (1894 ppm). In surface waters, the ratio 2H/1H = ∼(1.32–1.51).10-4, while in the coastal seawater – 

∼(1.55–1.56).10-4. The natural waters of CIS countries are characterized by negative deviations from SMOW 

standard to (1.0–1.5).10-5, in some places up to (6.0–6.7).10-5, but however there are also observed positive 

deviations at 2.0.10-5. 

The chemical structure of 2H2O molecule is analogous to that one for Н2O, with small differences in 

the length of the covalent H–O-bonds and the angles between them. The molecular mass of 2H2O exceeds on 

10% that one for Н2O. The difference in nuclear masses stipulates the isotopic effects, which may be sufficiently 

essential for the 1H/2H pair (Lobishev & Kalinichenko, 1978). As a result, physical-chemical properties of 2H2O 

differ from H2O: 2H2O boils at 101.44 0С, freezes at 3.82 0С, has maximal density at 11.2 0С (1.106 g/cm3) 

(Vertes, 2004). In mixtures of 2H2O with Н2O the isotopic exchange occurs with high speed with the formation 

of semi-heavy water (1H2HO): 2H2O + H2O = 1H2HO. For this reason deuterium presents in smaller content in 

aqueous solutions in form of 1Н2HO, while in the higher content – in form of 2H2O. The chemical reactions in 
2H2O are somehow slower compared to Н2O. 2H2O is less ionized, the dissociation constant of 2H2O is smaller, 

and the solubility of the organic and inorganic substances in 2H2O is smaller compared to these ones in Н2О 

(Mosin, 1996a). Due to isotopic effects the hydrogen bonds with the participation of deuterium are slightly 

stronger than those ones formed of hydrogen. 

For a long time it was considered that heavy water was incompatible with life. Experiments with the 

growing of cells of different organisms in 2H2O show toxic influence of deuterium. The high concentrations of 
2H2O lead to the slowing down the cellular metabolism, mitotic inhibition of the prophase and in some cases – 

somatic mutations (Den’ko, 1970). This is observed even while using natural water with an increased content of 
2H2O or 1H2HO (Stom et al., 2006). Bacteria can endure up to 90 % (v/v) 2H2O, plant cells can develop normally 

in up to 75 % (v/v) 2H2O, while animal cells – up to not more than 30 % (v/v) 2H2O (Mosin & Ignatov, 2012a). 

Further increase in the concentration of 2H2O for these groups of organisms leads to the cellular death (Katz, 

1960; Thomson, 1960), although isolated cell’s cultures suspended in pure 2H2O exert a strong radioprotective 

effect in 2H2O-solutions towards γ–radiation (Michel et al., 1988; Laeng et al., 1991). On the contrary, deuterium 
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depleted water with decreased deuterium content has benefitial effects on organism and stimulates the cellular 

metabolism (Somlyai, 2001; Sinyak et al., 2003). 

With the development of new microbiological approaches, there appears an opportunity to use adapted 

to deuterium cells for preparation of deuterated natural compounds (Mosin et al., 2013a; Mosin et al., 2013b; 

Mosin et al., 2013c). The traditional method for production of deuterium labelled compounds consists in the 

growth on media containing maximal concentrations of 2H2O and deuterated substrates as [2H]methanol, 

[2H]glucose etc. (Mosin & Ignatov, 2012b; Mosin et al., 2014). During growth of cells on 2H2O are synthesized 

molecules of biologically important natural compounds (DNA, proteins, amino acids, nucleosides, carbohydrates, 

fatty acids), which hydrogen atoms at the carbon backbones are completely substituted with deuterium. They are 

isolated from deuterated biomass obtained on growth media with high 2H2O content and deuterated substrates 

with using a combination of physico-chemical methods of separation – hydrolysis, precipitation, extraction with 

organic solvents and chromatographic purification by column chromatography on different adsorbents. These 

deuterated molecules evidently undergo structural adaptational modifications necessary for the normal 

functioning in 2H2O. 

The adaptation to 2H2O is interested not only from scientific point, but allows to obtain the unique 

biological material for the studying of molecular structure by 1H-NMR (Crespi, 1989). Trend towards the use of 

deuterium as an isotopic label are stipulated by the absence of radioactivity and possebility of determination the 

deuterium localization in the molecule by high resolution NMR spectroscopy (LeMaster, 1990), IR spectroscopy 

(MacCarthy, 1985) and mass spectrometry (Mosin et al., 1996a). The recent advances in technical and 

computing capabilities of these analytical methods have allowed to considerable increase the efficiency of de 

novo biological studies, as well as to carry out structural-functional biophysical studies with deuterated 

molecules on a molecular level. 

This study is a continuation of our research into the adaptation to deuterium of various procaryotic and 

eucaryotic organisms. The purpose of our research was studying the influence of deuterium on the cells of 

different taxonomic groups of microorganisms and microalgae realizing methylotrophic, chemoheterotrophic, 

photo-organotrophic and photosynthetic pathways of carbon assimilation.   

 

2. Material and Methods 

2.1. Biological Objects  

The objects of the study were various microorganisms, realizing methylotrophic, chemoheterotrophic, photo-

organotrophic, and photosynthetic ways of assimilation of carbon substrates. The initial strains were obtained 

from the State Research Institute of Genetics and Selection of Industrial Microorganisms (Moscow, Russia):  

1. Brevibacterium methylicum B-5652, a leucine auxotroph Gram-positive strain of facultative methylotrophic 

bacterium, L-phenylalanine producer, assimilating methanol via the NAD+ dependent methanol dehydrogenase 

variant of ribulose-5-monophosphate cycle (RuMP) of carbon fixation. 

2. Bacillus subtilis B-3157, a polyauxotrophic for histidine, tyrosine, adenine, and uracil spore-forming aerobic 

Gram-positive chemoheterotrophic bacterium, inosine producer, realizing hexose-6-mono-phosphate (GMP) 

cycle of carbohydrates assimilation.  

3. Halobacterium halobium ET-1001, photo-organotrophic carotenoid-containing strain of extreme halobacteria, 

synthesizing the photochrome transmembrane protein bacteriorhodopsin. 

4. Chlorella vulgaris B-8765, photosynthesizing single-cell green algae. 

 

2.2. Chemicals  

For preparation of growth media was used 2H2O (99.9 atom.%), 2HСl (95.5 аtom.%) and [2H]methanol (97.5 

atom% 2H),  purchased from the “Isotope” Russian Research Centre (St. Petersburg, Russian Federation). 

Inorganic salts and D- and L-glucose (“Reanal”, Hungary) were preliminary crystallized in 2H2O and dried in 

vacuum before using. 2H2O was distilled over KMnO4 with the subsequent control of isotope enrichment by 1H-

NMR-spectroscopy on a Brucker WM-250 device (“Brucker”, Germany) (working frequency: 70 MHz, internal 

standard: Me4Si). According to 1H-NMR, the level of isotopic purity of growth media usually was by ∼8–10 

atom% lower than the isotope purity of the initial 2Н2О. 

 

2.3. Adaptation Technique 

The initial microorganisms were modified by adaptation to deuterium by plating individual colonies onto 2% 

(w/v) agarose growth media with stepwise increasing gradient of 2Н2О concentration and subsequent selection of 

individual cell colonies stable to the action of 2Н2О. As a source of deuterated growth substrates for the growth 

of chemoheterotrophic bacteria and chemoorganoheterotrophic bacteria was used the deuterated biomass of 

facultative methylotrophic bacterium B. methylicum, obtained via a multi-stage adaptation on solid 2% (w/v) 

agarose M9 media with an increasing gradient of 2Н2О (from 0, 24.5, 49.0, 73.5 up to 98% (v/v) 2Н2О). Raw 

deuterated biomass (output, 100 gram of wet weight per 1 liter of liquid culture) was suspended in 100 ml of 0.5 
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N 2HCl (in 2H2O) and autoclaved for 30–40 min at 0.8 atm. The suspension was neutralized with 0.2 N KOH (in 
2H2O) to pH = 7.0 and used as a source of growth substrates while adaptation and growing the 

chemoheterotrophic bacterium B. sublilis and the photo-organotrophic halobacterium H. halobium. 

 

2.4. Growth Media 

The following growth media were used (concentratioin of components are given in g/l): 

1. Minimal salt medium M9 for growth of the facultative methanol assimilating methylotrophic bacterium B. 

methylicum B-5662, supplemented with 2% (v/v) [2Н]methanol and increasing gradient of 2Н2О concentration 

from 0; 24.5; 49.0; 73.5 up to 98 % (v/v) 2Н2О: KH2PO4 – 3; Na2HPO4 – 6; NaCl – 0.5; NH4Cl – 1; L-leucine – 

0.01.  

2. Hydrolysated medium HM1 for growth of the aerobic Gram-positive chemoheterotrophic bacterium B. subtilis 

B-3157, based on 2Н2О (89–90 atom% 2H) and 2% (w/v) hydrolysate of deuterated biomass of B. methylicum  B-

5662 as a source of 2H-labeled growth substrates: L-glucose –120; hydrolysate of deuterated biomass of B. 

methylicum – 20, NH4NO3 – 20; MgSO4
.7H2O – 10; СаСО3 – 20; adenine, and uracil – 0.01. As a control was 

used protonated medium containing 2% (w/v) yeast protein–vitamin concentrate (PVC).  

3. Hydrolysated medium HM2 for the growth of the extreme aerobic halobacterium Halobacterium halobium 

ET-1001 (based on 99.9 atom% 2H2O): NaCl - 250; MgSO4
.7H2O - 20; KCl - 2; CaCl2

.
 6H2O – 0.065; sodium 

citrate - 0.5; hydrolyzate of deuterated biomass of B. methylicum B-5662 – 20; biotin – 1.10-4; folic acid – 1.5.10-

4, vitamin B12 – 2.10-5). 

4. Tamiya medium for the growth of the photosynthetic green microalgae C. vulgaris B-8765 (based on 99.9 

atom% 2H2O): KNO3 – 5.0; MgSO4
.7H2O – 2.5; KH2PO4 – 1.25; FeSO4 – 0.003; MnSO4

.2H2O – 3.10-4; 

CaCl2
.6H2O – 0.065; ZnSO4

.7H2O – 4.10-5; CuSO4
.5H2O – 5.10-5, CoCl2

.6H2O – 5.10-6). 

 

2.5. Growth Conditions 

The cells were grown in 500 ml Erlenmeyer flasks containing 100 ml of the growth medium at 32–34 0С and 

vigorously aerated on an orbital shaker Biorad (“Biorad Labs”, Poland). Photo-organotrophic bacteria and green 

algae were grown at illumination by fluorescent monochromatic lamps LDS-40-2 (40 W) ("Alfa-Electro", 

Russia). Growing of microalgae C. vulgaris was carried out at 32 0C in a photoreactor with CO2 bubbling. The 

bacterial growth was monitored on the ability to form individual colonies on the surface of solid 2 % (w/v) 

agarose media, as well as on the optical density of the cell suspension measured on a Beckman DU-6 

spectrophotometer (“Beckman Coulter”, USA) at λ = 620 nm. After 6−7 days the cells were harvested and 

separated by centrifugation (10000 g, 20 min) on T-24 centrifuge ("Heracules", Germany). The biomass was 

washed with 2H2O and extracted with a mixure of organic solvents: chloroform−methanol−acetone = 2:1:1, % 

(v/v) for isolating lipids and pigments. The resulting precipitate (10−12 mg) was dried in vacuum and used as a 

protein fraction, while the liquid extract − as a lipid fraction. The exogenious deuterated amino acids and 

ribonucleosides were isolated from culture liquids (CL) of appropriate strain-producers. Inosine was isolated 

from the CL of B. subtilis by adsorption/desorption on activated carbon as adsorbent with following extraction 

with 0.3 M NH4-formate buffer (pH = 8.9), subsequent crystallization in 80 % (v/v) ethanol, and ion exchange 

chromatography (IEC) on a column with cation exchange resin AG50WX 4 equilibrated with 0.3 M NH4-

formate buffer and 0.045 M NH4Cl (output, 3.1 g/l (80 %); [α]D
20 = 1.61 (ethanol)). Bacteriorhodopsin was 

isolated from the purple membranes of photo-organotrophic halobacterium H. halobium by the method of D. 

Osterhelt, modificated by the authors, with using SDS as a detergent (Mosin et al., 1999a). 

 

2.6. Protein Hydrolysis 

Dry biomass (10 g) was treated with a chloroform–methanol–acetone mixture (2:1:1, % (v/v)) and supplemented 

with 5 ml of 6 N 2HCl (in 2H2О). The ampules were kept at 110 0С for ~24 h. Then the reaction mixture was 

suspended in hot 2H2О and filtered. The hydrolysate was evaporated at 10 mm Hg. Residual 2HCl was removed 

in an exsiccator over solid NaOH. 

 

2.7. Hydrolysis of Intracellular Policarbohydrates 

Dry biomass (50 mg) was placed into a 250 ml round bottomed flask, supplemented with 50 ml distilled 2H2О 

and 1.6 ml of 25% (v/v) H2SO4 (in 2H2О), and boiled in a reflux water evaporator for ~90 min. After cooling, the 

reaction mixture was suspended in one volume of hot distilled 2H2О and neutralized with 1 N Ba(ОН)2 (in 2H2О) 

to pH = 7.0. BaSO4  was separated by centrifugation (1500 g, 5 min); the supernatant was decanted and 

evaporated at 10 mm Hg. 

 

2.8. Amino Acid Analysis 

The amino acids of the hydrolyzed biomass were analyzed on a Biotronic LC-5001 (230×3.2) column 

(“Eppendorf–Nethleler–Hinz”, Germany) with a UR-30 sulfonated styrene resin (“Beckman–Spinco”, USA) as a 
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stationary phase; the temperature – 20±25 0C;  the mobile phase – 0.2 N sodium–citrate buffer (pH = 2.5); the 

granule diameter – 25 µm; working pressure – 50–60 atm; the eluent input rate – 18.5 ml/h; the ninhydrin input 

rate – 9.25 ml/h; detection at λ = 570 and λ =  440 nm (for proline). 

 

2.9. Analysis of Carbohydrates 

Carbohydrates were analyzed on a Knauer Smartline chromatograph (“Knauer”, Germany) equipped with a 

Gilson pump (“Gilson Inc.”, USA) and a Waters K 401 refractometer (”Water Associates”, USA) using 

Ultrasorb CN column (250×10 mm) as a stationary phase; the temperature – 20±25 0C; the mobile phase – 

acetonitrile–water (75:25, % (w/w); the granule diameter – 10 µm; the input rate – 0.6 ml/min. 

 

2.10. Analysis of Fatty Acids 

Fatty acids were analyzed on a Beckman Gold System (USA) chromatograph (250×4.6 mm), equiped with 

Model 126 UV-Detector (USA), 20±25 0C . Stationary phase – Ultrasphere ODS 5 µm; mobile phase – linear 

gradient of 5 mM KH2PO4–acetonitrile; elution rate – 0.5 ml/min, detection at λ = 210 nm. 

 

2.11. Mass Spectrometry 

For evaluation of deuterium enrichment levels EI and FAB mass spectrometry was used.  EI mass spectra were 

recorded on MB-80A device (“Hitachi”, Japan) with double focusing (the energy of ionizing electrons – 70 eV; 

the accelerating voltage – 8 kV; the cathode temperature – 180–200 0С) after amino acid modification into 

methyl esters of N-5-dimethylamino(naphthalene)-1-sulfonyl (dansyl) amino acid derivatives according to an 

earlier elaborated protocol (Mosin et al., 1998). FAB-mass spectra were recorded on a VG-70 SEQ 

chromatograph (“Fisons VG Analytical”, USA) equipped with a cesium Cs+ source on a glycerol matrix with 

accelerating voltage 5 kV and ion current 0.6–0.8 mA. Calculation of deuterium enrichment of the molecules 

was carried out using the ratio of contributions of molecular ion peaks of deuterated compounds extracted on 

D2O-media relative to the control obtained on H2O. 

 

2.6. Scanning Electrom Microscopy (SEM) 

SEM was carried out on JSM 35 CF (JEOL Ltd., Korea) device, equiped with SE detector, thermomolecular 

pump, and tungsten electron gun (Harpin type W filament, DC heating); working pressure – 10-4 Pa (10-6 Torr); 

magnification – ×150.000, resolution – 3.0 nm, accelerating voltage – 1–30 kV; sample size – 60–130 mm. 

 

2.12. IR-spectroscopy 

IR-spectroscopy was performed on Brucker Vertex spectrometer (“Brucker”, Germany) (spectral range: average 

IR – 370–7800 cm-1; visible – 2500–8000 cm-1; the permission – 0.5 cm-1; accuracy of wave number – 0.1 cm-1 

on 2000 cm-1). 

 

3. Results 

3.1. Adaptation to deuterium the methylotrophic bacterium B. methylicum 
Numerous studies carried out by us with various biological objects in 2H2O, proved that when biological objects 

being exposed to water with different deuterium content, their reaction varies depending on the isotopic 

composition of water (the content of deuterium in water) and magnitude of isotope effects determined by the 

difference of constants of chemical reactions rates kH/kD in H2O and 2H2O. The maximum kinetic isotopic effect 

observed at ordinary temperatures in chemical reactions leading to rupture of bonds involving hydrogen and 

deuterium atoms lies in the range kH/kD = 5–8 for C–H versus C–2H, N–2H versus N–2H, and O–2H versus O–2H-

bonds (Mosin, 1996; Mosin & Ignatov, 2012a; Mosin & Ignatov, 2012b). Isotopic effects have an impact not 

only on the physical and chemical properties of deuterated macromolecules in which H atoms are substituted 

with 2H atoms, but also on the biological behaviour of biological objects in 2H2O. Experiments with 2H2O (Table 

1) have shown, that green-blue algae is capable to grow on 70 % (v/v) 2H2O, methylotrophic bacteria – 75 % 

(v/v) 2H2O, chemoheterotrophic bacteria – 82 % (v/v) 2H2O, and photo-organotrophic halobacteria – 95 % (v/v) 
2H2O. 

In the course of the experiment were obtained adapted to the maximum concentration of 2H2O cells 

belonging to different taxonomic groups of microorganisms, realizing methylotrophic, chemoheterotrophic, 

photo-organotrophic and photosynthetic pathways of assimilation of carbon substrata, as facultative 

methylotrophic bacterium B. methylicum, chemoheterotrophic bacterium B. subtilis, halobacterium H. halobium 

and green algae C. vulgaris. 

Selection of methanol-assimilating facultative methylotrophic bacterium B. methylicum was connected 

with the development of new microbiological strategies for preparation of deuterated biomass via bioconversion 

of [2H]methanol and 2H2O and its further use as a source of deuterated growth substrates for the growing other 

strains-producers in 2H2O. 
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Choosing of photo photo-organotrophic halobacterium H. halobium was stipulated by the prospects of 

further isolation of retinal containing transmembrane protein bacteriorhodopsin (BR) – chromoprotein of 248 

amino acid residues, containing as a chromophore an equimolar mixture of 13-cis-and 13-trans C20 carotenoid 

associated with a protein part of the molecule via a Lys-216 residue (Mosin & Ignatov, 2014). BR performs in 

the cells of halobacteria the role of ATP-dependent translocase, which creates an electrochemical gradient of H+ 

on the surface of the cell membrane, which energy is used by the cell for the synthesis of ATP in the anaerobic 

photosynthetic phosphorylation. 

Using chemoheterotrophic bacterium B. subtilis was determined by preparative isolation produced by 

this bacterium deuterated ribonucleoside – inosine (total deuteration level 65.5 atom.% 2H) for biomedical use 

(Mosin & Ignatov, 2013d), and the use of photosynthetic blue-green C. vulgaris was stipulated by the study of 

biosynthesis of deuterated chlorophyll and carotenoid pigments (deuteration level 95–97 atom.% 2H) on growth 

media with high 2H2O-content (Mosin & Ignatov, 2012b). 

We used stepwise increasing gradient concentration of 2H2O in growth media, because it was assumed 

that the gradual accustoming of micorganisms to deuterium would have a beneficial effect upon the growth and 

physiological parameters. The strategy of adaptation to 2H2O is shown in Table. 1 on an example of 

methylotrophic bacterium B. methylicum, which deuterated biomass, was used in further experiments as a source 

of deuterated growth substrates for growing of chemoheterotrophic and photo-organotrophic bacteria. For this, 

deuterium enrichment technique was applied via plating cell colonies on 2% (w/v) agarose M9 media 

supplemented with 2% (v/v) [U-2H]MeOH with an increase in the 2H2O content from 0; 24.5; 49.0; 73.5 up to 

98% (v/v) 2H2O, combined with subsequent selection of cell colonies which were resistant to deuterium. The 

degree of cell survive on maximum deuterated medium was approx. 40%. The data on the yield of biomass of 

initial and adapted B. methylicum, magnitude of lag-period and generation time on protonated and maximum 

deuterated M9 medium are shown in Figure 1. The yield of biomass for adapted methylotroph (c) was decreased 

approx. on 13% in comparison with control conditions (a) at an increase in the time of generation up to 2.8 h and 

the lag-period up to 40 h (Figure 1). As is shown from these data, as compared with the adapted strain, the 

growth characteristics of initial strain on maximally deuterated medium were inhibited by deuterium.  

 
Figure 1. Yield of microbial biomass of B. methylicum, magnitude of lag-period and generation time in various 

experimental conditions: initial strain on protonated М9 medium (control) with water and methanol (a); initial 

strain on maximally deuterated M9 medium (b); adapted to deuterium strain on maximally deuterated M9 

medium (c): 1 – yield of biomass, % from the control; 2 –  duration of lag-period, h; 3 – generation time, h. 

Experimental conditions are given in Table 1 (expts. 1–10) relative to the control (expt. 1) on 

protonated medium M9 and to the adapted bacterium (expt. 10’). Various compositions of [U-2H]MeOH and 
2H2O were added to growth media M9 as hydrogen/deuterium atoms could be assimilated both from MeOH and 

H2O. The maximum deuterium content was under conditions (10) and (10’) in which we used 98% (v/v) 2H2O 

and 2% (v/v) [U-2H]MeOH. The even numbers of experiment (Table 1, expts. 2, 4, 6, 8, 10) were chosen to 

investigate whether the replacement of MeOH by its deuterated analogue affected growth characteristics in 

presence of 2H2O. That caused small alterations in growth characteristics (Table 1, expts. 2, 4, 6, 8, 10) relative 

to experiments, where we used protonated methanol (Table 1, expts. 3, 5, 7, 9). The gradual increment in the 

concentration of 2H2O into growth medium caused the proportional increase in lag-period and yields of microbial 

biomass in all isotopic experiments. Thus, in the control (Table 1, expt. 1), the duration of lag-period did not 

exceed 20.2 h, the yield of microbial biomass (wet weight) and production of phenylalanine were 200.2 and 0.95 



Journal of Medicine, Physiology and Biophysics                                                                                                                              www.iiste.org 

ISSN 2422-8427     An International Peer-reviewed Journal 

Vol.20, 2016 

 

63 

gram per 1 liter of growth medium. The adding gradually increasing concentrations of 2H2O into growth media 

caused the proportional increasing of lag-period and yield of microbial biomass in all isotopic experiments. The 

results suggested, that below 49% (v/v) 2H2O (Table 1, expts. 2–4) there was a small inhibition of bacterial 

growth compared with the control (Table 1, expt. 1). However, above 49% (v/v) 2H2O (Table 1, expts. 5–8), 

growth was markedly reduced, while at the upper content of 2H2O (Table 1, expts. 9–10) growth got 3.3-fold 

reduced. With increasing content of 2H2O in growth media there was a simultaneous increase both of lag-period 

and generation time. Thus, on maximally deuterated growth medium (Table 1, expt. 10) with 98% (v/v) 2H2O 

and 2% (v/v) [U-2H]MeOH, lag-period was 3 fold higher with an increased generation time to 2.2 fold as 

compared to protonated growth medium with protonated water and methanol which serve as control (Table 1, 

expt. 1). While on comparing adapted bacterium on maximally deuterated growth medium (Table 1, expt. 10’) 

containing 98% (v/v) 2H2O and 2% (v/v) [U-2H]MeOH with non adapted bacterium at similar concentration 

showed  2.10 and 2.89 fold increase in terms of phenylalanine production and biomass yield due to deuterium 

enrichment technique, while, the lag phase as well as generation time also got reduced to 1.5 fold and 1.75 fold 

in case of adapted bacterium.  

The adapted bacterium of B. methylicum eventually came back to normal growth at placing over in 

protonated growth medium after some lag-period that proves phenotypical nature of a phenomenon of adaptation 

that was observed for others adapted by us strains of methylotrophic bacteria and representatives of other 

taxonomic groups of microorganisms [Mosin & Ignatov, 2012a; Mosin & Ignatov, 2013a, Ignatov & Mosin, 

2013b]. Literature reports clearly reveal that the transfer of deuterated cells to protonated medium M9 eventually 

after some lag period results in normal growth that could be due to the phenomenon of adaptation wherein 

phenotypic variation was observed by the strain of methylotrophic bacteria (Mosin & Ignatov, 2013b; Mosin et 

al., 2013). The improved growth characteristics of adapted methylotroph essentially simplify the scheme of 

obtaining the deutero-biomass which optimum conditions are М9 growth medium with 98% 2Н2О and 2% 

[2Н]methanol with incubation period 3–4 days at temperature 35 0С. 

Table 1. Effect of variation in isotopic content (0–98% 2H2O, v/v) in growth media M9 on bacterial growth of B. 

methylicum and phenylalanine production 
Bacterial 

strains 

Exp. 

number 

Media components, % (v/v) 

 

Lag-period (h) Yield in terms of 

wet biomass (g/l) 

 

Generation 

time (h) 

Phenylalanine 

production 

(g/l) 
 

H2O 2H2O MeOH [U-2H]                                                     

MeOH 

Non 

adapted 

1(control) 98.0 0 2 0 20.2±1.40 200.2±3.20 2.2±0.2 0.95±0.12 

Non 

adapted 

2 98.0 0 0 2 20.3±1.44 184.6±2.78 2.4±0.2 0.92±0.10 

Non 

adapted 

3 73.5 24.5 2 0 20.5±0.91 181.2±1.89 2.4±0.2 0.90±0.10 

Non 

adapted 

4 73.5 24.5 0 2 34.6±0.89 171.8±1.81 2.6±0.2 0.90±0.08 

Non 

adapted 

5 49.0 49.0 2 0 40.1±0.90 140.2±1.96 3.0±0.3 0.86±0.10 

Non 

adapted 

6 49.0 49.0 0 2 44.2±1.38 121.0±1.83 3.2±0.3 0.81±0.09 

Non 

adapted 

7 24.5 73.5 2 0 45.4±1.41 112.8±1.19 3.5±0.2 0.69±0.08 

Non 
adapted 

8 24.5 73.5 0 2 49.3±0.91 94.4±1.74 3.8±0.2 0.67±0.08 

Non 

adapted 

9 98.0 0 2 0 58.5±1.94 65.8±1.13 4.4±0.7 0.37±0.06 

Non 
adapted 

10 98.0 0 0 2 60.1±2.01 60.2±1.44 4.9±0.7 0.39±0.05 

Adapted 10’ 98.0 0 0 2 40.2±0.88 174.0±1.83 2.8±0.3 0.82±0.08 

Notes:  

* The date in expts. 1–10 described  the growth characteristics for non-adapted bacteria in growth media, 

containing 2 % (v/v) MeOH/[U-2H]MeOH and specified amounts (%, v/v) 2Н2О.  

** The date in expt. 10’ described the growth characteristics for bacteria adapted to maximum content of 

deuterium in growth medium. 

***As the control used exprt. 1 where used ordinary protonated water and methanol 

Adaptation, which conditions are shown in experiment 10’ (Table 1) was observed by investigation of 

growth dynamics (expts. 1a, 1b, 1c) and accumulation of L-phenylalanine into growth media (expts. 2a, 2b, 2c) 

by initial (a) and adapted to deuterium (c) strain B. methylicum in maximum deuterated growth medium М9 

(Figure 2, the control (b) is obtained on protonated growth medium M9). In the present study, the production of 

phenylalanine (Figure 2, expts. 1b, 2b, 3b) was studied and was found to show a close linear extrapolation with 

respect to the time up to exponential growth dynamics (Figure 2, expts. 1a, 2a, 3a). The level of phenylalanine 
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production for non-adapted bacterium on maximally deuterated medium M9 was 0.39 g/liter after 80 hours of 

growth (Figure 2, expt. 2b). The level of phenylalanine production by adapted bacterium under those growth 

conditions was 0.82 g/liter (Figure 2, expt. 3b). Unlike to the adapted strain the growth of initial strain and 

production of phenylalanine in maximum deuterated growth medium were inhibited. The important feature of 

adapted to 2Н2О strain В. methylicum was that it has kept its ability to synthesize and exogenously produce L-

phenylalanine into growth medium. Thus, the use of the adapted bacterium enabled to improve the level of 

phenylalanine production on maximally deuterated medium by 2.1 times with the reduction in the lag phase up 

to 20 h. This is an essential achievement for this strain of methylotrophic bacteria, because up till today there 

have not been any reports about production of phenylalanine by leucine auxotrophic methylotrophs with the 

NAD+ dependent methanol dehydrogenase (EC 1.6.99.3) variant of the RuMP cycle of carbon assimilation. This 

makes this isolated strain unique for production of deuterated phenylalanine and other metabolically related 

amino acids.    

 
Figure 2. Growth dynamics of B. methylicum (1a, 2a, 3a) and production of phenylalanine (1b, 2b, 3b) on media 

M9 with various isotopic content:  1a, 1b – non-adapted bacterium on protonated medium (Table 1, expt. 1); 2a, 

2b – non-adapted bacterium on maximally deuterated medium (Table 1, expt. 10); 3a, 3b – adapted bacterium on 

maximally deuterated medium (Table 1, expt. 10’) 

The general feature of phenylalanine biosynthesis in Н2О/2H2O-media was increase of its production at 

early exponential phase of growth when outputs of a microbial biomass were insignificant (Figure 2). In all the 

experiments it was observed that there was a decrease in phenylalanine accumulation in growth media at the late 

exponential phase of growth. Microscopic research of growing population of microorganisms showed that the 

character of phenylalanine accumulation in growth media did not correlate with morphological changes at 

various stages of the cellular growth. Most likely that phenylalanine, accumulated in growth media, inhibited 

enzymes of its biosynthetic pathways, or it later may be transformed into intermediate compounds of its 

biosynthesis, e.g. phenylpyruvate (Maksimova et al., 1990; Skladnev et al., 1996). It is necessary to notice, that 

phenylalanine is synthesised in cells of microorganisms from prephenic acid, which through a formation stage of 

phenylpiruvate turns into phenylalanine under the influence of cellular transaminases. However, phenylalanine 

was not the only product of biosynthesis; other metabolically related amino acids (alanine, valine, and 

leucine/isoleucine) were also produced and accumulated into growth media in amounts of 5–6 µmol in addition 

to phenylalanine. This fact required isolation of [2H]phenylalanine from growth medium, which was carried out 

by extraction of lyophilized LC with iso-PrOH and the subsequent crystallization in EtOH. Analytical separation 

of [2H]phenylalanine and metabolically related [2H]amino acids was performed using a reversed-phase HPLC 

method on Separon SGX C18 Column, developed for methyl esters of N-DNS-[2H]amino acids with 

chromatographic purity of 96–98% and yield of 67–89%. 
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Table 2. Effect of deuterium enrichment levels (atom.%) in the molecules of [2Н]amino acids excreted by B. 

methylicum* 

[2Н]amino acid 
Concentration of  2Н2О in growth media, % (v/v)** 

24.5 49.0 73.5 98.0 

Alanine 24.0±0.70 50.0±0.89 50.0±0.83 50.0±1.13 

Valine 20.0±0.72 50.0±0.88 50.0±0.72 62.5±1.40 

Leucine/isoleucine 20.0±0.90 50.0±1.38 50.0±1.37 50.0±1.25 

Phenylalanine 17.0±1.13 27.5±0.88 50.0±1.12 75.0±1.40 

Notes: 

* At calculation of enrichment levels protons (deuterons) at COOH- and NH2-groups of amino acids were not 

considered because of dissociation in Н2О (2Н2О).  

** The data on enrichment levels described bacteria grown on minimal growth media M9 containing 2% (v/v) [U-
2Н]MeOH and specified amounts (%, v/v) 2Н2О. 

With increasing 2H2O content in growth media, the levels of deuterium enrichment in exogenous 

[2H]amino acids (phenylalanine, alanine, valine, and leucine/isoleucine), secreted by B. methylicum, were varied 

proportionally. The similar result on proportional specific increase of levels of deuterium enrichment into 

[2Н]phenylalanine and other metabolically related [2Н]amino acids was observed in all isotopic experiments 

where used increasing concentration 2Н2О in growth media (Table 2). Predictably, enrichment levels of 

[2Н]phenylalanine related to the family of aromatic amino acids synthesised from shikimic acid and 

metabolically related [2Н]amino acids of pyruvic acid family – alanine, valine and leucine at identical 2Н2О 

concentration in growth media are correlated among themselves. Such result is fixed in all isotope experiments 

with 2Н2О (Table 2). Unlike [2Н]phenylalanine, deuterium enrichment levels in accompanying [2Н]amino acids 

– Ala, Val and Leu/Ile keep a stable constancy within a wide interval of 2Н2О concentration: from 49% (v/v) to 

98% (v/v) 2Н2О (Table 2). Summarizing these data, it is possible to draw a conclusion on preservation of minor 

pathways of the metabolism connected with biosynthesis of leucine and metabolic related amino acids of pyruvic 

acid family  – alanine and valine, which enrichment levels were in correlation within identical concentration of 

Н2О in growth media (phenylalanine is related to the family of aromatic amino acids synthesized from shikimic 

acid). Since leucine was added into growth media in protonated form, another explanation of this effect, taking 

into consideration the various biosynthetic pathways of Leu and Ileu (Ileu belongs to the family of aspartic acid, 

while Leu belongs to the pyruvic acid family), could be cell assimilation of protonated leucine from growth 

media. Since Leu and Ileu could not be clearly estimated by EI MS method, nothing could be said about possible 

biosynthesis of [2H]isoleucine. Evidently, higher levels of deuterium enrichment can be achieved by replacement 

of protonated leucine on its deuterated analogue, which may be isolated from hydrolysates of deuterated biomass 

of this methylotrophic bacterium.  

It should be noted that the yields of biomass on deuterated growth media were varried 85-90% for 

different taxonomic groups of microorganisms. All adapted microorganisms had a slightly reduced level of 

microbial biomass accumulation and increased cell generation times on maximal deuterated media.  

 

3.2. Adaptation to deuterium the chemoheterotrophic bacterium B. subtillis 
The result obtained in experiments on the adaptation of methylotrophic bacterium B. methylicum to 2Н2О 

allowed to use hydrolysates of biomass of this bacterium obtained in the process of multi-stage adaptation to 
2Н2О, as a source of deuterated growth substrates for the growing of the chemoheterotrophic bacterium B. 

subtillis and the photoorganotrophic halobacterium H. halobium. 

The assimilation rate of methylotrophic biomass by protozoa and eukaryotic cells amounts to 85–98%, 

while the productivity calculated on the level of methanol bioconversion into cell components makes up 50–60% 

(Mosin et al., 1999a; Mosin et al., 1999b). While developing the composition of growth media on the basis of 

deutereted biomass of methylotrophic bacteria B. methylicum it was taken into account the ability of 

methylotrophic bacteria to synthesize large amounts of protein (output, 50% (w/w) of dry weight), 15–17% (w/w) 

of polysaccharides, 10–12% (w/w) of lipids (mainly, phospholipids), and 18% (w/w) of ash (Mosin  & Ignatov, 

2013b). To provide high outputs of these compounds and minimize the isotopic exchange (1Н–2Н) in amino acid 

residues of protein molecules, the biomass was hydrolyzed by autoclaving in 0.5 N 2НCl (in 2H2О) and used for 

the growing of chemoheterotrophic bacterium B. subtillis and photoorganoheterotrophic halobacteria H. 

halobium.  

The methylotrophic hydrolysate, obtained on the maximally deuterated medium M9 with 98% (v/v) 
2H2О and 2% (v/v) [2H]methanol, contains 15 identified amino acids (except for proline detected at λ = 440 nm) 

with tyrosine and histidine content per 1 gram of dry methylotrophic hydrolysate 1.82% and 3.72% (w/w), 

thereby satisfying the auxotrophic requirements of the inosine producer strain for these amino acids (Table 3). 

The content of other amino acids in the hydrolysate is also comparable with the needs of the strain in sources of 
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carbon and amine nitrogen. The indicator determining the high efficiency of deuterium incorporation into the 

synthesized product is high levels of deuterium enrichment of amino acid molecules, varied from 50 atom% 2H 

for leucine/isoleucine to 98.5 atom% 2H for alanine (Table 3).  

Table 3. Amino acid composition of hydrolyzed biomass of the facultative methylotrophic bacterium B. 

methylicum obtained on maximally deuterated M9 medium with 98% (v/v) 2H2O and 2% (v/v) [2H]methanol and 

levels of deuterium enrichment* 

Amino acid Yield, % (w/w) dry weight 

per 1 gram of biomass 

 

Number of deuterium 

atoms incorporated into 

the carbon backbone of a 

molecule** 

Level of deuterium 

enrichment of molecules, % 

of the total number of 

hydrogen atoms*** 

Glycine 9.55 2 92.5±1.86 

Alanine 13.30 4 98.5±1.96 

Valine 4.21 4 52.2±1.60 

Leucine 8.52 5 50.0±1.52 

Isoleucine 4.01 5 50.0±1.55 

Phenylalanine 3.89 8 96.0±1.85 

Tyrosine 2.10 7 95.5±1.82 

Serine 3.60 3 86.7±1.55 

Threonine 4.89 − − 

Methionine 2.62 − − 

Asparagine 10.02 2 68.5±1.62 

Glutamic acid 10.31 4 70.0±1.65 

Lysine 3.53 5 59.0±1.60 

Arginine 4.65 − − 

Histidine 3.98 − − 

Keys: * The data were obtained for methyl esters of N-5-dimethylamino(naphthalene)-1-sulfonyl (dansyl) 

chloride amino acid derivatives.  

** At calculation the level of deuterium enrichment, the protons (deuterons) at COOH- and NH2- groups of 

amino acid molecules were not taken into account because of the dissociation in H2O/2H2O. 

*** A dash denotes the absence of data. 

Taking into account the pathways of assimilation of carbon substrates, the adaptation of 

chemoheterotrophic bacterium B. subtilis was carried out via plating of initial cells to separate colonies on solid 

2% (w/v) agarose HM1 media based on 99,9 atom% 2Н2О and deuterated hydrolyzate biomass of B. methylicum, 

with the following subsequent selection of the colonies resistant to 2Н2О. On contrary to 2Н2О, 2Н-substrates in 

composition of deuterated biomass hydrolyzate had no significant negative effect on the growth parameters of 

the studied microorganisms. The growth and biosynthetic characteristics of inosine-producing strain B. subtilis 

were studied on protonated yeast PVC medium with H2O and 2% (w/v) yeast PVC and on HW medium with 

89% (v/v) 2H2О and 2% (w/w) hydrolysate of deuterated biomass of B. methylicum (Figure 3). Experiments 

demonstrated a certain correlation between the changes of growth dynamics of B. subtilis (Figure 4, curves 1, 1'), 

output of inosine (Figure 3, curves 2, 2'), and glucose assimilation (Figure 3, curves 3, 3'). The maximal output 

of inosine (17 g/l) was observed on protonated PVC medium at a glucose assimilation rate 10 g/l (Figure 3, 

curve 2). The output of inosine in the HW medium decreased in 4.4-fold, reaching 3.9 g/l (Figure 3, curve 2'), 

and the level of glucose assimilation – 4-fold, as testified by the remaining 40 g/l non-assimilated glucose in CL 

(Figure 3, curve 3'). The experimental data demonstrate that glucose is less efficiently assimilated during growth 

in the HW medium as compared to the control conditions in H2O. 
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Figure 3. Growth dynamics of B. subtilis (1, 1') (cells/ml), inosine accumulation in LC (2, 2') (g/l), and glucose 

assimilation (3, 3') (g/l) under different experimental conditions: (1–3) – protonated yeast PVC medium; (1'–3') – 

HW medium with 2% (w/v) hydrolysate of deuterated biomass of B. methylicum. 

The isolation of inosine from the CL consisted in low-temperature precipitation of high molecular 

weight impurities with organic solvents (acetone and methanol), adsorption/desorption on the surface of 

activated carbon, extraction of the end product, crystallization, and ion exchange chromatography. The proteins 

and polysaccharides were removed from the CL by precipitation with acetone at 4 0С with subsequent 

adsorption/desorbtion of total ribonucleosides on activated carbon. The desorbed ribonucleosides were extracted 

from the reacted solid phase by eluting with EtOH-NH3-solution at 60 0С; inosine – by extracting with 0.3 M 

ammonium–formate buffer (pH = 8.9) and subsequent crystallization in 80% (v/v) ethanol. The final purification 

consisted in column ion exchange chromatography on AG50WX 4 cation exchange resin equilibrated with 0.3 M 

ammonium–formate buffer containing 0.045 M NH4Cl with collection of fractions at Rf  = 0.5. The curves 1–3 in 

Figure 4 shows UV-absorption spectra of inosine isolated from the CL at various stages of isolation procedure. 

The presence of major absorbance band I, corresponding to natural inosine (λmax = 249 nm, ε249 = 7100 M-1 cm-1), 

and the absence of secondary metabolites II and III in the analyzed sample (Figure 4, curve 3), demonstrates the 

homogeneity of the isolated product and the efficiency of the isolation method. 
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Figure 4. UV-absorption spectra of inosine (0.1 N HCl): (1) – initial LC after the growth of B. subtilis on HW 

medium; (2) – natural inosine, and (3) – inosine extracted from the LC. Natural inosine (2) was used as a control: 

(I) – inosine, (II, III) – secondary metabolites. 

The level of deuterium enrichment of [2H]inosine was determined by FAB mass spectrometry, the high 

sensitivity of which allows to detect 10-8 to 10-10 moles of a substance in a sample (Caprioli, 1990). The 

formation of a molecular ion peak for inosine in FAB mass spectrometry was accompanied by the migration of 

H+. Biosynthetically 2H-labeled inosine, which FAB mass-spectrum represented in Figure 5b regarding the 

control (natural protonated inosine, Figure 5a), represented a mixture of isotope-substituted molecules with 

different numbers of hydrogen atoms replaced by deuterium. Correspondingly, the molecular ion peak of inosine 

[M+H]+, was polymorphically splintered into individual clusters with admixtures of molecules with statistical set 

of mass numbers m/z and different contributions to the total level of deuterium enrichment of the molecule. It 

was calculated according to the most intensive molecular ion peak (the peak with the largest contribution to the 

level of deuterium enrichment) recorded by a mass spectrometer under the same experimental conditions. These 

conditions are satisfied the most intensive molecular ion peak [М+Н]+ at m/z 274 with 38% (instead of [М+Н]+ 

at m/z 269 with 42% under the control conditions; Figure 5a). That result corresponds to five deuterium atoms 

incorporated into the inosine molecule (Figure 5b). The molecular ion peak of inosine also contained less 

intensive peaks with admixtures of molecules containing four (m/z 273, 20%), five (m/z 274, 38%), six (m/z 275, 

28%), and seven (m/z 276, 14%) deuterium atoms (Table 4). 

Table 4. Values of peaks [M+H]+ in the FAB mass spectra and levels of deuterium enrichment of inosine 

isolated from HW-medium. 

Value of 

peak [М+Н]+  

  

Contribution to the level of 

deuterium enrichment, mol.% 

The number of 

deuterium atoms 

Level of deuterium enrichment of 

molecules, % of the total number of 

hydrogen atoms* 

273 20 4 20.0±0.60 

274 38 5 62.5±1.80 

275 28 6 72.5±1.96 

276 14 7 87.5±2.98 

Keys: *At calculation of the level of deuterium enrichment, the protons(deuterons) at the hydroxyl (OH-) and 

imidazole protons at NH+ heteroatoms were not taken into account because of keto–enol tautomerism in 

H2O/2H2O. 

Taking into account the contribution  of the molecular ion peaks [M]+, the total level of deuterium enrichment 
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(TLDE) of the inosine molecule calculated using the below equation was 65.5% of the total number of hydrogen 

atoms in the carbon backbone of the molecule: 

1 2 2 2[ ] [ ] ... [ ]r r rn n

n

M C M C M C
TLDE

C

+ + +⋅ + ⋅ + + ⋅
=

∑
  

where [M]+
r - the values of the molecular ion peaks of inosine. 

Сn - the contribution of the molecular ion peaks to TLDE (mol %). 

 

 
Figure 5. FAB mass spectra of inosine (glycerol as a matrix) under different experimental conditions: (a) –  

natural inosine; (b) – [2H]inosine isolated from HW medium (scanning interval at m/z 50–350; major peaks with 

a relative intensity of 100% at m/z 52 and m/z 54; ionization conditions: cesium source; accelerating voltage, 5 

kV; ion current, 0.6–0.8 mA; resolution, 7500 arbitrary units): I – relative intensity of peaks (%); (I) – inosine; 

(II) – ribose fragment; (III) – hypoxanthine fragment. 

The fragmentation of the inosine molecule, shown in Figure 6, gives more precise information on the 

deuterium distribution in the molecule. The FAB fragmentation pathways of the inosine molecule (I) lead to 

formation of ribose (C5H9O4)+ fragment (II) at m/z 133 and hypoxanthine (C5H4ON4)+ fragment (III) at m/z 136 

(their fragmentation is accompanied by the migration of Н+), which in turn, later disintegrated into several low-

molecular-weight splinter fragments at m/z 109, 108, 82, 81, and 54 due to HCN and CO elimination from 

hypoxanthine (Figure 6). Consequently, the presence of two “heavy” fragments of ribose II (C5H9O4)+ at m/z 136 

(46%) (instead of m/z 133 (41%) in the control) and hypoxanthine III (C5H4ON4)+ at m/z 138 (55%) (instead of 

m/z 136 (48%) in the control), as well as the peaks of low molecular weight splinter fragments formed from 

FAB-decomposition of hypoxanthine fragment at m/z 111 (49%) (instead of m/z 109 (45%) in the control) and 

m/z 84 (43%) (instead of 82 (41%) in the control) suggests that three deuterium atoms are incorporated into the 
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ribose residue, and two other deuterium atoms – into the hypoxanthine residue of the inosine molecule (Figure 7). 

Such selective character of the deuterium inclusion into the inosine molecule on specific locations of the 

molecule was confirmed by the presence of deuterium in the smaller fission fragments. 

 
Figure 6. The fragmentation pathways of the inosine molecule leading to formation of smaller fragments by the 

FAB-method 

When analyzing the level of deuterium enrichment of the inosine molecule we took into account the 

fact that the character of deuterium incorporation into the molecule is determined by the pathways of carbon 

assimilation. The carbon source was glucose as a main substrate and a mixture of deuterated amino acids from 

deuterated hydrolizate of methylotrophic bacterium B. methylicum as a source of deuterated substrated and 

amine nitrogen. Since the protons (deuterons) at positions of the ribose residue in the inosine molecule could 

have been originated from glucose, the character of deuterium inclusion into the ribose residue is mainly 

determined by hexose monophosphate (HMP) shunt, associated with the assimilation of glucose and other 

carbohydrates. HMP shunt is a complex of 12 reversible enzymatic reactions resulting in the oxidation of 

glucose to CO2 to form reduced NADPH, and H+, and the synthesis of phosphorylated sugars containing from 3 

to 7 carbon atoms. Since glucose in our experiments was used in a protonated form, its contribution to the level 

of deuterium enrichment of the ribose residue was neglected. However, as the investigation of deuterium 

incorporation into the molecule by FAB method showed that deuterium was incorporated into the ribose residue 

of the inosine molecule owing to the preservation in this bacterium the minor pathways of de novo glucose 

biosynthesis in 2H2O-medium. Evidently the cell uses its own resources for intracellular biosynthesis of glucose 

from intracellular precursors.  It should be noted that numerous isotopic 1Н–2Н exchange processes could also 

have led to specific incorporation of deuterium atoms at certain positions in the inosine molecule. Such 

accessible positions in the inosine molecule are hydroxyl (OH-)- and imidazole protons at NH+ heteroatoms, 

which can be easily exchanged on deuterium in 2Н2О via keto–enol tautomerism. Three non-exchangeable 

deuterium atoms in the ribose residue of inosine are synthesized de novo and could have been originated from 

HMP shunt reactions, while two other deuterium atoms at C2,C8-positions in the hypoxanthine residue could be 

synthesized de novo at the expense of [2H]amino acids, primarily glutamine and glycine, that originated from 

deuterated hydrolysate of the methylotrophic bacterium B. methylicum obtained on 98% of 2H2O medium. In 

particular, the glycoside proton at β-N9-glycosidic bond could be replaced with deuterium via the reaction of 

СО2 elimination at the stage of ribulose-5-monophosphate formation from 3-keto-6-phosphogluconic acid with 

subsequent proton (deuteron) attachment at the С1-position of ribulose-5-monophosphate. Two other protons at 

C2(C3) and C4 positions in ribose residue could be replaced with deuterium via further enzimatic isomerization 

of ribulose-5-monophosphate into ribose-5-monophosphate (Figure 7). In general, our studies confirmed this 

scheme (Ignatov & Mosin, 2013b). However, it should be noted that the level of deuterium enrichment of 

inosine molecule is determined by isotopic purity of 2H2O and deuterated substrates and, therefore, for the total 

administration of the deuterium label into the inosine molecule instead of protonated glucoce it must be used its 

deuterated analogue. Deuterated glucose may be isolated in gram-scale quntities from deuterated biomass of the 

methylotrophic bacterium B. methylicum.  
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Figure 7. Scheme of biosynthesis of IMP by microbial cell (adapted from Bohinski, 1987) 

 

3.3. Adaptation to deuterium the microalgae C. vulgaris 
For adaptation of microalgae C. vulgaris was used Tamiya liquid mineral medium containing 25, 50, 75, and 

98% (v/v) 2Н2О (Mosin & Ignatov, 2012a). The levels of deuterium enrichment of carotenoids were In the case 

of C. vulgaris and H. halobium used fluorescent illumination, as both microorganisms grown in the presence of 

light. Individual colonies of cells of these microorganisms resistant to 2Н2О, allocated by selection were grown 

on liquid growth media of the same composition with 99.9 atom% 2Н2О for producing the deuterated biomass. 

 

3.4. Adaptation to deuterium of photoorganotrophic halobacterium H. halobium 

The cell membrane of extreme aerobic photo-organotrophic halobacterium Halobacterium halobium contains a 

chromoprotein trans-membrane protein - bacteriorhodopsin (BR) with the molecular weight ∼26.5 kDa, 

determining the purple-red culour of halophilic bacteria. BR contains as chromophore group an equimolar 

mixture of 13-cis- and 13-trans-retinol C20 carotenoid, bound by aldemine bond schiff base (as in the visual 

animal pigments) with Lys-216 residue of the protein. In halobacteria BR functions as a light-driven 

transmembrane proton pump pumping a proton accros the membrane. Along with the BR the cell membrane of 

halobacteria contains a small amount of other related carotenoid pigments, the main of which bakterioruberin 

determining the stability of halobacteria to solar radiation (Oesterhelt & Stoeckenius, 1971; Oesterhelt, 1988). 

The adaptation of photo-organotrophic halobacterium Halobacterium halobium was carried out via plating of 

initial cells to separate colonies on solid 2% (w/v) agarose HM2 media based on 99.9 atom% 2Н2О and 

deuterated hydrolyzate biomass of B. methylicum, with the following subsequent selection of the colonies 

resistant to 2Н2О. The growing of halobacteria was carried out under illumination by light fluorescent lamps 

LDS-40-2 (40 W) with monochromatic light with λ = 560 nm for 4–5 days at 35 0C as swoun in Figure 8. While 

growing of H. halobium on HM2 growth medium cells synthesized the purple carotenoid pigment, identified as a 

native BR on the the spectral ratio of protein and chromophore fragments in the molecule (D280/D568 = 1.5:1.0). 

The growth of this bacterium on 2Н2О medium was slightly inhibited as compared with the control on protonated 

growth medium that  simplifies the optimization of conditions for the production of microbial biomass, which 

consists in the growing of the halobacterium on deuterated growth medium with 2% (w/v) of deuterated biomass 

hydrolyzate of B. methylicum, cell disintegration and lysis; isolation of purple membrane (PM) fraction; 

purification of PM from the low and high-molecular weight impurities, cellular RNA, carotenoids and 

phospholipids; solubilization of PM in 0.5% (w/v) solution of ionic detergent SDS–Na to form a microemulsion; 
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fractionation of solubilized BR by MeOH; gel permeation chromatography (GPC) on Sephadex G-200 and 

electrophoresis in 12.5% (w/v) PAAG in 0.1% (w/v) SDS –Na (Mosin & Ignatov, 2014). 

 
Figure 8. Growth dynamics of H. halobium under various experimental conditions: a) – HW2-medium; b) – 

peptone medium. Growing conditions: the incubation period: 4–5 days, temperature: 35 0C, illumination under 

monochrome light at λ = 560 nm 

In an attempt to remove a large fraction of the carotenoids and phospholipids from the membrane by 

column GPC, PM fraction was washed by 50% (v/v) of EtOH before stabilization by SDS-Na. Removing of 

carotenoids, consisting in repeated treatment of PM with 50% (v/v) EtOH at 0 0C, was a routine but necessary 

step, in spite of the significant loss of the chromoprotein. It was used five treatments by 50% (v/v) EtOH to 

obtain the absorption spectrum of PM suspension purified from carotenoids (4) and (5) (degree of 

chromatographic purity of 80-85%), as shown in Figure 9 at various processing stages (b) and (c) relative to the 

native BR (a). Figure 9 shows a dark-adapted absorption maximum at λ = 548 nm. Formation of retinal-protein 

complex in the BR molecule leads to a bathochromic shift in the absorption spectrum of PM (Figure 9c) - the 

main bandwith (1) with the absorption maximum at λ = 568 nm caused by the light isomerization of the 

chromophore by the C13=C14 bond is determined by the presence of 13-trans-retinal residue in BR568; 

additional low-intensity bandwith (2) at λ = 412 nm characterizes a minor impurity of a spectral form of meta-

bacteriorhodopsin M412 (formed in the light) with deprotonated aldimine bond between 13-trans-retinal residue 

and protein; the total bandwith (3) with λ = 280 nm is determined by the absorption of aromatic amino acids in 

the polypeptide chain of the protein (for native BR D280/D568 = 1.5:1.0). Upon light absorption, the maximum 

absorbance of PM shifts to λ = 556 nm with 6-8% increase in extinction. The 280/568 nm absorbance ratio of 

BR is directly related to the ratio of total protein (native BR) and is a convenient indicator for BR stability and 

integrity. Identical absorbance ratios are monitored using the conventional optics on a Beckman DU-6 

spectrophotometer (“Beckman Coulter”, USA) for detergent-solubilized BR or purified BR-solubilized in 

detergent.   
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Figure 9. The absorption spectra of PM (50% (v/v) EtOH) at various stages of processing: (a) – natural BR; (b) – 

PM after intermediate treatment; (c) – PM purified from carotenoids. The bandwith (1) is the spectral form of 

BR568, (2) – impurity of spectral form of meta-bacteriorhodopsin M412, (3) – the total absorption bandwith of 

aromatic amino acids, (4) and (5) – extraneous carotenoids. As a control used the native BR. 

The final stage of purification involved the crystallization of the solubilized in 0.5% (w/v) SDS-Na 

solution protein by MeOH and further separation of the protein from low-molecular-weight impurities by GPC. 

For this purpose the fractions containing BR were passed twice through a column with dextran Sephadex G-200 

balanced with 0.09 M Tris buffer (pH = 8.35) containing 0.1% (w/v) SDS-Na and 2.5 mM EDTA.  

The homogeneity of isolated BR satisfies to the requirements for reconstruction of native membranes, and was 

confirmed by electrophoresis in 12.5% (w/v) PAAG with 0.1% (w/v) SDS-Na and in vitro regeneration of AP 

with 13-trans-retinal. The degree of regeneration of PM was determined by the ratio: 

Dnat.280
.Dnat..568/Dreg..280

.Dreg.568 (D280 and D568 − the absorbance of a suspension of native and regenerated PM at λ 

= 280 and λ = 568 nm) was 65 mol.%. Output of crystalline protein makes up approximately 5 mg. The total 

level of deuterium enrichment of the BR molecule, calculated on deuterium enrichment levels of amino acids of 

the protein hydrolyzate was 95.7 atom% 2Н. 

 

4. Discussion 

Our studies indicated that the ability of adaptation to 2Н2О for different taxonomic groups of microorganisms is 

different, and stipulated by taxonomic affiliation, metabolic characteristics, pathways of assimilation of 

substrates, as well as by evolutionary niche occupied by the object. Thus, the lower the level of evolutionary 

organization of the organism, the easier it adapted to the presence of deuterium in growth media. Thus, most 

primitive in evolutionary terms (cell membrane structure, cell organization, resistance to environmental factors) 

of the studied objects are photo-organotrophic halobacteria related to archaebacteria, standing apart from both 

prokaryotic and eukaryotic microorganisms, exhibiting increased resistance to 2Н2О and practically needed no 

adaptation to 2Н2О, contrary to blue-green algae, which, being eukaryotes, are the more difficult adapted to 2Н2О 

and, therefore, exhibit inhibition of growth at 70–75 % (v/v) 2H2О. 

The composition of growth media evidently also plays an important role in process of adaptation to 
2Н2О, because the reason of inhibition of cell growth and cell death can be changes of the parity ratio of 

synthesized metabolites in 2Н2О-media: amino acids, proteins and carbohydrates. It is noted that adaptation to 
2Н2О occures easier on complex growth media than on the minimal growth media with full substrates at a 

gradual increasing of deuterium content in the growth media, as the sensitivity to 2Н2О of different vital systems 

is different. As a rule, even highly deuterated growth media contain remaining protons ∼0,2–10 atom.%. These 

remaining protons facilitate the restructuring to the changed conditions during the adaptation to 2Н2О, 

presumably integrating into those sites, which are the most sensitive to the replacement of hydrogen by 

deuterium. The evidence has been obtained that cells evidently are able to regulate the 2Н/1H ratios, while its 
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changes trigger distinct molecular processes. One possibility to modify intracellular 2Н/1H ratios is the activation 

of the H+-transport system, which preferentially eliminates H+, resulting in increased 2Н/1H ratios within cells 

(Somlyai et al., 2012). Furthermore deuterium induces physiological, morphological and cytological alterations 

on the cell. There were marked the significant differences in the morphology of the protonated and deuterated 

cells of blue-green algae C. vulgaris. Cells grown on 2Н2О-media were ∼2–3 times larger in size and had thicker 

cell walls, than the control cells grown on a conventional protonated growth media with ordinary water, the 

distribution of DNA in them was non-uniform. In some cases on on the surface of cell membranes may be 

observed areas consisting of tightly packed pleats of a cytoplasmic membrane resembling mezosoms – 

intracytoplasmic bacterial membrane of vesicular structure and tubular form formed by the invasion of 

cytoplasmic membrane into the cytoplasm (Figure 10). It is assumed that mezosoms involved in the formation of 

cell walls, replication and segregation of DNA, nucleotides and other processes. There is also evidence that the 

majority number of mezosoms being absent in normal cells is formed by a chemical action of some external 

factors – low and high temperatures, fluctuation of pH and and other factors. Furthermore, deuterated cells of C. 

vulgaris were also characterized by a drastic change in cell form and direction of their division. The observed 

cell division cytodieresis did not end by the usual divergence of the daughter cells, but led to the formation of 

abnormal cells, as described by other authors (Eryomin et al., 1978). The observed morphological changes 

associated with the inhibition of growth of deuterated cells were stipulated by the cell restructuring during the 

process of adaptation to 2Н2О. The fact that the deuterated cells are larger in size (apparent size was of ∼2–4 

times larger than the size of the protonated cells), apparently is a general biological phenomenn proved by 

growing a number of other adapted to 2Н2О prokaryotic and eukaryotic cells (Mosin & Ignatov, 2012a; Mosin & 

Ignatov, 2012b; Mosin & Ignatov, 2014). 

 
Figure 10. Electron micrographs of Micrococcus lysodeikticus cells obtained by SEM method: a) – protonated 

cells obtained on H2O-medium; b) – deuterated cells obtained on 2Н2О-medium. The arrows indicate the tightly-

packed portions of the membranes 

Our data generally confirm a stable notion that adaptation to 2Н2О is a phenotypic phenomenon as the 

adapted cells eventually return back to the normal growth after some lag-period after their replacement back onto 

H2O-medium. However, the effect of reversion of growth on H2O/2Н2О media does not exclude an opportunity 

that a certain genotype determines the manifistation of the same phenotypic attribute in 2Н2О-media with high 

deuterium content. At placing a cell onto 2Н2О-media lacking protons, not only 2Н2О is removed from a cell due 

to isotopic (1H–2Н) exchange, but also there are occurred a rapid isotopic (1H–2Н) exchange in hydroxyl (-OH), 

sulfohydryl (-SH) and amino (-NH2) groups in all molecules of organic substances, including proteins, nucleic 

acids, carbohydrates and lipids. It is known, that in these conditions only covalent C–H bond is not exposed to 

isotopic (1H–2Н) exchange and, thereof only molecules with bonds such as C–2Н can be synthesized de novo 
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(Mosin et al., 1996b; Mosin & Ignatov, 2012a). Depending on the position of the deuterium atom in the 

molecule, there are distinguished primary and secondary isotopic effects mediated by intermolecular interactions. 

In this aspect, the most important for the structure of macromolecules are dynamic short-lived hydrogen 

(deuterium) bonds formed between the electron deficient 1H(2Н) atoms and adjacent electronegative O, C, N, S- 

heteroatoms in the molecules, acting as acceptors of H-bond (Ignatov & Mosin, 2013c). The hydrogen bond, 

based on weak electrostatic forces, donor-acceptor interactions with charge-transfer and intermolecular van der 

Waals forces, is of the vital importance in the chemistry of intermolecular interactions and maintaining the 

spatial structure of macromolecules in aqueous solutions (Ignatov & Mosin, 2013d). Another important property 

is defined by the three-dimensional structure of 2Н2О molecule having the tendency to pull together hydrophobic 

groups of macromolecules to minimize their disruptive effect on the hydrogen (deuterium)-bonded network in 
2Н2О. This leads to stabilization of the structure of protein and nucleic acid macromolecules in the presence of 
2Н2О. That is why, the structure of macromolecules of proteins and nucleic acids in the presence of 2Н2О are 

somehow stabilized (Cioni & Strambini, 2002). 

Evidently the cell implements special adaptive mechanisms promoting the functional reorganization of 

vital systems in 2Н2О. Thus, for the normal synthesis and function in D2О of such vital compounds as nucleic 

acids and proteins contributes to the maintenance of their structure by forming hydrogen (deuterium) bonds in 

the molecules. The bonds formed by deuterium atoms are differed in strength and energy from similar bonds 

formed by hydrogen. Somewhat greater strength of 2Н–O bond compared to 1H–O bond causes the differences in 

the kinetics of reactions in H2O and 2Н2О. Thus, according to the theory of a chemical bond the breaking up of 

сovalent 1H–C bonds can occur faster than C–2Н bonds, the mobility of 2Н3O+ ion is lower on 28.5 % than Н3O+ 

ion, and О2Н- ion is lower on 39.8 % than OH- ion, the constant of ionization of 2Н2О is less than that of H2O 

(Mosin et al., 1999b). These chemical-physical factors lead to slowing down in the rates of enzymatic reactions 

in D2О (Cleland, 1976). However, there are also such reactions which rates in 2Н2О are higher than in H2O. In 

general these reactions are catalyzed by 2Н3O+ or  H3O+ ions or O2Н- and OH- ions. The substitution of 1H with 
2Н affects the stability and geometry of hydrogen bonds in an apparently rather complex way and may, through 

the changes in the hydrogen bond zero-point vibration energies, alter the conformational dynamics of hydrogen 

(deuterium)-bonded structures of DNA and proteins in 2Н2О. It may cause disturbances in the DNA-synthesis 

during mitosis, leading to permanent changes on DNA structure and consequently on cell genotype (Lamprecht 

et al., 1989). Isotopic effects of deuterium, which would occur in macromolecules of even a small difference 

between hydrogen and deuterium, would certainly have the effect upon the structure. The sensitivity of enzyme 

function to the structure and the sensitivity of nucleic acid function (genetic and mitotic) would lead to a 

noticeable effect on the metabolic pathways and reproductive behaviour of an organism in the presence of 2Н2О 

(Török et al., 2010). And next, the changes in dissociation constants of DNA and protein ionizable groups when 

transferring the macromolecule from H2O into 2Н2О may perturb the charge state of the DNA and protein 

molecules. All this can cause variations in nucleic acid synthesis, which can lead to structural changes and 

functional differences in the cell and its organelles. Hence, the structural and dynamic properties of the cell 

membrane, which depends on qualitative and quantitative composition of membrane’s fatty acids, can also be 

modified in the presence of 2Н2О. The cellular membrane is one of the most important organelles in the bacteria 

for metabolic regulation, combining apparatus of biosynthesis of polysaccharides, transformation of energy, 

supplying cells with nutrients and involvement in the biosynthesis of proteins, nucleic acids and fatty acids. 

Obviously, the cell membrane plays an important role in the adaptation to 2Н2О. But it has been not clearly 

known what occurs with the membranes − how they react to the replacement of protium to deuterium and how it 

concerns the survival of cells in 2Н2О-media devoid of protons. 
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Figure 11. HPLC-chromatograms of fatty acids obtained from protonated (a) and deuterated (b) cells of B. 

subtilis on the maximally deuterated 2Н2О-medium: Beckman Gold System (Beckman, USA) chromatograph 

(4.6×250 mm); stationary phase: Ultrasphere ODS, 5 µm; mobile phase: linear gradient 5 mM KH2PO4–

acetonitrile (shown in phantom), elution rate: 0.5 ml/min, detection at λ = 210 nm. The peaks with retention time 

3.75 min (instead of 3.74 minutes in the control), 4.10; 4.27; 4.60 (instead of 4.08; 4.12; 4.28 in the control), 

5.07 (instead of 4.98 in control) 12.57; 12.97 (instead of 12.79; 13.11; 13.17 in control) 14.00 (instead of 14.59 

in the control), 31.87 (instead of 31.83 in the control); 33.38; 33.74; 33.26; 36.03; 50.78; 50.99 (instead of 51.03; 

51.25 for control) correspond to individual intracellular fatty acids 
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Figure 12. HPLC-chromatograms of amino acids obtained from hydrolizates of protonated (a) and deuterated (b) 

cells of B. subtilis on the maximally deuterated D2O-medium: Biotronic LC-5001 (230×3.2 mm) column 

(“Eppendorf–Nethleler–Hinz”, Germany); stationary phase: UR-30 sulfonated styrene resin (“Beckman–

Spinco”, USA); 25 µm; 50–60 atm; mobile phase: 0.2 N sodium–citrate buffer (pH = 2.5); the eluent input rate: 

18.5 ml/h; the ninhydrin input rate: 9.25 ml/h; detection at λ = 570 and λ = 440 nm (for proline). 

Comparative analysis of the fatty acid composition of deuterated cells of chemoheterotrophic bacteria 

B. subtilis, obtained on the maximum deuterated medium with 99.9 atom.% 2Н2О (Figure 11b), carried out by 

HPLC method, revealed significant quantitative differences in the fatty acid composition compared to the control 

obtained in ordinary water (Figure 11a). Characteristically, in a deuterated sample fatty acids having retention 

times at 33.38; 33.74; 33.26 and 36.03 min are not detected in HPLC-chromatogram (Fig. 11b). This result is 

apparently due to the fact that the cell membrane is one of the first cell organelles, sensitive to the effects of 
2Н2О, and thus compensates the changes in rheological properties of a membrane (viscosity, fluidity, 

structuredness) not only by quantitative but also by qualitative composition of membrane fatty acids. Similar 

situation was observed with the separation of other natural compounds (proteins, amino acids, carbohydrates) 

extracted from deutero-biomass obtained from maximally deuterated 2Н2О-medium. 
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Table 5. Amino acid composition of the protein hydrolysates of B. subtilis, obtained on the maximum deuterated 

medium and levels of deuterium enrichment of molecules* 
Amino acid Yield, % (w/w) dry weight per 1 

gram of biomass 

 

Number of deuterium 

atoms incorporated into 

the carbon backbone of a 

molecule** 

Level of deuterium enrichment of 

molecules, % of the total number of 

hydrogen atoms*** 

 Protonated 

sample 

(control) 

The sample 

obtained in 99.9 

atom.% 2Н2О  

Glycine 8.03 9.69 2 90.0 

Alanine 12.95 13.98 4 97.5 

Valine 3.54 3.74 4 50.0 

Leucine 8.62 7.33 5 50.0 

Isoleucine 4.14 3.64 5 50.0 

Phenylalanine 3.88 3.94 8 95.0 

Tyrosine 1.56 1.83 7 92.8 

Serine 4.18 4.90 3 86.6 

Threonine 4.81 5.51 − − 

Methionine 4.94 2.25 − − 

Asparagine 7.88 9.59 2 66.6 

Glutamic acid 11.68 10.38 4 70.0 

Lysine 4.34 3.98 5 58.9 

Arginine 4.63 5.28 − − 

Histidine 3.43 3.73 − − 

Notes: 

* The data obtained by mass spectrometry for the methyl esters of N-5-(dimethylamino) naphthalene-1-sulfonyl 

chloride (dansyl) amino acid derivatives. 

** While calculating the level of deuterium enrichment protons (deuterons) at the carboxyl (COOH-) and NH2-

groups of amino acid molecules are not taken into account because of their easy dissociation in H2O/2Н2О 

*** A dash means absence of data. 

Amino acid analysis of protein hydrolysates isolated from deuterated cells of B. subtilis, also revealed the 

differences in quantitative composition of amino acids synthesized in 2Н2О-medium (Figure 13). Protein 

hydrolyzates contains fifteen identified amino acids (except proline, which was detected at λ = 440 nm) 

(Table 5). An indicator that determines a high efficiency of deuterium inclusion into amino acid molecules 

of protein hydrolyzates are high levels of deuterium enrichment of amino acid molecules, which are varied 

from 50 atom.% for leucine/isoleucine to 97.5 atom.% for alanine. 

Qualitative and quantitative composition of the intracellular carbohydrates of B. subtilis obtained on maximally 

deuterated 2Н2О-medium is shown in Table 6 (the numbering is given to the sequence of their elution from the 

column) contained monosaccharides (glucose, fructose, rhamnose, arabinose), disaccharides (maltose, sucrose), 

and four other unidentified carbohydrates with retention time 3.08 min (15.63 %); 4.26 min (7.46 %); 7.23 min 

(11.72 %) and 9.14 min (7.95 %) (not shown) (Figure 13). Yield of glucose in deuterated sample makes up 

21.4 % by dry weight, i.e. higher than for fructose (6.82 %), rhamnose (3.47 %), arabinose (3.69 %), and maltose 

(11.62 %). Their outputs are not significantly different from the control in H2O except for sucrose in deuterated 

sample that was not detected (Table 6). The deuterium enrichment levels of carbohydrates were varied from 90.7 

atom.% for arabinose to 80.6 atom.% for glucose. 

Table 6. Qualitative and quantitative composition of intracellular carbohydrates of B. subtilis obtained on the 

maximally deuterated medium and levels of deuterium enrichment of molecules* 
Carbohydrate Content in the biomass, % of the dry weight of 1 g 

biomass 

Level of deuterium enrichment, % of the total 

number of hydrogen atoms*** 

Protonated sample 

(control) 

The sample obtained in 99.9 

atom.% 2Н2О** 

Glucose 20.01 21.40 80.6 

Fructose 6.12 6.82 85.5 

Rhamnose 2.91 3.47 90.3 

Arabinose 3.26 3.69 90.7 

Maltose 15.30 11.62 − 

Sucrose 8.62 ND − 

Notes:  

* The data were obtained by IR-spectroscopy. 

** ND − not detected 

** A dash means the absence of data. 
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Figure 13. HPLC-chromatograms of intracellular carbohydrates obtained from protonated (a) and deuterated (b) 

cells of B. subtilis on the maximally deuterated 2Н2О-medium: Knauer Smartline chromatograph (250×10 mm) 

(“Knauer”, Germany); stationary phase: Ultrasorb CN; 10 µm; mobile phase: acetonitrile–water (75:25, % 

(w/w); the input rate: 0.6 ml/min 

 

Electropherograms of proteins isolated from hydrolysates of total proteins of microbial biomass of B. subtilis 

grown on 2H2O also showed differences in the qualitative composition of total protein obtained on 2H2O (Figure 

14). 
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Figure. 14. Electropherograms of proteins isolated from hydrolysates of total biomass of B. subtilis: 1 – a 

standard set of proteins; 2 – a sample obtained from protonated medium; 3 –- a sample obtained from deuterated 

medium 

 

Conclusions 

The experimental data demonstrated that the effects observed at the cellular growth on 2Н2О-media possess a 

complex multifactor character stipulated by changes of morpholodical, cytological and physiological parameters 

– magnitude of the lag-period, time of cellular generation, outputs of biomass, a ratio of amino acids, protein, 

carbohydrates and fatty acids synthesized in 2Н2О, and with an evolutionary level of organization of investigated 

object as well. The cell evidently implements the special adaptive mechanisms promoting functional 

reorganization of work of the vital systems in the presence of 2Н2О. Thus, the most sensitive to replacement of 
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1Н on 2Н are the apparatus of biosynthesis of macromolecules and a respiratory chain, i.e., those cellular systems 

using high mobility of protons and high speed of breaking up of hydrogen bonds. Last fact allows the 

consideration of adaptation to 2Н2О as adaptation to the nonspecific factor affecting simultaneously the 

functional condition of several numbers of cellular systems: metabolism, ways of assimilation of carbon 

substrates, biosynthetic processes, and transport function, structure and functions of deuterated macromolecules. 

It seems to be reasonable to choose as biomodels in these studies microorganisms, as they are very well adapted 

to the environmental conditions and able to withstand high concentrations of 2Н2О in growth media. 
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